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Dominant and subordinate dispositions are not only determined genetically but also

nurtured by environmental stimuli during neuroendocrine development. However, the

relationship between early life environment and dominance behavior remains elusive.

Using the IntelliCage-based competition task for group-housed mice, we have previously

described two cases in which environmental insults during the developmental period

altered the outcome of dominance behavior later in life. First, mice that were repeatedly

isolated from their mother and their littermates (early deprivation; ED), and second, mice

perinatally exposed to an environmental pollutant, dioxin, both exhibited subordinate

phenotypes, defined by decreased occupancy of limited resource sites under highly

competitive circumstances. Similar alterations found in the cortex and limbic area of these

two models are suggestive of the presence of neural systems shared across generalized

dominance behavior.
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Introduction

Social dominance is a universal behavioral feature exhibited by social animals across species and is
considered one of the few robust and reliable social behavior indices in experimental animals. Dom-
inance behavior is exhibited primarily in competitive situations, where individuals with tendencies
to dictate to others are referred to as dominant, whereas those being dictated to are referred to as
subordinates (Rowell, 1974). Generally, dominant individuals gain priority of access to resources
and copulation (Dewsbury, 1982; Akbaripasand et al., 2014), reflecting the ecological significance
of social dominance.

Numerous intrinsic factors are thought to be involved in generating dominance behavior, such
as levels of aggressiveness and anxiety (Chase et al., 2002), and dominance behavior has been used
as an indicator to study affective disorders in experimental animals (Malatynska and Knapp, 2005).
Although there is a substantial genetic influence determining these intrinsic characteristics (Braw
et al., 2006; Malkesman et al., 2006; Babri et al., 2014), the development of social behavioral dis-
position is presumably nurtured by the environment as well. In particular, social environment in
early life has a profound influence on the development of the social brain (Champagne and Curley,
2005) and the subsequent expression of social behaviors in adulthood (Fleming et al., 1999; Veen-
ema, 2012; Branchi et al., 2013). Manipulations of the neonatal social environment are widely used
experimental procedures in rodents and primates to investigate the developmental consequences
of stress, childhood adversity, or trauma during early life. The use of such animal models
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has proven successful in advancing our understanding of how
mother–infant and peer interactions, for instance, alter develop-
mental trajectories. Alterations in aggressive and anxiety traits
have been recognized in rats that were repeatedly isolated from
their mother (maternal separation; MS) and their littermates
(early deprivation; ED) during the neonatal period (Biagini et al.,
1998; Marmendal et al., 2006; Rees et al., 2006) or post-weaning
period (Toth et al., 2012). These dispositions arise presumably
from abnormalities in the stress response system comprising
the corticolimbic circuit and the hypothalamic–pituitary–adrenal
(HPA) axis (Pryce et al., 2011; Birnie et al., 2013; Rincon-Cortes
and Sullivan, 2014), in which its developmental programming is
susceptible to stressful stimuli during critical periods in life. This
observation is supported epidemiologically, with parental loss,
physical abuse, sexual abuse, and neglect having been shown to be
important for determining developmental outcomes, including
neuroendocrine stress response (Laurent et al., 2014). Other envi-
ronmental factors known to modify affective or social behavior in
maturity include perinatal exposure to toxic chemicals (Disney
et al., 2008; Haijima et al., 2010; Xu et al., 2012; Hamilton et al.,
2014; Kiryanova and Dyck, 2014), and some of these chemical-
induced behavioral abnormalities are associated with alterations
in the stress response system (Glavas et al., 2007; Poimenova et al.,
2010).

It is hypothesized that early life environment, particularly one
that affects the neuroendocrine stress response system, shapes
the neural basis of social behavior, which in turn may con-
tribute to the hierarchical status within a group later in life.
However, the contribution of the early-life environment to social
dominance is largely unknown. Here we describe two mouse
models that exhibit subordinate behavior in adulthood as a
result of insults during development: neonatal ED manipula-
tion (Benner et al., 2014) and perinatal exposure to an envi-
ronmental pollutant, dioxin (Endo et al., 2012). We will also
discuss the possible neurological foundations underlying social
dominance.

Methods for Assessing Dominance

Social dominance in wild animals is often determined by field
observations (Gesquiere et al., 2011). Although replicating a true
natural setting is a challenge in a laboratory-based experimen-
tal setup, machine-based behavioral phenotyping technologies
specialized for monitoring colonies of mice have been devel-
oped (Freund et al., 2013; Ohayon et al., 2013; Weissbrod et al.,
2013). They may be developed further in the near future to
provide suitable tools for evaluating complex social structures
such as hierarchy. Currently, however, a hierarchy is commonly
assessed based on a dominant or a subordinate phenotype exhib-
ited by one-to-one competitions, e.g., the tube test (Lindzey
et al., 1961), the social interaction test (Coura et al., 2013), the
urine-marking assay (Desjardins et al., 1973; Drickamer, 2001),
the dominant–submissive relationship (DSR) paradigm (Feder
et al., 2010), and the resident intruder test (Kaliste-Korhonen
and Eskola, 2000). In other words, dominance hierarchies have
been studied under the premise that dominant–subordinate rela-
tionships between pairs of individuals account for the overall

hierarchical structure of a colony. Because no more than two
mice can be tested at a time in the above paradigms, the effi-
ciency of generating rankings within the tested colony is greatly
compromised.

We have recently established a behavioral test protocol for
quantifying dominance behavior in group-housed mice (Endo
et al., 2012) using a commercially available machine-based
behavioral phenotyping system called an IntelliCage appara-
tus (Galsworthy et al., 2005) (Figure 1A). The IntelliCage-based
competition task is contextually similar to the paradigm pre-
sented in the visible burrow system established for rats (Blan-
chard et al., 1988, 1995). In both systems, the individual animal’s
behaviors are assessed in a social environment, and a group of
mice is subjected to a social stress resulting from competition for
resources. In the visible burrow system, animals are classified as
dominant or subordinate by agonistic interactions (attacks and
guarding behavior) manually scored by video monitoring. In the
IntelliCage-based competition task, the mice that occupy the lim-
ited resource sites at the beginning of the session are classified as
dominants, while those that fail to achieve access to the resource
sites are classified as subordinates.

In the competition task protocol, mice are deprived of water
throughout the day, except during the 3 h session period between
2200 and 0100, to establish motivation for accessing the cor-
ner chambers for water as a reward (Figure 1B). Once a ses-
sion begins, over a dozen mice compete against each other, as
in a game of musical chairs, for the water in the limited access
sites situated in the four corner chambers (Figure 1C). Because
of the daylong water deprivation, the competition is greatest
at the beginning of the session (approximately 22:00–22:05),
and the occupancy of the corner chambers is monopolized by
the dominant mice. During the following period (approximately
22:05–22:10), the subordinate mice can gain access to the corner
chambers. After a while, the intense competition subsides. In this
system, themode of competition can bemanipulated by adjusting
the number of mice in a cage and the number of available corner
chambers (Figure 1D).

Competitive Subordinance in
Group-Housed Mice

We have previously shown that ED mice, generated by isolat-
ing neonates from their mother and littermates for 3 h per day
for the first 2 weeks after birth (Pryce and Feldon, 2003; Mill-
stein et al., 2006), exhibit subordinate behavior in the IntelliCage-
based competition task (Benner et al., 2014). We have also shown
thatmice perinatally exposed to a low dose of dioxin, a ubiquitous
environmental pollutant, exhibit subordinate behavior in adult-
hood (Endo et al., 2012). In both cases, the subordinate behav-
ior was attributable to developmental abnormality that occurred
during early life, long before the time at which the behavioral tests
were conducted.

The subordinate behaviors were persistently present through-
out the competition task sessions for both the ED mice and
the mice perinatally exposed to dioxin. A reasonable hypothe-
sis is that the subordinate mice’s motivation toward the reward
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FIGURE 1 | Intelli-Cage-based competition task protocol. (A) An

IntelliCage apparatus comprising a large cage [55× 37.5× 20.5 cm (w × d ×

h)] equipped with four corner chambers [15× 15 × 21 cm] controlled by a

computer. Each of these chambers holds two water bottles and functions as

a fully automated operational unit. A radiofrequency identification (RFID)

device reader is located at the entrance of each chamber and enables the

IntelliCage software to record the entry and exit time of each individual

resident mouse, given that all resident mice have been tagged by the

subcutaneous implantation of RFID microchips. An entry to each chamber is

physically restricted to a single mouse at any given time. Inside the chamber,

there is a motorized door in front of each water bottle nozzle. The opening

and closing of the door are programmable and can be uniquely assigned for

each mouse. For instance, the door can detect the nose poking behavior of

a mouse, which can be used to initiate opening, and closing can be

programmed by time. (B) Mice are deprived of water throughout the day,

except during the session period between 2200 and 0100 h. Session periods

are cued by an LED light on the wall of the IntelliCage, and mice are

thoroughly trained to learn the cue. (C) Inside the chamber, a mouse uses its

nose to poke either of the two doors to open it for accessing the water

nozzle. The activated door is programmed to stay open for 4 s. After the door

shuts, the chamber becomes inactivated for that mouse, which must go to a

different corner chamber for another reward. The task protocol is thus

programmed to prevent any single mouse from persistently occupying one

corner chamber for an indefinite time. The occupancy of the corner

chambers is measured by dwell time or visit frequency. (D) The experimental

group composition as well as the degree of competition can be flexibly

determined by adjusting the density of animals within an apparatus.

Assessment of the motivation level toward reward can be achieved by

dividing the dominants and subordinates into two separate cages for several

days. If their visiting patterns overlap, it may be regarded as a clear indication

that the motivation of the subordinate mice for drinking water is not different

from that of the dominants. After the motivational level of the subordinates

has been confirmed, all the mice can be combined again to confirm whether

the peak number of visits in the subordinates declines once again.

is lower than that of the dominant mice, and accordingly
accounts for decreased occupancy of the corner chambers. In
the IntelliCage-based competition task, the level of motivation
can be assessed by several means as follows: (i) evaluating the
water consumption under a basal, non-competitive condition;
(ii) evaluating the total dwell time and frequency of visits made
within the session. If all of the mice have an equal level of moti-
vation, an equal duration and number of total visits would be
expected, although the timing of the visits may differ depending
on the dominance behavior; and (iii) evaluating the subordinate
mice’s motivation for drinking in the absence of dominant mice
(Figure 1D).

It is notable that in both mice models, the subordinate mice
did not differ from the dominant mice in terms of water con-
sumption per day andmotivation for drinking water at the begin-
ning of the water-availability period. Furthermore, the removal
of the dominant mice from the cage ameliorates the subordi-
nate mice’s visiting behavior. Taken together, these observations

emphasize that social environment plays an imperative role
in determining the behavior of these mice, and that the early
life environment can alter the vulnerability to social–emotional
challenges in adulthood. The subordinate behavior may reflect
a social–phobic temperament, resembling that of social anxi-
ety disorder or autism spectrum disorder (ASD) in humans.
In contrast, an abnormality in competitive dominance may be
manifested in the hyperdominance of individuals, a behavior
considered suggestive of conduct disorder observed in humans.

Possible Neural Basis of Dominance
Behavior

The medial prefrontal cortex (mPFC) is one of the major brain
regions associated with the dominant–subordinate phenotype
assessed by the IntelliCage-based competition task. This obser-
vation is consistent with previous reports on animals (Gesquiere
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et al., 2011; Wang et al., 2011) and humans (Zink et al., 2008;
Freeman et al., 2009). In ED mice, the expression of the Map2
gene, which is considered to be involved in dendritic remod-
eling associated with synaptic plasticity, is significantly reduced
in mPFC, and a significant correlation is observed between
the dominance level and Map2 expression level (Benner et al.,
2014). This observation is consistent with a previous report
describing a significant association between dominance rank and
synaptic efficiency in mPFC in mice (Wang et al., 2011). The
mPFC of mice born to dams perinatally exposed to a low dose
of dioxin showed reduced expression of the immediate early
genes (IEGs), c-Fos and Arc, indicating reduced neuronal activ-
ity (Endo et al., 2012). The mPFC is considered to undergo
experience-dependent changes. For example, social experience-
related reductions in dendritic spine density and IEG expression
in mPFC were found in rats exposed to ethanol during gesta-
tion (Hamilton et al., 2010). The prefrontal acetylcholine system
has recently been shown to be involved in dominance behavior
characterized by the social interaction test (Coura et al., 2013).
In addition to the relationship of mPFC with the dominance
trait, fMRI studies of humans showed that mPFC is associated
with social phobia (Blair et al., 2010) and social anxiety disorders
(Shang et al., 2014).

The amygdala is another brain region in which ED mice and
dioxin-exposed mice share similar neurological characteristics
(Endo et al., 2012; Benner et al., 2014). In both cases, c-Fos
expression was elevated in the basolateral amygdala (BLA), and
its expression level was inversely correlated with dominance rank
in the ED study. BLA plays important regulating roles in antic-
ipatory anxiety (Savonenko et al., 1999), social cue processing
(Adolphs, 2001; Truitt et al., 2007), and stimulus–reward process-
ing (Murray, 2007). Its function is strongly affected by early life
stress both in humans (Marusak et al., 2014; Suzuki et al., 2014)
and rodents (Caldji et al., 1998; Berman et al., 2014; Tzanoulinou
et al., 2014). Amygdala activity habituates to repeated presenta-
tions of social stimuli in healthy subjects (Wedig et al., 2005),
suggesting its role in social adaptation. However, abnormal BLA
excitation has been suggested to occur in social anxiety disorder
and ASD (Truitt et al., 2007; Kleinhans et al., 2009). BLA is partic-
ularly sensitive to early life stress and has a critical window (Kop-
pensteiner et al., 2014). Children who experienced early life stress
were observed to have enhanced amygdala activity (Maheu et al.,
2010; Tottenham, 2012; Gee et al., 2013). Importantly, functional
connectivity between the mPFC and amygdala has been recog-
nized (Likhtik et al., 2005, 2014). The integrity of the mPFC–
amygdala circuit is hypothesized to be a critical determinant of
the self-regulation of socio-emotional behavior in response to
one’s social environment, characteristically disrupted in patients
with ASD (Bachevalier and Loveland, 2006).

Social recognition and social memory are thought to con-
tribute to the maintenance of the dominance hierarchy. Social
memory, distinct from other types of memory, involves a spe-
cial neural circuit relaying signals from olfactory social cues
(e.g., pheromones) to the medial amygdala (MeA), which inner-
vates the lateral septum (LS) and the bed nucleus of the stria
terminalis (BNST). The neural circuit that involves the regions
listed above is highly stress-responsive and regulates aggressive

behavior (Ferguson et al., 2002; Nelson and Trainor, 2007). The
neuropeptides vasopressin and oxytocin regulate social behav-
ior and stress responses, and the role of oxytocin receptors in
the long-term establishment of dominance hierarchies has been
reported (Timmer et al., 2011).

Stress and Dominance

An association between dominance behavior and neuroen-
docrine stress response has been an intriguing subject in the
field of social neuroscience. Experiencing dominance hierarchies
can be stressful to both subordinate and dominant individu-
als (Blanchard et al., 1995; Gesquiere et al., 2011), and neu-
roendocrine characteristics associated with the stress of being
subordinate have been reviewed (Blanchard et al., 1993). In gen-
eral, social subordinance is associated with hypercortisolism or
feedback resistance (Sapolsky et al., 1997), whereas glucocorti-
coid signaling is involved in agonistic behaviors, including domi-
nance, under conditions when hierarchy has not been established.
Corticosterone administration affects aggressive behavior in res-
ident intruder conflicts (Mikics et al., 2004), but does not affect
intracolony aggression in colonies that have already been estab-
lished to have stable social relationships (Mikics et al., 2007).
However, glucocorticoids are thought to play a critical role in
the establishment of a dominance hierarchy and in the long-
term maintenance of dominant–subordinate relationships. Rats
exposed to stresses just before the first social encounter tend
to become subordinate toward unfamiliar rats that were not
exposed to the same stresses and have similar attributes, such
as body weight and trait anxiety; and the dominant–subordinate
relationship established between a given pair of rats persists over
time (Cordero and Sandi, 2007). It is thus implied that sensitiv-
ity and reactivity toward the stress response (HPA axis function
and regulation) have a major effect not only on determining the
hierarchical phenotype at the time of a first social encounter but
also on the long-term maintenance of an individual’s dominance
behavior.

Importantly, the integrity of the neuroendocrine stress
response system can be modulated by external insults such as
disrupted neonatal social environment and perinatal exposure
to a neurotoxic chemical. Accumulating reports show that the
HPA axis is programmed, at least in part, by early-life events
(Matthews, 2002). In particular, early-life stress can modify the
development of HPA functioning and thereby influence behavior
as well as susceptibility to certain diseases in adulthood. In non-
human primates, prenatal stress, experimentally induced by ges-
tational glucocorticoid exposure, influences social play behavior
and HPA axis function (Mustoe et al., 2014). Similarly, hyperag-
gressive traits have been observed with repeated corticosterone
administration to peripubertal rats (Veenit et al., 2013).

Previous studies have shown the effects of ED on behavior in
adulthood and HPA axis function (Ruedi-Bettschen et al., 2004,
2006; Marmendal et al., 2006; Rees et al., 2006, 2008). How-
ever, the developmental toxicity to the neuroendocrine stress
response system of perinatal dioxin exposure has not been thor-
oughly assessed in mice. The HPA axis manifests acute toxicity
upon dioxin exposure in primates (Shridhar et al., 2001) and
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rats (Balk and Piper, 1984; Bestervelt et al., 1993). For example,
TCDD administration increases adrenal sensitivity to adrenocor-
ticotropic hormone (ACTH) in adult rats (Dibartolomeis et al.,
1987). In addition, pituitary gland toxicities have been shown in
vivo (Moore et al., 1989) and in vitro, resulting in, for example,
increases in the gene expression of the ACTH precursor proo-
piomelanocortin (POMC) (Bestervelt et al., 1998; Huang et al.,
2000, 2002) and ACTH and corticosterone secretion (Pitt et al.,
2000). Recent studies have shown that prenatal dioxin expo-
sure reduces the expression of pituitary hormones (Takeda et al.,
2014) and decreases the circulating level of corticosterone in
pregnant dams and their fetuses. This response causes in utero
growth retardation that can be rescued by supplying corticos-
terone to dioxin-exposed dams (Hattori et al., 2014). These find-
ings suggest that the HPA axis is disrupted in the perinatal dioxin
exposure model.

Conclusions

We have described two cases in which early-life environmental
manipulations have induced alterations in dominance behavior.
These studies extend previous observations that social behav-
ior can be shaped by environment, and show that competitive
dominance is a robust, reliable, and also highly sensitive trait
allowing the evaluation of the effects of developmental insults

on neuroendocrinological systems in mice. Dominance is pre-
sumably more complex than one-to-one competition and is
highly dependent on the social environment. The IntelliCage-
based competition task permits the determination of the indi-
vidual mouse’s level of dominance in a group, given that
the task is presented simultaneously to over a dozen mice
in a single apparatus. Thus, it is considered that the dom-
inance in this test represents not merely competitive but
social dominance. In addition, an evaluation of the correla-
tion between the level of dominance and the gene expression
patterns in the ED model cannot be achieved by other stan-
dardized behavioral assays used to investigate the social status
in rodents.
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