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The question of whether, and if so how, learning can be transfered from previously

experienced games to novel games has recently attracted the attention of the

experimental game theory literature. Existing research presumes that learning operates

over actions, beliefs or decision rules. This study instead uses a connectionist approach

that learns a direct mapping from game payoffs to a probability distribution over

own actions. Learning is operationalized as a backpropagation rule that adjusts the

weights of feedforward neural networks in the direction of increasing the probability

of an agent playing a myopic best response to the last game played. One advantage

of this approach is that it expands the scope of the model to any possible n × n

normal-form game allowing for a comprehensive model of transfer of learning. Agents

are exposed to games drawn from one of seven classes of games with significantly

different strategic characteristics and then forced to play games from previously unseen

classes. I find significant transfer of learning, i.e., behavior that is path-dependent, or

conditional on the previously seen games. Cooperation is more pronounced in new

games when agents are previously exposed to games where the incentive to cooperate

is stronger than the incentive to compete, i.e., when individual incentives are aligned.

Prior exposure to Prisoner’s dilemma, zero-sum and discoordination games led to a

significant decrease in realized payoffs for all the game classes under investigation. A

distinction is made between superficial and deep transfer of learning both—the former

is driven by superficial payoff similarities between games, the latter by differences in

the incentive structures or strategic implications of the games. I examine whether

agents learn to play the Nash equilibria of games, how they select amongst multiple

equilibria, and whether they transfer Nash equilibrium behavior to unseen games.

Sufficient exposure to a strategically heterogeneous set of games is found to be a

necessary condition for deep learning (and transfer) across game classes. Paradoxically,

superficial transfer of learning is shown to lead to better outcomes than deep transfer for a

wide range of game classes. The simulation results corroborate important experimental

findings with human subjects, and make several novel predictions that can be tested

experimentally.

Keywords: transfer of learning, game theory, cooperation and conflict, connectionist modeling, neural networks

and behavior, agent-based modeling
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1. Introduction

This study examines how dynamic, supervised learning processes
operating on neural networks induce transfer of learning (ToL)
from previously played games to new games. Specifically, does
behavior in a new class of games (i.e., with different strategic
characteristics) depend on the game class that the player was pre-
viously exposed to? And, if so, do we observe any regularities that
allow us to predict the behavior of players? Path-dependence and
the history of observed games can have important implications
at both the micro-level (individuals) and also the macro-level
(groups of individuals). At the micro-level, an individual’s devel-
opmental trajectory may be seriously affected by the character-
istics of the environment, such as the inherent incentives of
the type of games and players that s/he is exposed to early
on in development. One of the most important questions in
the developmental psychology literature is how adaptation to a
harsh (or safe) environment at a young age subsequently affects
behavior at an older age when confronted with a different envi-
ronment (e.g., see Frankenhuis and Del Giudice, 2012). For
example, a nurturing school environment may be add odds with
a harsher environment that adolescents face upon entering the
workforce. A problematic parent-child relationship may have
long-term behavioral implications even when this link is broken.
At the macro-level, the aggregation of individuals’ development
through interactions with one another can shape the evolution of
societies’ functioning and culture through the endogenous emer-
gence of expectations, social norms and conventions (Bednar and
Page, 2007). For example, an initially competitive corporate envi-
ronment may trap employees in sub-optimal behavior even after
the environment’s incentive structure is changed to foster more
collaboration. On a larger scale, a country with poor rule of law
and property rights may remain stuck at a sub-optimal outcome
even after improving institutions. Furthering our understanding
of ToL in strategic interactions is an important step in answering
issues arising both at the individual and the collective level. This
knowledge is relevant to numerous disciplines such as cognitive
(developmental) psychology, economics, sociology, and machine
learning/artificial intelligence.

Transfer of learning–also referred to as inductive transfer or
knowledge transfer–has a long history in cognitive psychology
dating back to Thorndike and Woodworth (1901) and plays a
central role in connectionism (Pan and Yang, 2010), including
the connectionist approach to cognition—see Pratt and Jennings
(1996); Thrun and Pratt (2012) for extensive discussions. Despite
a large literature on connectionist modeling (and ToL) for non-
strategic tasks, Elman (2005, p. 113) points out that “little mod-
eling has been done in the realm of social cognition (there is
some work that looks at social interactions, but this tends to have
an evolutionary focus, rather than developmental).” This study
contributes exactly to this under-developed literature at the inter-

section of social interactions (from the viewpoint of game theory)
and connectionist behavioral models.

I address the distinction between two types of qualitatively

different ToL from a connectionist perspective. Superficial ToL

manifests as behavior that is influenced by superficial similar-
ities between different games. Deep ToL manifests as behavior

that is influenced by structural or strategic similarities between
games. The latter requires that connectionist models of strate-
gic behavior are capable of learning higher-order (deep) repre-
sentations/concepts in the first place. In the context of games, I
consider higher-order representations as the strategic character-
istics of games (or the incentive structure of games) in contrast to
simpler representations based on the superficial similarity of pay-
offs across games. This raises important questions that I attempt
to answer. Is ToL predominantly of the deep or superficial kind
and what drives the relative prevalence of each type? Do there
exist organizing principles that allow us to predict how agents will
behave in a new environment, or class of games? Does deep ToL
lead to higher payoffs than superficial ToL in new game classes?

The learnability (and by extension the transfer) of deep con-
cepts has been at the forefront of the resurgence of connectionist
models after the discovery of the backpropagation algorithm1

(e.g., Hinton, 1989; Rumelhart and Todd, 1993; McClelland,
1994). To the best of my knowledge this has not been explored
systematically for strategic games with the exception of Sgroi and
Zizzo (2007, 2009). These two papers explored the learnability of
the Nash equilibrium concept by feedforward neural networks.
However, these networks did not interact and concurrently learn
from one another, but rather learned from an external teacher
that provided the “correct” response (defined as the Nash equi-
librium). By contrast, I examine the dynamic learning of neural
networks without an external teacher, whose goal is to maximize
their payoffs given the behavior of their opponents in the popu-
lation. This is based on prior work by Spiliopoulos (2008, 2011b,
2012), which the current work extends to the question of ToL.

This work complements recent research in the experimen-
tal economics literature investigating ToL in games (discussed
extensively in the next section). However, it is different with
respect to the methodological approach and the behavioral mod-
eling of learning. I employ a simulation (agent-based) approach
that allows for the endogenous emergence of behavior arising
from agent interactions. Moreover, I propose a connectionist
approach to modeling behavioral learning and ToL across games
with different strategic characteristics. I show how connection-
ist models predict and extend the robust experimental finding
that prior experience in coordination games increases the like-
lihood of subsequent cooperation in new games of a competi-
tive nature (Knez and Camerer, 2000; Ahn et al., 2001; Devetag,
2005; Bednar et al., 2012; Cason et al., 2012; Cason and Gan-
gadharan, 2013; Juvina et al., 2013). Prior exposure to games
with significant conflict between players–such as zero-sum, Pris-
oner’s dilemma and discoordination games–led to significantly
lower payoffs in all the types of games investigated in this study.
The converse also holds—prior exposure to games that promote
cooperation rather than conflict was more likely to lead to bet-
ter payoff performance for a wide range of game classes. Fur-
thermore, the connectionist model advances the literature by
explaining how transfer of learning occurs at a computational

1I refer to the resurgence of connectionist research after the so-called AI-winter,

which is widely considered to have been triggered by the discussion in Minsky and

Papert (1969) of the limitations of perceptrons and the training algorithms known

at the time.

Frontiers in Neuroscience | www.frontiersin.org 2 March 2015 | Volume 9 | Article 102

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Spiliopoulos Transfer of conflict and cooperation

level rather than merely describing it, and makes new testable
predictions.

1.1. Why an Agent-Based Approach?
Prior work in this field has tackled this problem using two
approaches, theoretical and experimental. This study proposes
agent-based simulations as a third methodological tool to over-
come some of the limitations of the existing approaches2. Agent-
based computational economics emphasize how the interaction
of agents shapes the emergent behavior of the population—(see
Tesfatsion, 2002; Tesfatsion and Judd, 2006) for an introduction
and discussion of applications, and Chen (2012) for a histor-
ical overview. Schlesinger and Parisi (2001) argue in favor of
agent-based computational models of cognitive development as
a means of capturing the complex interaction between agents
and the environment. Experiments with human subjects limit
the scope of investigation due to practical constraints such as the
number of subjects, treatments, amount of experience (measured
by the number of games an agent is exposed to) and experimental
monetary costs. By contrast, simulations are only constrained by
computational costs, which are already less restrictive and subject
to a decreasing trend over time. For example, running an experi-
mental study of the analog to the simulations in this paper would
require 64 different treatments, each with a large number of sub-
jects. Furthermore, simulations can be used to initially explore
a large space of possibilities and, based on the results, generate
new hypotheses that can be further tested in the laboratory with
human subjects.

1.2. Why Connectionist Models?
The existing experimental economics literature invokes differ-
ent types of learning models driven by internal processes and
agents’ cumulative experience3. Learning over actions (e.g., rein-
forcement learning Roth and Erev, 1995) or beliefs (e.g., fic-
titious play beliefs Cheung and Friedman, 1997) severely lim-
its models to either the same (or strategically similar) games
since actions and beliefs are not invariant to the game structure.
Rule-learning (Haruvy and Stahl, 2012) is more flexible, but it
is still constrained by the need for the same rule to be appli-
cable to all types of games and requires a priori specification
of these rules4. The connectionist approach that I present can
be viewed as a reductionist implementation of the rule-learning
in Haruvy and Stahl (2012), since it models learning at a lower
level of representation and permits the endogenous emergence
of rules—see Spiliopoulos (2011b) for an example of the emer-
gence of strategic heuristics in neural networks playing games.
In the terminology of Marr (1982), rule-learning is an analysis at
the algorithmic level while the connectionist models herein are

2Of course, simulations–as any other methodology–have their own limitations.

Consequently, the three approaches are complementary rather than antagonistic,

and a synthesis of these is valuable.
3Izquierdo et al. (2012) refer to this as Learning Game Theory. Another approach,

Evolutionary Game Theory, assumes learning is driven by external evolutionary

forces. Learning Game Theory is more appropriate for ToL as it is inextrica-

bly linked both to the types of games DMs are exposed to and their opponents’

behavior in said games.
4For example, learning to perform iterated deletion of dominated strategies in one

game will not be useful in another game that is not dominance-solvable.

closer to the implementational level. Importantly, this connec-
tionist approach can be used to model behavior for any n × n
normal form game, thereby extending the scope of learning mod-
els of strategic behavior. This permits a more thorough and
broader investigation of ToL that I take advantage of bymodeling
behavioral spillovers across seven classes of games with different
incentive structures. Another strength of this approach is that it
allows the direct modeling of the emergent properties of such
a learning system, especially when embedded in an agent-based
framework.Munakata andMcClelland (2003) advocatemodeling
cognitive development using a connectionist framework exactly
for this reason. Mareschal and Thomas (2007) survey computa-
tional modeling in developmental psychology and contend that
a computational approach is an essential step in moving from
mere descriptions of behavior to explanations of behavior that
provide falsifiable predictions. Connectionist models satisfy this
requirement and also impart some biological plausibility to learn-
ing models by underpinning their mechanisms at the neural
substrate level—see Section 2.2 for a more detailed discussion.

1.3. Overview
The paper is organized as follows. A literature review of both
ToL studies and the implementation of neural networks to model
strategic decision making follow in Sections 2.1 and 2.2 respec-
tively. Section 3 demonstrates the detailed methods of the agent-
based simulations. Section 4 presents the results and Section 5
concludes with a general discussion. Readers not familiar with
feedforward neural networks and the backpropagation algorithm
will benefit from a prior reading of Appendices A,B. Throughout
the paper I contrast the predicted behavior from the simulations
with the results from existing experimental studies conducted in
the laboratory with human subjects. Also, the simulations make
several novel predictions about ToL under situations that have
not yet been studied in the lab.

2. Literature Review

2.1. Transfer of Learning
Despite the importance of ToL, the experimental game theory
literature has until recently largely ignored this problem5. Early
theoretical work, (e.g., Gilboa and Schmeidler, 1995; Samuelson,
2001; Jehiel, 2005; Steiner and Stewart, 2008), laid the ground-
work for experimental investigations—the latter typically follow
two learning paradigms. The simultaneous learning paradigm
exposes subjects to a set of strategically different games and con-
trasts this with treatments where subjects were exposed only to a
single class of games. The sequential learning paradigm repeat-
edly exposes subjects to the same game (or perhaps different
games belonging to the same class). Empirical evidence from

5Early experimental work in the field focused on the most natural, and easiest to

examine, environment where learning is expected to be important, e.g., a repeated

game with fixed partner matching. The use of an unchanging stage game allows for

a relatively easy formulation of learning models. For example, both belief forma-

tion and reinforcement learning algorithms require unchanging action and payoff

structures. If the payoffs of the game or available actions were suddenly different

these models could not condition learning upon these changes. However, this sim-

plicity comes at the cost of examining a very narrow subset of possible games and

learning situations.
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these paradigms finds that agents transfer learning from one
game to another. However, the degree of ToL ismediated by other
variables, such as the complexity of the game and opponents’
behavior, the degree and type of similarity (deep or superficial)
between games.

Asmentioned in the introduction, ToL can be driven from two
different sources. Knez and Camerer (2000) differentiate between
ToL arising from descriptive and payoff similarities of the new
game compared to previously experienced games. Descriptive
similarity refers to the action (choice) labels, the number and
identity of players, and the presentation format of a game. Payoff
similarity refers to the strategic characteristics of a game, which
ultimately are a function of the payoff and action spaces of all
players. They present experimental evidence that ToL between
Prisoners’ dilemma and Weak-link games depended strongly on
the descriptive similarity of the games. Juvina et al. (2014) also
differentiate between ToL arising from descriptive and payoff
similarities; note, they refer to them as surface and deep simi-
larities respectively. They conclude that both types of similarity
are important, and ToL was strongest when both surface and
deep similarities suggested the same behavior in the new game.
Another important result is that deep transfer can occur even
when surface similarity is absent; indeed, the existence of surface
similarity can hinder transfer based on deep similarity. For exam-
ple, Rick and Weber (2010) find that subjects learn the notion of
iterated dominance and transfer its use to similar but new games;
however, such deep transfer was more prevalent when feedback
was suppressed. Haruvy and Stahl (2012) find significant evi-
dence of deep ToL, and an increase in the depth of reasoning in
dissimilar 4× 4 normal form games.

Cooper and Kagel (2003, 2007) document the importance of
sophisticated learners in facilitating the transfer of knowledge
in limit-pricing and signaling games. Subjects repeatedly playing
two different games against two fixed opponents in Bednar et al.
(2012) exhibited both behavioral spillover (using similar strate-
gies across games) and non-optimal play due to cognitive load.
Devetag (2005) finds that a precedent of efficient coordination
in the critical-mass game carries over to play in a minimum-
effort game. Cason et al. (2012) find significant spillovers when
subjects sequentially played a median-effort coordination game
followed by a minimum-effort coordination game. The Pareto-
optimal equilibrium in theminimum-effort gamewasmore likely
when players coordinated in the previously played median-effort
game. Mengel and Sciubba (2014) conclude that prior experi-
ence with a structurally similar game leads to faster convergence
to a Nash equilibrium (NE). Conversely, prior experience with a
structurally different game leads to less coordination and a lower
probability of Nash equilibrium play.

In this paper’s setting, learning takes place in a more demand-
ing environment than the majority of experimental studies.
Agents are required to learn to play randomly generated games
drawn from a single class of games, not a single game that is
repeated before testing transfer to a new game. The closest exper-
imental paper using a similar setup is Grimm and Mengel (2012)
in which games were randomly drawn from a set of two or six dif-
ferent classes and players were randomly rematched after every
round.

2.2. Neural Network Models of Strategic Learning
Studies modeling decision makers as neural networks are rel-
atively scarce, but increasingly attracting more attention. Sgroi
and Zizzo (2007, 2009) find that neural networks can learn to
use heuristics approximating the Nash equilibria in 3× 3 normal
form games when receiving feedback from a teacher. Spiliopou-
los (2008, 2011b, 2012) extend this research to tabula rasa neu-
ral networks concurrently learning to play 2 × 2 or 3 × 3 nor-
mal form games, without an external teacher to provide the
“correct” response. Regret-driven neural networks can predict
subjects’ behavior in games with a unique mixed strategy Nash
equilibrium, both when repeatedly playing a single game (Mar-
chiori and Warglien, 2008), and when concurrently learning
to play different instances of such games (Marchiori and War-
glien, 2011). Note, their setup used instances of games drawn
within the same game class, not across game classes as I pro-
pose. Similarly to human subjects, NNs learning to play two-stage
games with a unique subgame-perfect Nash equilibrium exhibit
bounded rationality (Spiliopoulos, 2011a); specifically, subgame
and truncation inconsistency.

This paper extends the methodology of Spiliopoulos (2008,
2011b, 2012) to investigate ToL across different game classes—
a summary of the main results and advantages of using this
methodology follows. The NN agents in these studies were ran-
domly matched and played randomly chosen 2×2 and 3×3 nor-
mal form games regardless of their strategic characteristics such
as number and types of equilibria. The ability of these NNs to pro-
duce a valid response for any n × n game–regardless of whether
it has been observed before or not– makes them a viable model
of ToL. The main results in Spiliopoulos (2012) for 2 × 2 games
are: (a) NN agents learned to play the pure-strategy Nash equi-
librium of different classes of games with near certainty, and (b)
NNs learned to adhere to principles of dominance and iterated
dominance with near certainty. The main results in Spiliopoulos
(2011b) for 3 × 3 games are: (a) NN agents learned to behave
similarly to human subjects in the lab with respect to a num-
ber of criteria, such as employing similar heuristics, equilibrium
selection, use of the principles of dominance and iterated domi-
nance, and (b) the endogenous emergence of a similarity measure
of games based on the number and type of Nash equilibria.

The use of neural networks has numerous advantages—the
reader is referred to Spiliopoulos (2008, 2011b, 2012) for exten-
sive arguments. Similarly to the human brain, NN agents encode
knowledge in a parallel-distributed topology and learn using
a simple rule, the backpropagation (BP) algorithm (Rumelhart
et al., 1986) that is driven by ex post best-response. The BP algo-
rithm is simple and effective, requiring only first-order gradient
descent calculations ignoring second-order information. Orig-
inally, the biological plausibility of the BP algorithm was not
taken literally, as it required a global teacher and evidence of its
existence in the human brain was lacking. This view is chang-
ing as evidence is accumulating that neuromodulators, such as
dopamine, may provide the global learning signal required for
supervised learning, (e.g., Egelman et al., 1998; Schultz, 1998;
Glimcher, 2011). See Zipser and Andersen (1988); Mazzoni et al.
(1991) for arguments that the backpropagation algorithm reflects
the same algorithm used in the brain, and Robinson (2000);
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van Ooyen and Roelfsema (2003) for arguments that BP may be
approximately equivalent (or easily modified) into an algorithm
that is biologically plausible6.

3. Methods

3.1. Game Classes
This study uses seven different classes of 2 × 2 games from
the literature, chosen according to the requirements that they
be widely-studied games with a diverse range of strategic char-
acteristics. Table 1 lists the game classes and compares the
following characteristics (for generic games)7: #PSNE (the num-
ber of pure strategy NE), #MSNE (the number of mixed strat-
egy NE), #PDNE (payoff-dominant NE), #RDNE (risk-dominant
NE), and whether a game is dominance solvable. These game
classes include diverse social interactions where players may be in
direct competition (e.g., ZS), no competition or no conflict (NC),
and games where both cooperation and conflict coexist. Coordi-
nation games have multiple equilibria and provide incentives for
players to coordinate on the same actions. Theories of equilib-
rium selection seek to explain which equilibrium is more likely
to be attained (Harsanyi and Selten, 1988). Anti-coordination
games provide incentives for players to settle on different actions.
Discoordination games exhibit a mixture of both coordination
incentives (for one player) and anti-coordination incentives (for
the other player). Such games allow only for a uniquemixed strat-
egy NE. Games of pure conflict do not incentivize any kind of
cooperation as one player’s gain is necessarily another player’s
loss. Social dilemmas, such as Prisoner’s dilemma, have elements
of both conflict and cooperation leading to a Nash equilibrium
that is sub-optimal for both players. Detailed taxonomies of 2×2
games can be found in Rapoport et al. (1976); Kilgour and Fraser
(1988).

6Another related argument in favor of algorithms that may not accurately

reflect biological mechanisms is that despite this the neural networks derived

from backpropagation may be a relatively accurate reflection of the networks

that arise in the the human mind (Lehky and Sejnowski, 1988; Kettner et al.,

1993).
7Generic bimatrix games have an odd number of NE, whereas non-generic games

may have an even number. Our method of sampling games guarantees that they

are generic.

3.2. Neural Network Agents
Each agent is modeled as a feedforward neural network consist-
ing of an input layer, three hidden layers and an output layer—see
Appendix A for more details. The input layer consists of eight
neurons, each of which receives an input from one of the eight
payoffs of the 2 × 2 normal form games. Each hidden layer con-
sists of fifty neurons, which perform tansig transformations. The
output layer consists of two neurons, one for each of an agent’s
possible actions. Their output can be interpreted as a probability
distribution over a NN’s action space as they perform a soft-
max (or logit) transformation (Spiliopoulos, 2008, 2011b; Mar-
chiori and Warglien, 2011). Finally, a stochastic decision rule
randomly determines the realized action. The correct response
for an agent is determined by the principle of ex-post rational-
ity (Selten, 1998)—this has also been previously used to model
NN learning (Marchiori and Warglien, 2008; Spiliopoulos, 2008,
2011b). An agent computes the correct response (after observing
the outcome of the round), defined as themyopic best response to
the opponent’s action. After every game, a standard online back-
propagation algorithm adjusts the NNs’ weights in the direction
of the ex-post best response—see Appendix B for more details.

This paper focuses on the effects of nurture or the endoge-
nous emergence of preferences (risk and social) whilst making
minimal assumptions regarding nature or exogenously imposed
preferences—see Zizzo (2003) for a discussion of nature vs. nur-
ture and endogenous vs. exogenous preferences in the context of
economic decision making8. Nurture operates through the expo-
sure to specific game classes and opponents’ behavior. Of course,
some assumptions must be made regarding nature–I have strived
to keep these as minimal or broad as possible. By nature, I refer to
the chosen architecture of the NNs, the characteristics of the neu-
rons’ transfer function and the learning mechanism (backprop-
agation). The choice of number of neurons and hidden layers
was made on the basis of prior research showing that this level of
complexity was both necessary and sufficient for NNs to approx-
imate observed human behavior in experiments (Spiliopoulos,
2011b, 2012). The backpropagation algorithm discussed above
was deliberately chosen for its relatively agnostic view on learning

8For example, Zizzo (2003) argues that empirical evidence supports the hypothesis

that social preferences are determined to a large extent by the environment.

TABLE 1 | Game class characteristics.

Game class Abbreviation Number and types of Nash Equilibria Dom. solvable? Incentives

PSNE [PDNE, RDNE] MSNE

Zero-sum ZS 0 or 1 1 or 0 Possibly Pure conflict

Prisoner’s Dilemma PD 1 0 Yes Social dilemma

Mixed strategy MS 0 1 No Discoordination

Stag hunt SH 2 [1,1] 1 No Coordination

Chicken CH 2 [0,1] 1 No Anti-coordination

Battle of the Sexes BOS 2 [0,1] 1 No Coordination

No competition NC 1 0 Possibly No conflict

PSNE, pure strategy NE; MSNE, mixed-strategy NE; PDNE, payoff-dominant NE; RDNE, risk-dominant NE.
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that imposes virtually no specifications on an agents’ utility func-
tion. The only assumption in the computation of the specified
backpropagation algorithm is that an agent prefers a larger payoff
to a smaller payoff. In contrast to other possible implementations
of the learning algorithm, the magnitude of the difference in pay-
offs between best-responding and not best-responding is irrele-
vant. For example, the size of weight adjustment could be directly
linked to the magnitude of regret; however, this would require
the specification of a cardinal utility function and an assumption
regarding risk preferences.

Despite the risk-neutrality of the backpropagation algorithm,
the use of a tansig transfer function for the non-output layer
neurons implicitly embeds some risk-aversion into system. The
use of bounded transfer functions is unavoidable as high input
values would otherwise propagate through the network leading
to instability. Real neurons also exhibit saturation in their fir-
ing rates with increasingly large inputs, therefore it is desirable
to use a similar function in simulated neurons. Furthermore,
consider that the learning algorithm deals solely in an agents’
own payoffs. Consequently, agents’ risk and social preferences–
that can be inferred from learned behavior–should be considered
endogenous (or constructed) rather than exogenous.

Finally, note that if NN agents learn to always play a PSNE
then the whole system is at a steady-state. Since each player is
choosing a best response to the opponent, the error of all net-
works is equal to zero; therefore, no adjustment is made to any
NN weights9.

3.3. Simulation Details
The set of simulations are divided into eight training sessions
and eight testing sessions, for a total of sixty-four combinations.
Each training and test session uses one of eight sets of games:
seven sets corresponding to each of the classes defined earlier,
and the eighth set, denoted as ALL, consisting of games drawn
with equal probability from each of the seven classes. Each train-
ing simulation consisted of a population of ten NN agents that
were presented with 70,000 randomly drawn games from the
training set and were randomly rematched with an opponent for
each game. Agents had perfect information about the game and
received feedback about the action that their opponent played.
During the training sessions the NNs learn how to play the games
they are exposed to. The structure of the NNs is then fixed (i.e.,
learning stops), and their behavior for the test set consisting of
one thousand games is simulated. This results in an 8 × 8 set
of comparisons revealing the path-dependence, or relationship,
between the class of games used in the training set and the sub-
sequent behavior of the NNs on the game classes of the test sets.
ToL is revealed by comparisons of how NNs trained on different
training sets behave for each specific test set.

Training NNs on the ALL set parallels the simultaneous learn-
ing paradigm, similar to the experimental setup of Rankin et al.
(2000) and to the NN learning simulations of Spiliopoulos (2008,
2011b, 2012). Training on a single class of games and subse-
quently testing on another game class parallels the sequential

9Since the error is zero, substituting (yt − zt) = 0 into Equations A8 and A12

implies that the weight adjustment given by Equation (A4) is also zero.

learning paradigm. The games for the training and test sets were
sampled using the GAMUT suite of game generators (Nudelman
et al., 2004). All simulations were performed in Matlab using
a combination of custom code and functions from the Matlab
Neural Network toolbox.

4. Results

The following subsections present the results obtained from the
NN simulations. Since simulations allow for an arbitrarily large
number of samples (in this case, the number of games used
to compare behavior), inferential statistics are not informative.
Consequently, I do not report p-values but instead focus on the
effect size or economic significance of the results. Throughout the
paper, hybrid table/heat-maps are used to aid interpretation and
comparisons—the higher a table cell’s value the darker its back-
ground shading. A number of important results are highlighted
and numbered—these may be comparable to existing empirical
results or may make new predictions about behavior that has not
yet been investigated in the lab with real subjects. In the latter
case, the number of the result is followed by an asterisk to denote
that this is a novel and testable prediction, e.g., Result 2∗.

4.1. Convergence of Simulations
Before proceeding with detailed analyses, I establish that all eight
training simulations have converged. Figure 1 plots the mean
payoffs of the NN agents against their cumulative experience, i.e.,
the number of training games they have been exposed to. It is
clear that training the NNs for 70,000 games is more than ade-
quate for the convergence of all simulations—most converge with
as little as 10,000-20,000 presentations.

4.2. Agent Homogeneity/Heterogeneity
This section examines whether agents’ emergent behavior
exhibits significant heterogeneity either due to the initial ran-
domized starting weights of the NNs or individual-specific dif-
ferences in experience. The high degree of stochasticity in the
learning process minimizes the possibility of strong dependence
on initial values and the probability of the whole population
(or subsets of it) converging on different local solutions. This
stochasticity works through many channels: (a) stochastic choice
as implemented by the softmax function in the output layer, (b)
random rematching of players after every round, (c) random-
ization of the game payoffs after every round. For each of the
eight training sessions, I subsequently present the NNs to one
thousand games from the same class that they were trained on.
The following statistics are based on the predicted choice prob-
abilities of each NN agent for every game. For each game class,
I calculate the Spearman (rank) correlation coefficient between
the choice probabilities of every possible pairing of the ten NN
agents. Similarly, I simulate the realized choices of each NN agent
and determine the probability that each pair of agents chose the
same action in each game—this is referred to as choice agree-
ment. Table 2 reports the mean, minimum and maximum values
of these statistics calculated over all possible pairs of NN agents.

The mean correlations for each game class (or equivalently,
training simulation) are very high (ranging from 0.83 to 0.96)
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FIGURE 1 | Convergence of the simulations—mean payoffs as a function of the number of games played.

TABLE 2 | Agent heterogeneity—rank correlation of choice probabilities

and % choice agreement.

Rank correlation Choice agreement (%)

Game class Mean Min Max Mean Min Max

ZS 0.96 0.94 0.98 80 77 82

PD 0.83 0.67 0.93 100 99 100

MS 0.01 −0.54 0.52 50 45 59

SH 0.87 0.79 0.94 100 99 100

CH 0.55 0.19 0.90 61 57 65

BOS 0.86 0.69 0.96 87 85 90

NC 0.90 0.84 0.94 100 99 100

ALL 0.93 0.89 0.95 72 68 76

with two exceptions—classes MS and CH, 0.01 and 0.55 respec-
tively. The minimum and maximum correlations are similarly
quite tightly concentrated around the mean values, indicating
relatively homogeneous populations of agents.

The exception of the MS class is not surprising if one consid-
ers that these games do not provide a strong consistent learning
signal as the NE behavior is a mixture over actions. By the def-
inition of a MSNE, even if an opponent is playing according to
the MSNE, a player has no incentive whatsoever to also play the
MSNE as her expected payoffs are identical. This hinders the
emergence of the MSNE in the long run, in contrast to other
games where a PSNE exists; players have an incentive to play the
PSNE if their opponent is playing it.

The source of the higher degree of heterogeneity discovered
for the CH game becomes clear if one considers that the NN
agents in the simulation are unaware of the identity of their

opponent. Since CH is an anti-coordination game, a PSNE can
only be consistently played by agents if they are able to iden-
tify each other. This requires the existence of an uncorrelated
asymmetry that is absent in these simulations. Consequently, the
only symmetric equilibrium of the CH game is the MSNE of the
game. Simulation results presented in Section 4.5 support this as
the probability of agents in the CH game playing the PSNE is
significantly lower than in other games. This is true even in com-
parison with other game classes that also have two PSNE and one
MSNE such as SH and BOS—the key difference is that CH is an
anti-coordination game whereas SH and BOS are not.

Consequently, throughout the paper I discuss population-
level statistics of the emergent behavior of the NN agents. Due
to the high correlation in behavior within a training simulation,
these can also be interpreted as individual-level characteristics,
with the exception of the MS and CH simulations.

4.3. Actions
The hypothesis of path dependence and experience-dependent
ToL can be captured by the degree of correlation of the NNs’
behavior (measured by the probability distribution over actions
on the games of the ALL test set) for all possible pairwise
comparisons of the training game classes. These are presented
in Table 3—a hypothesis that prior experience is irrelevant is
consistent with all the correlation coefficients being equal10.

Result 1: There exists significant transfer of learning, i.e., behav-
ior in a new test game class depends on the training
game class.

10Due to the stochastic output of the NNs, the correlation coefficient will not

necessarily be equal to one.
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TABLE 3 | Spearman rank correlation of agents’ behavior by training sets.

Class ZS PD MS SH CH BOS NC ALL

ZS 1 0.77 0.07 −0.56 0.32 0.11 −0.48 0.33

PD 0.77 1 −0.07 −0.67 0.37 0.11 −0.57 0.31

MS 0.07 −0.07 1 −0.03 −0.01 −0.06 0.01 −0.03

SH −0.56 −0.67 −0.03 1 −0.13 0.31 0.71 −0.24

CH 0.32 0.37 −0.01 −0.13 1 0.54 −0.46 −0.18

BOS 0.11 0.11 −0.06 0.31 0.54 1 −0.13 −0.33

NC −0.48 −0.57 0.01 0.71 −0.46 −0.13 1 0.17

ALL 0.33 0.31 −0.03 −0.24 −0.18 −0.33 0.17 1

The higher a cell’s value, the darker the shading.

The hypothesis of no ToL can be rejected as the correlation coef-
ficients are highly heterogeneous, with values ranging from -0.67
to 0.77. This confirms the findings of the experimental studies
discussed in Section 2.1.

Result 2∗: The degree of similarity of NN behavior in the test sets
is predicted better by the games’ strategic characteris-
tics (degree of conflict or mutual interests) than the
number (and type) of Nash equilibria of the training
game class.

The largest positive correlations are found for these pairs of train-
ing sets {PD,ZS} {NC, SH} {BOS,CH}, whilst the largest negative
correlations are for the pairs {SH, PD}{NC, PD} {SH,ZS} . Com-
paring training classes based on the number and type of NE leads
to the observation that learned behavior is significantly differ-
ent. For example, the two game classes with a single PSNE (PD
and NC) exhibited highly different behavior as exemplified by a
strong negative correlation, -0.57. Game classes with two PSNE
led to more similar behavior, but still far from a perfect corre-
lation. Similarly, note that the second highest correlation occurs
between NC and SH; these are game classes that differ in their
number of PSNE, but share a high degree of mutual interest (i.e.,
the payoff-dominant NE).

Comparing training classes based on their strategic character-
istics leads to more consistent behavior. Both NC and SH classes
have a PSNE where all players achieve their highest possible
payoff (and consequently is the socially efficient outcome), i.e.,
there is no conflict in these two game classes. Similarly, behav-
ior after training on PD was most similar to that of ZS; note,
that both of these games have strong elements of conflict. Con-
cluding, NNs trained on game classes with similar strategic char-
acteristics behave more similarly in new game classes than NNs
trained on game classes with the same number and type of NE—
this is indicative of ToL arising from payoff similarity or deep
transfer.

4.4. Payoffs
This section discusses the payoff performance of NNs condi-
tional on the pairing of training and testing sets—see Table 4 and
Figure 2 for a graphical presentation. Furthermore, define a game
class to be ToL dominated if there exists at least one other game
class that has higher expected payoffs for each of the seven game
classes. Table 4 also reports whether training on a game class was

dominated (column Dom’ed?) and which game classes, if any, a
particular game class dominates (column Dom’es).

Result 3: Maximum payoffs are achieved when players have
prior experience with games where interests are
aligned: SH games, closely followed by the NC games.

The best payoff performance is achieved by networks trained on
the SH set. This is true both in terms of the highest payoff for
the ALL test set (0.324) and also the number of individual game
classes for which maximum performance is achieved (PD, SH,
and CH). The next best performance is attributed to networks
trained on the NC dataset, which achieve the highest payoffs in
the MS and NC games. Note, that the interests of both players are
aligned in the SH and CH classes. The following converse result
corroborates this finding.

Result 4: Minimum payoffs are achieved when players have
prior experience with games where conflict is preva-
lent: PD games, closely followed by ZS games.

The worst performing training set is the PD class, as it has the
lowest payoff for the ALL set −0.179, the worst performance in
five game classes, and the second worst performance in another
game class. Consistent with the results in Duffy and Ochs (2009),
cooperation is not found to emerge in the PD game when play-
ers are randomly-matched, as is the case with these simulations.
The second worst performance occurs for zero-sum games, cor-
roborating Result 3, as both PD and ZS game classes have strong
elements of competition/conflict rather than cooperation. This
is true by definition for zero-sum games where every outcome
is zero-sum, whereas in the PD games the maximum outcome
for one player leads to the worst outcome for the other player in
two cells. This striking result has important implications as the
PD game is regarded an one of the archetypal games assumed
to describe many interactions in the real world. NNs trained
on the PD game class learn to avoid the socially efficient (non-
Nash equilibrium) outcome because of the risk associated with
an opponent deviating from this outcome. Consequently, this
strongly influences agents to learn the pure strategy Nash equi-
librium, which in some game classes leads to socially inefficient
outcomes. As discussed later, NNs trained on the PD set learn to
play the NE of the PD game almost perfectly, and in SH games–
where there exist two PSNE–they choose the risk-dominant NE
99% of the time. This is consistent with learning about the signif-
icant deviation costs (and risk) associated with the PD game and
transferring this to the SH game.

Result 5∗: Training on ZS, PD or MS game classes is dominated
by training on at least one other game class.

This result means that regardless which of the seven game classes
are to be played in the test set, it is never optimal to have
prior experience with one of these three game classes. This
result strengthens and generalizes the empirical findings regard-
ing exposure to the PD class—in particular, we are unaware of
experimental studies that use ZS or MS as the training set to test
this novel prediction.
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TABLE 4 | Mean payoffs (conditional on the training and test sets).

Class Testing ZS PD MS SH CH BOS NC ALL Dom’ed? Dom’es

Training ZS 0 −0.106 −0.053 0.016 −0.485 −0.277 −0.029 −0.125 yes

PD 0 −0.109 −0.142 0.006 −0.577 −0.26 −0.201 −0.179 yes

MS 0 0.066 0.004 0.159 0.017 −0.096 0.154 0.042 yes ZS PD

SH 0 0.379 0.193 0.638 0.27 0.103 0.628 0.324 no ZS PD MS

CH 0 0.107 −0.014 0.278 0.085 0.182 0.226 0.132 no ZS PD

BOS 0 0.215 0.025 0.475 0.11 0.203 0.352 0.2 no ZS PD

NC 0 0.348 0.214 0.626 0.261 −0.124 0.639 0.291 no

ALL 0 −0.078 0.011 0.136 0.03 0.173 0.57 0.127 no ZS PD

The higher a cell’s value, the darker the shading.

FIGURE 2 | Mean payoffs (conditional on the training and test sets).

Result 6: Cooperation in the PD game can be enhanced if it is
preceded by experience with coordination games.

Ahn et al. (2001) find that playing a coordination game before
a PD game leads to increased cooperation in the latter, both for
fixed- and random-matching of players (the effect is stronger for
fixed-matching). Similarly, Knez and Camerer (2000) hypothe-
size that cooperation can be increased in the PD game if it is pre-
ceded by the SH and players have a history of playing efficiently.
Indeed, the highest payoff in the simulations for the PD test set
occurred when it was preceded by the SH game. Juvina et al.
(2014) find that fixed-pairs of players are more likely to achieve
the cooperative outcome in PD when they had prior experience
with the CH game. This is also confirmed by the simulations
as the payoffs in PD were significantly higher when NNs were
trained on the CH class (0.107) than on the PD class (−0.109).

The lowest payoffs occur when PD is preceded by PD or ZS,
i.e., games with significant conflict of interests. Also, as shown

later, NNs trained on SH generally show a preference for the
payoff-dominant NE, i.e., the socially efficient outcome. Further-
more, the second highest payoff to PD is attained when it is
preceded by another game where conflict is absent, the NC class.

Result 7∗: Transfer of learning from the NC to the BOS game
class leads to relatively low payoff performance.

Despite the fact that training on the NC class of games leads to the
second highest average payoff for the ALL test set, it exhibits par-
ticularly poor payoff performance–the third worst– for the BOS
game. It is the poor performance only in the BOS test class that
prohibits training on NC from dominating other game classes. It
remains to be seen whether this prediction of relatively poor per-
formance only for the BOS test set is verified experimentally in
the lab.
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TABLE 5 | Joint probability of playing a PSNE (conditional on the training and test sets)—Games with a unique PSNE.

Class Testing ZS PD MS SH CH BOS NC ALL

Training ZS 0.89 0.954 - - - - 0.071 0.602

PD 0.654 0.998 - - - - 0.004 0.532

MS 0.241 0.278 - - - - 0.232 0.246

SH 0.028 0.001 - - - - 0.961 0.384

CH 0.283 0.143 - - - - 0.285 0.231

BOS 0.262 0.087 - - - - 0.476 0.299

NC 0.117 0.008 - - - - 0.999 0.413

ALL 0.713 0.901 - - - - 0.844 0.83

The higher a cell’s value, the darker the shading.

TABLE 6 | Joint probability of playing a PSNE (conditional on the training and test sets)—Games with two PSNE.

Class Testing ZS PD MS SH CH BOS NC ALL

Training ZS - - - 0.78 0.141 0.286 - 0.399

PD - - - 0.926 0.035 0.284 - 0.405

MS - - - 0.501 0.506 0.503 - 0.49

SH - - - 0.996 0.153 0.739 - 0.64

CH - - - 0.533 0.603 0.817 - 0.658

BOS - - - 0.798 0.612 0.861 - 0.763

NC - - - 0.965 0.042 0.478 - 0.502

ALL - - - 0.674 0.573 0.816 - 0.661

The higher a cell’s value, the darker the shading.

4.5. Attainment of Nash Equilibria
This section investigates the effect of exposure to the training set
on the probability of subjects jointly playing a PSNE in the test
set—see Tables 5 and 6, and Figure 3.

Result 8: The probability of playing a unique Nash equilib-
rium in the test sets is greatest when players are
simultaneously trained on all game classes (rather
than sequentially trained on any single game class).
This is in conflict with the prediction made by the
cognitive-load hypothesis (Bednar et al., 2012).

The probability of joint PSNE play is maximized when the NNs
are trained on the ALL test set, 0.83. The next best performance
occurs when the NNs are trained on ZS and PD. However, while
these perform well on ZS and PD test sets, they perform very
poorly on the NC class. This is the opposite of what is observed
when training on the NC class; it performs very poorly on ZS and
PD but extremely well on NC. In conjunction with prior results,
this strengthens the argument made that learning to play game
classes with the element of conflict such as PD and ZS, is quite
different from learning to play games without conflict.

The finding that training on the ALL test set is conducive
to achieving a Nash equilibrium outcome in the test classes is,
at first sight, surprising. The cognitive-load hypothesis (Bednar
et al., 2012) states that simultaneous play of strategically differ-
ent games may lead to less efficient or even non-equilibrium
behavior as subjects may choose similarly. An important differ-
ence that can explain this disparity is that in experimental studies

experience with games is severely limited compared to the simu-
lations reported herein. Simultaneous learning of games may ini-
tially impair learning, but become conducive to learning the NE
over time as experience accumulates. An alternative explanation
for this finding is that training on a single game class increases
the likelihood that the NNs will learn a simple heuristic that may
guarantee Nash behavior only in that specific class. Thus, training
on a limited set of games may encourage superficial learning and
impair deep learning. For example, in the NC class the NE can
always be achieved by each player choosing his/her action with
the maximum payoff (or the action that is socially efficient). Such
a heuristic would be effective in the SH class, as it would lead to
a preference for the PDNE over the RDNE. Indeed, NNs trained
on NC games perform exceptionally well in SH games. However,
such a heuristic would not be as effective in BOS as each play-
ers’ maximum payoff corresponds to different actions. Therefore,
there is the strong possibility of discoordination arising, which
is actually observed in the simulations. Note also, the similarity
in the results for populations trained on the SH and NC classes.
In both cases, the maximum payoff heuristic would lead to a NE,
and in the case of SH to the Pareto-optimal NE.

In test classes with two PSNE, the highest probability of jointly
playing one of the PSNE is achieved by training on the BOS game
classes (0.763), followed by training all the ALL test set. Highly
competitive training game classes, such as ZS and PD, perform
poorly, i.e., below the chance rate of 0.5 for random play.

4.6. Equilibrium Selection
In this section, I examine how prior learning or exposure to spe-
cific game classes can subsequently affect equilibrium selection.
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FIGURE 3 | Probability of playing Nash equilibria.

Note that no risk preferences were embedded by design into
the NN agents, therefore the preferences over the types of
equilibria occur solely through agents’ exposure to and learn-
ing of other games. The stag-hunt game class is of particular
interest, as it has distinct payoff- and risk-dominant equilib-
ria. Equilibrium selection between these two types of equilibria
has been of ongoing interest in the literature. Numerous exper-
imental studies find that risk-dominant NE tend to be played
more often than payoff-dominant NE (Straub, 1996; Cabrales
et al., 2000), especially as payoffs become more asymmetric.
However, Schmidt et al. (2003) find that payoff-dominant NE
are observed more frequently, although subjects’ behavior was
mediated by risk-dominance properties. Also, Rankin et al.
(2000) use a series of perturbed games (instead of identical
games) and find evidence for the selection of payoff-dominant
NE. Battalio et al. (2001) conclude that the payoff-dominant
NE is more likely to be played if the optimization premium
(the payoff gain from best-responding) is low. Haruvy and
Stahl (2004) observe significantly more risk-dominant NE in
symmetric normal-form games; however, the best predictor
of subjects’ behavior was an inductive dynamic learning rule.
Table 7 presents the probability of a risk-dominant equilib-
rium (vs. a payoff-dominant equilibrium) conditional on the
training set.

TABLE 7 | Probability of risk- vs. payoff-dominant equilibria in SH games.

ZS PD MS SH CH BOS NC ALL

0.960 0.994 0.509 0.357 0.407 0.372 0.361 0.730

The higher a cell’s value, the darker the shading.

Result 9: Prior experience with coordination games, such as SH,
CH, BOS, or games without conflict, such as NC, sig-
nificantly increases the likelihood of playing payoff-
dominant equilibria in stag-hunt games.

Games with conflicting incentives, by their nature, emphasize the
risk of an opponent unilaterally deviating from a socially opti-
mal outcome in the pursuit of self-interest—the prime example is
the prisoner’s dilemma game. Bednar et al. (2012) present exper-
imental evidence that Pareto efficient outcomes are more likely
to be achieved when prior experience is with the NC class (they
refer to these games as self-interest games). This result is cor-
roborated in the context of equilibrium selection as the high-
est probability of achieving the PDNE (outside of training on
SH games) occurs when the NNs are trained on the NC game
class.
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Result 10∗: Prior experience with game classes involving con-
flict, such as ZS and PD, significantly increases
the likelihood of playing risk-dominant equilibria in
stag-hunt games.

The probability of playing the RDNE is essentially one (barring
minimal errors from the stochastic specification) for the ZS and
PD classes. Training the NN agents on ALL game classes also
leads to a strong preference for risk-dominant equilibria (0.73).

4.7. Deep vs. Superficial Transfer of Learning
Deep learning may be defined in various ways, in this section I
will focus on a simple, strict definition. Deep ToL is said to occur
if agents learn to play the unique PSNE in the training set and
continue to do so with similar probability when exposed to a new
game class with a unique PSNE.

Result 11∗: No across-class deep transfer of learning (as defined by
transfer of PSNE behavior) is observed between the PD
and NC game classes.

There exist two game classes that have exactly one PSNE, PD and
NC. Table 8 replicates the comparisons of the joint probability of
playing the PSNE from Table 5 for ease of comparison. Signifi-
cant transfer of learning requires that the numbers within each
row (training class) of the table be very similar. This is not the
case across PD and NC classes as testing on a different game class
led to a virtually zero probability of playing the PSNE. This is a
strong result indicating no deep ToL across these game classes.

Result 12∗: Within-class transfer of learning is observed for the PD
and NC game classes.

Agents trained and tested on the same class consistently played
the PSNE (the leading diagonal in Table 8). Consequently, agents
appear to be exhibiting deep ToL within these two game classes.
On the surface, Results 11 and 12 may appear perplexing—if
agents exhibit deep within-class ToL why does this not translate
to deep across-class ToL? A hypothesis that resolves this is that
training on a single game class does not afford the NN agents an
opportunity to truly learn to solve for the PSNE, but rather they
may have found a simple heuristic that happens to coincide with
the PSNE for that particular game class. However, the predictions
of the heuristic and the PSNEmay diverge for other game classes.
For example, choosing the social optimum in the NC game class
perfectly coincides with the PSNE, but the social optimum in the
PD game does not prescribe the PSNE solution. Results 11∗ and
12∗ are consistent with a hypothesis that simultaneous exposure
to a variety of game classes is a necessary condition for across-
class deep ToL. This hypothesis is further supported in the next
result.

Result 13∗: Significant across-class deep ToL occurs if NNs are
trained on the ALL set and subsequently play either
the PD or NC game class. Deep ToL is inhibited by an
impoverished or highly strategically homogenous set of
inputs (i.e., training games).

TABLE 8 | Transfer of learning in games with a unique PSNE (probability of

joint PSNE play).

Class Testing PD NC ALL

Training PD 0.998 0.004 0.532

NC 0.008 0.999 0.413

ALL 0.901 0.844 0.83

I test this hypothesis by examining the behavior of NNs trained
on the ALL set when presented with the test sets ALL, PD, and
NC. Firstly, note that training and testing on the ALL set leads
to a high probability of playing the PSNE, 0.83. In contrast to
Result 11∗, NN agents trained on ALL showed a similarly high
probability of playing the PSNE for both the PD and NC classes,
0.901 and 0.844 respectively. I conclude that NNs are capable of
deep ToL if their training game set is rich enough, as measured by
the diversity of games with significantly different strategic char-
acteristics. Conversely, an impoverished set of stimuli is not con-
ducive to learning deep concepts such as the Nash equilibrium.
Spiliopoulos (2011b) also finds indirect evidence supportive of
this claim for NNs trained on 3× 3 games drawn randomly from
any game class. The behavior of the trained NNs was conditional
on the number and type of PSNE implying that the NNs had
endogenously learned the different strategic characteristics of
game classes.

I now examine the relationship between superficial and deep
transfer of learning for a wider array of games. In the con-
text of these simulations, learning is defined as superficial if
NN agents continue playing an action with similar probabil-
ity, despite a change in the strategic characteristics of a game.
Deep transfer of learning manifests as choice probabilities that
are strongly conditional on the game class, even if games exhibit
superficial payoff-similarity. I use a sequence of games derived
from simple transformations of different classes of games into
each other (Bruns, 2015) to investigate the type and degree of
ToL. I chose four transformations forming a closed loop, in
the sense that after all the transformations are performed the
initial game is reproduced. This loop contains four different
game classes: PD, SH, NC and CH. The games were chosen
on the following basis: (a) to minimize the number of pay-
offs that must be changed for the transformation, (b) to ensure
that payoffs are symmetric about zero and that their range is
not near the maximum values of −1 and 1, where neural sat-
uration may diminish the responsiveness to payoff changes.
Each of the transformations in Table 9 requires changing only
four of the payoff outcomes in a game and each transforma-
tion induces a maximum change in the rank of coupled pay-
offs of value one, i.e., the best outcome may be transformed
to the second-best outcome, the second-best outcome to the
first- or third-best only, and so forth. Games were transformed
by incrementing the necessary payoffs by the following incre-
ments λ = {0.01, 0.02, ..., 0.23, 0.24}. Also, note that the max-
imum difference for the payoffs in any cell for any pairing of
games is 0.5, which is only 25% of the permissible input range
of values.
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TABLE 9 | A sequence of games spanning four game classes.

pd sh

−0.50, 0.50 0.25, 0.25
−→

−0.50, 0.50−λ 0.25+λ, 0.25+λ
−→

−0.50, 0.25 0.50, 0.50

−0.25, −0.25 0.50, −0.50 −0.25, −0.25 0.50−λ, −0.50 −0.25, −0.25 0.25, −0.50

↑ ↓

−0.25−λ, 0.50 0.25, 0.25 −0.50+ λ, 0.25 0.50, 0.50

−0.50+ λ, −0.50+ λ 0.50, −0.25− λ −0.25− λ, −0.25− λ 0.25, −0.50+ λ

↑ ↓

ch nc

−0.25, 0.50 0.25, 0.25
←−

−0.25, 0.25+λ 0.50−λ, 0.50−λ
←−

−0.25, 0.25 0.50, 0.50

−0.50, −0.50 0.50, −0.25 −0.50, −0.50 0.25+λ, −0.25 −0.50, −0.50 0.25, −0.25

Shaded cells correspond to pure-strategy Nash equilibria of the games λ = { 0.01,0.02,...,0.23,0.24}.

The higher a cell’s value, the darker the shading.

In Figure 4, each subgraph corresponds to agents trained on
one particular set of training data. The y-axis denotes the prob-
ability of the NNs playing the first action as the row player in
the games presented in Table 9. The x-axis denotes the games by
increasing λ from left to right as they are transformed starting
from pd to sh to nc to ch and finishing again at pd (as in Table 9).
During the process there comes a point where one game class is
transformed into another—in Figure 4 this occurs at the border
where the shading changes color. Note, for all games at equidis-
tant points along the x-axis on either side of this boundary, the
differences in payoffs with the game on the boundary are the
same, i.e., games should be considered as similar according to a
superficial payoff metric. Therefore, different choice probabilities
for any such games (at equal distance from the boundary) imply
that NNs must have learned that the games at these two points
have different strategic characteristics, signifying deep transfer of
learning rather than superficial similarity-based ToL.

Result 14∗: Agents trained on one of the following game classes
(ZS, PD, MS, SH, CH, NC) exhibited only superficial
transfer of learning across game classes.

A relatively flat profile in Figure 4 indicates that despite signif-
icant changes in the strategic characteristics of the games, the
agents continued behaving similarly. This suggests that agents are
“action-bundling” both within and across game classes11. Conse-
quently, agents trained on these game classes have not learned to
distinguish and adapt their behavior to the underlying strategic
characteristics of games, but rather relied upon payoff-similarity
or superficial ToL. As hypothesized above, this is likely driven
by the information-poor learning environment that results from
exposing agents only to a single game class.

11Note, the original definition of action-bundling applied to within game class

behavior (Grimm and Mengel, 2012).

Result 15∗: Deep across-class transfer of learning, driven by the
emergent notion of the strategic characteristics of dif-
ferent game classes, is most clearly found when agents
are trained on the ALL set of games, and less so for
BOS games.

The ALL training class exhibited the largest variation in choice
probabilities in Figure 4 and agents’ behavior was clearly con-
ditional on the game class they were tested on. Also, NNs had
significantly different choice probabilities for superficially simi-
lar games (equidistant from the boundaries where game classes
changed). Both of these observations are consistent with deep
ToL. However, if deep ToL were the only mechanism in oper-
ation, there should be an abrupt rather than smooth change in
choice probabilities at the marginal game straddling two adjacent
game classes. The smoothness in the behavioral change points to
a combination of deep and superficial ToL in operation. There-
fore, deep and superficial ToL should not be viewed as mutually
exclusive, or as capturing some fundamental dichotomy; both
may be in operation simultaneously and experiential learning
may lead to gradual transitions from one to the other.

5. Discussion

This paper presented evidence that a parallel-distributed learn-
ing model of agents playing 2× 2 normal form games accounted
for many of the existing experimental findings regarding trans-
fer of learning from previously seen games to new games with
different strategic characteristics. Specifically, the robust empir-
ical finding that cooperation in games where it is not the Nash
equilibrium, e.g., Prisoner’s dilemma, is more likely when players
have prior experience with coordination games was corroborated
(Knez and Camerer, 2000; Ahn et al., 2001; Devetag, 2005; Bed-
nar et al., 2012; Cason et al., 2012; Cason and Gangadharan,
2013; Juvina et al., 2013). Simulating agents’ behavior allowed
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FIGURE 4 | Deep vs. superficial transfer of learning in a sequence of games.

for more specific predictions regarding the effects of transfer of
learning for seven specific classes of games. Prior exposure to
zero-sum, Prisoner’s dilemma and discoordination games nega-
tively impacted the level of cooperation (and realized payoffs) in
all the types of games. Conversely, experience with games that
promoted cooperation rather than conflict encouraged higher
levels of cooperation (and in most cases higher payoffs) in new
game classes even when the new incentive structure was competi-
tive. Furthermore, the model predicted that equilibrium selection
in Stag-Hunt games is also experience-dependent. Prior expo-
sure to zero-sum and Prisoner’s Dilemma games led to a higher
probability of actions associated with the risk-dominant rather
than payoff-dominant Nash equilibrium. This is a novel predic-
tion that can be investigated in future experimental work with
real subjects.

The connectionist literature has debated the benefits of “start-
ing small”, either in terms of an initially constrained network
architecture or exposure to an easier training set (Elman, 1993;
Rohde and Plaut, 1999). I find that “starting big” in terms of a
diverse set of games was a necessary condition for deep learn-
ing of the strategic implications of different games, playing the
appropriate response (Nash equilibrium) and transferring this
behavior to new games. In earlier work, “starting big” in terms

of network architecture was also found to be a necessary condi-
tion for deep learning (Spiliopoulos, 2011b, 2012). These studies
found that networks with fewer hidden layers and fewer neurons
per layer (e.g., at the extreme, perceptrons with no hidden layer)
were significantly more likely to play a dominated action and not
play a Nash equilibrium of the game.

Deep learning of representations and concepts is usually
implicitly associated with better outcomes in existing applica-
tions in the literature, such as the acquisition of language. This
relationship does not hold for strategic interactions with other
agents since outcomes depend on the collective actions of all play-
ers of the game. Promoting deep learning in the agents (through
exposure to a strategically diverse set of games) led to a higher
rate of Nash equilibrium behavior, which in many game classes is
detrimental, e.g., Prisoner’s dilemma. Consequently, the encour-
agement of superficial rather than deep learning, for example,
by training networks only on the stag-hunt game, led to better
outcomes on average in other game classes.

Future research can aim at a closer alignment with develop-
mental psychology such as the computational modeling of devel-
opmental trajectories across the lifespan. This can be accom-
plished by a detailed examination of the behavior of connectionist
models of strategic decision making as a function of their level
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of experience. The effects of aging and brain disorders can also
be investigated in a similar fashion to existing research for other
tasks–see the discussion in Munakata and McClelland (2003)–by
varying the parameters of the neural networks such as the back-
propagation learning rate, the number of connected neurons and
hidden layers, or neuronal sensitivity via the transfer function.
Furthermore, in this paper I examined only the initial transfer
of learning that occurs when an agent is suddenly forced to play
a new class of games. An important extension would be to fur-
ther simulate learning in the new class of games, and document
the learning trajectory and emergent long-run behavior. Another
possibility is to look at how agents with little experience fare if
they are suddenly moved to a new population of agents with
much more experience, and vice-versa. Further extensions could
include endogenous matching of players rather than the random
rematching used in this paper. This would highlight the impor-
tance of the emergence of networks of players with different rates

of interaction and its effect on learned behavior. Connectionist
models of decisionmaking are also useful for modeling how pref-
erences are constructed, or arise endogenously, as a function of
the environment, e.g., the types of decisions or problems they
are facing and how other agents are behaving. Simulations with
a systematic manipulation of key properties of the environment
and agents could also shed light on the coupling of the two in the
spirit of procedural rationality (Simon, 1976, 1986).
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Appendix A

An Introduction to Neural Networks
Figure A1 displays the topology of the feedforward neural net-
works used. The leftmost layer in the diagram is the input layer
and it consists of input neurons denoted by pr where r = 1, ...,R.
Each pr is the payoff for a specific player from a specific cell of
a game; hence, R = 8 for the 2 × 2 games examined in this
paper.

The second layer–a hidden layer–consists of S neurons max-
imally connected to the input neurons. There is a total of R · S
connections between the first and second layers. Each connection

is associated with a weight, w2,1
s,r ; the subscript s, r refers to a con-

nection from the rth neuron to the sth neuron and the superscript
2, 1 indicates that these weights connect the first and second lay-
ers of the NN. The activation of each neuron in the second layer,
i2s , is the summation of the product of the inputs and their corre-
sponding weights plus a constant or bias, b2s . Hence, for each of
S neurons in the second or hidden layer:

FIGURE A1 | Detailed structure and topology of feedforward neural networks.

i2s = b2s +

R∑

r= 1

w2,1
r,s · pr (A1)

Inputs are passed through a hyperbolic tangent sigmoid (or tan-

sig) function , f1(is) = 2 · (1 + e−2i2s )−1 − 1 , that maps the
domain (−∞,+∞) to the range (−1, 1). The outputs, as, are
passed to the T neurons in the final or output layer. Each neuron
outputs the probability of choosing any action, i.e., T = 2 for the
games in this study. Neurons in the output layer are connected to

every neuron in the second layer with connection weights, w3,2
s,t .

The input to each t neuron is the summation of product of the
outputs, as, and the corresponding weights, w3,2

s,t plus a bias b3t :

i3t = b3t +

S∑

s= 1

w3,2
s,t · as (A2)

These inputs are transformed by the function f2 into the final out-
puts of the NN, yt . Since the outputs correspond to a probability
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distribution over the action space, f2 is chosen to be a softmax

function where yt = f2(i
3
t ) =

ei
3
t

∑T
t= 1 e

i3t
so that

∑T
t= 1 yt = 1.

For ease of exposition, the network presented above had only
one hidden layer. However, the NNs in this study consist of three
hidden layers, each with the same structural and functional prop-
erties, to increase their ability to approximate arbitrarily complex
functions.

Information flows forwards through the neural network (from
left to right in the diagram) but the backpropagation rule sends
error signals backwards through the network. After making a
choice the backpropagation algorithm compares the values of the
neurons at the output layer to the desired values and adjusts the
connection weights to reduce the error of the NN. The backprop-
agation learning rule uses the chain rule to assign the contribu-
tion of each neuron to the observed error, thereby calculating
how connection weights should be changed to decrease the error.
A gradient descent method is used to modify weights so that the
network successively approaches a state where the error function
attains a minimum. Note, that this algorithm is not immune to
the possibility of settling on local rather than global minima.

Appendix B

The Backpropagation Algorithm
NNs store distributed–not localized–knowledge in the weights
and biases of the neurons that are updated via supervised learn-
ing after the presentation of each set of inputs, i.e., the game’s
payoff matrix. For each set of inputs, P = {p1, ..., pR}, there
exists a set of ideal outputs, Z = {z1, ..., zT}. Selten (1998)
argues that a general principle guiding learning is ex-post ratio-
nality, where an agent adjusts his/her behavior in the direction
of the ex-post best response to the immediately prior outcome.
Learning direction theory has been used to explain the Win-
ner’s Curse (Selten et al., 2005), to model how agents learn to
allocate resources (Rieskamp et al., 2003), to model behavior in
guessing games (Nagel, 1995) and auctions (Ockenfels and Selten,
2005).

Ex-post rationality suggests that the ideal output is the hypo-
thetical best response of the NN given its opponent’s last action.
Therefore, for each game exactly one zt is equal to one and the
rest are zero. Define the mean square error, E, of the network,
to be:

E =
1

2
·

T∑

t= 1

(zt − yt)
2 (A3)

The backpropagation algorithm uses gradient descent to adjust
weights according to the following equation:

△ w·,·
·,· = −η

∂E

∂w·,·
·,·

(A4)

The weight adjustment depends on the negative of the gradi-
ent of the error function and on its magnitude,. The step size
(or learning rate) η is a constant controlling the magnitude of

the adjustment. Hence, weights are updated in the direction
which reduces the error, E, and the magnitude of the change
is dependent on the sensitivity of the error function to small
changes in the weight. The necessary algebra to derive ∂E/∂w

for both output layer and hidden layer neurons is presented
below.

The chain rule leads to the following derivation for output
layer weights:

∂E

∂w3,2
s,t

=
∂E

∂yt

∂yt

∂i3t

∂i3t

∂w3,2
s,t

(A5)

However, from Equation (A2):

∂i3t

∂w3,2
s,t

= as (A6)

and from Equation (A3):

∂E

∂yt
= (yt − zt) (A7)

Substituting these Equations into Equation (A5) results in:

∂E

∂w3,2
s,t

= (yt − zt)asf
′

2(i
3
t ) (A8)

Calculations for weights in hidden layers are more involved as
the desired output of such neurons needs to be calculated. The
analog of Equation (A5) for a hidden layer neuron is:

∂E

∂w2,1
s,r

=

T∑

t=1

∂E

∂yt

∂yt

∂as

∂as

∂w2,1
s,r

(A9)

This equation requires a summation of terms over t due to the
propagation of the effect of w2,1

s,r through the interconnections
between the sth neuron and all T neurons in the output layer. The
derivative of the output of the sth neuron w.r.t each weight is:

∂a2s

∂w2,1
s,r

= prf
′

1(i
2
s ) (A10)

The derivative of the error function w.r.t. the output of final layer
neurons, ∂E/∂yt , is given by Equation (A7). The derivative of the
output of each final layer neuron w.r.t. hidden layer neurons’
output is:

∂yt

∂w2,1
s,r

= w3,2
t,s f

′

2(i
3
t ) (A11)

Finally, substituting Equations (A10, A7) and (A11) into Equa-
tion (A9) results in the following equation, which is well defined
for the differentiable functions f1 and f2:

∂E

∂w2,1
s,r

= prf
′

1(i
2
t )

T∑

t=1

(yt − zt)w
3,2
t,s f

′

2(i
3
t ) (A12)
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