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A commentary on

Event-driven contrastive divergence for spiking neuromorphic systems

by Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G. (2014). Front. Neurosci.
7:272. doi: 10.3389/fnins.2013.00272

In a recent Frontiers in Neuroscience paper (Neftci et al., 2014) we contributed an on-line learning
rule, driven by spike-events in an Integrate and Fire (IF) neural network, that emulates the learn-
ing performance of Contrastive Divergence (CD) in an equivalent Restricted Boltzmann Machine
(RBM) amenable to real-time implementation in spike-based neuromorphic systems. The event-
driven CD framework assumes the foundations of neural sampling (Buesing et al., 2011; Maass,
2014) in mapping spike rates of a deterministic IF network onto probabilities of a corresponding
stochastic neural network. In Neftci et al. (2014), we used a particular form of neural sampling
previously analyzed in Petrovici et al. (2013)1, although this connection was not made sufficiently
clear in the published article. The purpose of this letter is to clarify this connection, and to raise the
reader’s awareness to the existence of various forms of neural sampling.We highlight the differences
as well as strong connections across these various forms, and suggest applications of event-driven
CD in a more general setting enabled by the broader interpretations of neural sampling.

In the Bayesian view on neural information processing, the cognitive function of the brain arises
from its ability to encode and combine probabilities describing its interactions with an uncertain
world (Doya et al., 2007). A recent neural sampling hypothesis has shed light on how probabilities
may be encoded in neural circuits (Fiser et al., 2010; Berkes et al., 2011). In the neural sampling
hypothesis, spikes are viewed as samples of a target probability distribution. From a modeling per-
spective, a key advantage of this view is that learning in spiking neural networks becomes more
tractable than the alternative one, in which neurons encode probabilities, because one can borrow
from well-established algorithms in machine learning (Fiser et al., 2010) (see Nessler et al., 2013 for
a concrete example).

Merolla et al. (2010) demonstrated a Boltzmann machine using IF neurons. In this model,
spiking neurons integrate Poisson-distributed spikes during a fixed time window set by a global
rhythmic oscillation. A first-passage time analysis shows that the probability that a neuron spikes
in the given time window follows a logistic sigmoid function consistent with a Boltzmann distri-
bution. The particular form of rhythmic oscillation ensures that, even when neurons are recurrently

1A functionally equivalent formulation can be found in an earlier version posted on arXiv (Neftci et al., 2013)
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coupled, the network produces a sample of a Boltzmann distribu-
tion for each oscillation cycle. Merolla et al. (2010) also suggest an
alternative, more biologically plausible forms of learning induced
by rhythmic oscillations that resemble the role of theta oscil-
lations across large neuronal ensembles. Our event-driven CD
rule is compatible with Merolla et al.’s sampler because it would
simply result in updating weights at every cycle of the rhythmic
oscillation.

Shortly after, Buesing et al. (2011) proved that abstract neuron
models consistent with the behavior of biological spiking neu-
rons (Jolivet et al., 2006) can performMarkov ChainMonte Carlo
(MCMC) sampling of a Boltzmann distribution. Their sampler
does not require global oscillations, although these could enable
the sampling from multiple distributions within the same net-
work (Habenschuss et al., 2013). To demonstrate the perfor-
mance of the sampler, a Boltzmann machine was trained off-line
using CD. Learning in this model was further extended to on-line
updates in a precursor of event-driven CD (Pedroni et al., 2013).

An open question was whether neuron models that describe
the biological processes of nerve cells endowed with determinis-
tic action potential generation mechanisms can support stochas-
tic sampling as described with the more abstract spiking forms
in Buesing et al. (2011). An answer to this question is rele-
vant for understanding how neural sampling can be instantiated
in biological neurons, but also for implementing neural sam-
plers on low-power neuromorphic implementations of spiking
neurons (Indiveri et al., 2011). The stochastic nature of neu-
ral sampling suggests studying the behavior of neurons under
noisy inputs. The diffusion model commonly referred to as the
Ornstein-Uhlenbeck process (Van Kampen, 1992) has been the
basis of a standard continuous-time stochastic neuron model
since the first rigorous analysis of its behavior in Capocelli and
Ricciardi (1971). Petrovici et al. (2013) discuss these issues and
provide a rigorous link between deterministic neuron models
(leaky integrate-and-fire with conductance-based synapses) and
stochastic network-level dynamics, as can be observed in vivo. In
particular, they identify how the high-conductance state caused
by Poissonian background bombardment can provide the fast

membrane reaction time required for precise sampling. They
provide analytical derivations of the activation function at the
single-cell level as well as for the synaptic interaction and investi-
gate the convergence behavior of the sampled distribution at the
network level.

O’Connor et al. (2013) employ the Siegert approximation of
IF neurons to compute CD updates. The Siegert or diffusion
approximation expresses the firing rate of an IF neuron, as a func-
tion of input firing rates, under the assumption that all inputs are
independent and Poisson distributed. After learning, the param-
eters of the learned Boltzmann machine are transferred to the
equivalent network of IF neurons. Although the off-line CD
learning in O’Connor et al. (2013) operated using firing rates
rather than spikes, in its basic form, it is functionally equivalent
and compatible with event-driven CD under the condition that
spike times are uncorrelated.

Our work implements a biologically-inspired algorithm for
the purposes of training Boltzmann machines (Neftci et al.,
2014). We assumed a neuronal model consistent with biology

and realizable in a neuromorphic implementation. Petrovici et al.
(2013) provided a deeper physical and mathematical interpreta-
tion of neural sampling. Similarly to their approach, we consid-
ered the standard leaky IF neuron stimulated by non-capacitively
summed pre-synaptic inputs obeying Poisson statistics.

The performance of event-driven CD on the MNIST hand-
written digit recognition task was robust to spike probabili-
ties that deviate slightly from the Boltzmann distribution, even
though such distributions violate the assumptions of CD for-
mulated for training RBMs. This suggests that event-driven CD
provides a general learning framework for biologically-inspired
spiking RBMs and is consistent with wide range of neural
samplers.
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