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Economists often model choices as if decision-makers assign each option a scalar

value variable, known as utility, and then select the option with the highest utility.

It remains unclear whether as-if utility models describe real mental and neural

steps in choice. Although choices alone cannot prove the existence of a utility

stage, utility transformations are often taken to provide the most parsimonious or

psychologically plausible explanation for choice data. Here, we show that it is possible to

mathematically transform a large set of common utility-stage two-option choice models

(specifically ones in which dimensions are can be decomposed into additive functions)

into a heuristic model (specifically, a dimensional prioritization heuristic) that has no utility

computation stage. We then show that under a range of plausible assumptions, both

classes of model predict similar neural responses. These results highlight the difficulties

in using neuroeconomic data to infer the existence of a value stage in choice.

Keywords: decision making, value comparison, heuristics, dimensional prioritization, value correlate, utility

Introduction

How do our brains choose between two differently valued options? One straightforward strategy
would be to assign each option a scalar value variable (called utility) and then choose the option
with the highest utility (von Neumann and Morgenstern, 1944). Utility has been a core concept in
economic theory since the birth of economics in the eighteenth century (Bernoulli, 1738; Samuel-
son, 1938; Houthakker, 1950/2002). Decision-makers who adhere to basic principles of rationality
can be shown to behave as if they compute and compare utilities (Savage, 1954). But do we actually
compute and compare utilities? Economists have traditionally refrained from speculating (Samuel-
son, 1953). Indeed, choice behavior by itself cannot confirm the existence of a value stage; for this
reason, some scholars have turned to neuroeconomics.

Many popular neuroeconomic models of choice resemble the two-stage model (Padoa-Schioppa,
2011). At the core of this model, options are first evaluated, meaning that a single scalar quan-
tity, known as utility, is computed and assigned to that option. Importantly, the same scale is used
for all options being compared. Then their utilities (and only utilities) are compared. Thus, for
the purposes of this paper, we define utility as a single scale that can be used to compare any
set of values, and that has a discrete value for each option. In standard models, evaluation is
discrete, in the sense that each option is given its own specific value (even if this value depends on
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the other offers available). The evaluation stage creates a sin-
gle scalar value variable (utility). The utility variable includes
all factors that influence choice, including, for example, delays,
risk, gustatory value, effort costs, and more esoteric factors like
the value of the information the option provides (e.g., Padoa-
Schioppa and Assad, 2006; Rudebeck et al., 2006; Blanchard et al.,
2015).

The question of utility’s reality has come to prominence
because of neuroscientists’ suggestion that utility has a neural
instantiation (Montague and Berns, 2002; Rangel et al., 2008;
Padoa-Schioppa, 2011; Levy and Glimcher, 2012). Brain activ-
ity often correlates closely with utility; this correlation is often
thought to provide evidence for the neural reality of an evaluation
stage (e.g., Knutson et al., 2001; Kim et al., 2008; Chib et al., 2009;
Kennerley et al., 2009; Boorman et al., 2013; Blanchard and Hay-
den, 2014). Indeed, brain recordings directly support the idea that
we make choices by computing a utility for each option and then
choosing the option with the highest utility (Padoa-Schioppa and
Assad, 2006;Wunderlich et al., 2010; Hunt et al., 2012; Strait et al.,
2014, in press). These data suggest that utility is a critical step in
the algorithm the brain uses to implement choices, and endorse
the reality of economists’ heretofore hypothetical models.

Despite this evidence, it is still not clear that we make choices
by computing and comparing utilities. First, neural correlates of
value are notoriously difficult to attribute to value per se; value
often correlates with attention, arousal, salience, and other fac-
tors (Maunsell, 2004; Heilbronner et al., 2011; Schoenbaum et al.,
2011; Leathers and Olson, 2012; O’Doherty, 2014). Second, a
great deal of research in behavioral economics demonstrates the
surprising power of utility-free choice models to account for
choices (Brandstätter et al., 2006; Hogarth and Karelaia, 2007;
Stewart et al., 2014; see Vlaev et al., 2011 for a detailed review).
Because these models are in many cases process models, they
make direct predictions about the mental steps in choice. Utility-
free models suggest the possibility that the concept of utility may
be a convenient way of thinking about an emergent process, but
that seeming representations of utility are just coincidental cor-
relates of utility. Utility-free models are thus eliminative, mean-
ing that they open up the possibility that utility can be classified
with vitalism or the four elements theory of matter as folk the-
ories that do have a direct correspondence to underlying reality
(Churchland, 1981).

Computations that avoid computation utility often involve
heuristics—simple rules that generate choices. The results of
such rules or sets of rules can produce quite good choices
in the aggregate. Some utility-free models include decision-by-
sampling theory, fuzzy trace theory, query theory, elimination
by aspects, and dimensional prioritization (Tversky, 1969, 1972;
Stewart et al., 2006, 2014; Johnson et al., 2007; Reyna, 2009).
In many circumstances, these strategies can predict behavior as
well as or better than those of comparable utility-stage mod-
els (Kahneman et al., 1982; Payne et al., 1993; Gigerenzer and
Goldstein, 1996; Brandstätter et al., 2006). A few recent stud-
ies demonstrate the neural viability of heuristic approaches as
well (Fellows, 2006; Venkatraman et al., 2009a). Heuristics pro-
vide an appealing process model because they are quite flex-
ible (Payne, 1976; Kahneman et al., 1982; Brandstätter et al.,

2006) and because they may be less mentally effortful than eval-
uation and comparison (Tversky, 1969; Martignon and Hof-
frage, 2002; Hogarth and Karelaia, 2007; Shah and Oppenheimer,
2008).

Here we focus on binary two-attribute choices, which are
perhaps the most well studied types of problems in decision-
making and include many risky choices, intertemporal choices,
purchasing, self-control, foraging decisions, many game theoret-
ical problems, and classic social choice problems such as the ulti-
matum game. We show that such choices can be modeled with a
prioritization heuristic (Tversky, 1969; Payne, 1976; Russo and
Dosher, 1983; Hsee et al., 1999; Katsikopoilos and Gigerenzer,
2008; Scholten and Read, 2010). This heuristic involves identi-
fying the various dimensions along which choice options vary,
selecting the dimension with greatest variance, and then choos-
ing the option that dominates along the prioritized dimension.
We then show that this approach applies to a broad class of
neuroeconomically interesting decisions.

Choices made using this heuristic are theoretically inter-
esting because they do not have an evaluation step and thus
avoid the computation of utility. Evaluating a single dimen-
sion for priority does not require utility computation because it
ignores information on all other dimensions. Similarly, compar-
ing dimensions does not require utility computation because it
occurs in an abstract unitless space that depends on properties
of multiple options but is blind to the identities of the options.
In other words, dimensional comparison gives no information
about which option will be chosen. Finally, the choice stage does
not involve a utility computation because it only occurs within
a given dimension. Earlier work by Tversky showed that under
some conditions, it is possible to reframe a utility model (which
he called a horizontal model) to a utility-free one (which he called
a vertical model, Tversky, 1969).

We extend Tversky’s results by showing that it is possible
to mathematically transform many binary choice models into
dimensional prioritization heuristic form that has no utility com-
putation stage. We also show that any utility function with any
finite number of attributes that can be decomposed into additive
functions of its attributes has a psychologically plausible utility-
free dimensional prioritization equivalent that predicts the same
choices. Our results are restricted to two option choices with
arbitrarily many variables subject to arbitrary transformations,
as long as those transformations are decomposable into addi-
tive functions of dimensions. These conditions include a large
number of well-known choice contexts, including hyperbolic and
exponential discounting, Bernoullian risk attitudes, cost/benefit
decisions, and parts of Prospect Theory.

We also show that neural correlates of value difference cannot
be taken to exclusively imply a value comparison. Indeed, across
multiple trials, this variable is closely correlated with value of
both offered and chosen options (under reasonable assumptions).
For this reason, neural value correlates in such tasks do not nec-
essarily imply evaluation processes. Thus, while neural activity
measured in such tasks can support the involvement of brain cells
in economic choice, it is necessarily ambiguous about whether
there is a specific evaluation stage in that choice (O’Doherty,
2014).
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Results

The Dimensional Prioritization Heuristic
Although real-world decision makers often have complex utility
functions, we will first consider the simplest case: a hypothetical
decision-maker faced with a chose between two gambles who has
a strictly linear utility function over the range of possible values
and no distortions in its treatment of the probability curve. The
utility this decision maker assigns to each gamble is identical to
the gamble’s mathematical expected value. Such a decision maker
might correspond, for example, to the policy used by an invest-
ment bank or an insurance company to evaluate simple loans or
policies.

Imagine this decision-maker is faced with a gamble defined
by a probability p of winning a reward R and a probability (1–
p) of winning a reward of zero. The decision-maker’s subjective
value of this option is simply its mathematical expected value,
EV = p ·R. Our decision-maker will have a utility function that
matches EV, and thus U = EV = p ·R. To choose between two
gambles [p1 R1] and [p2 R2], the decision-maker can make the
utility-maximizing choice by obeying the following steps:

Algorithm 1 | (Utility algorithm).

1. U1 = p1 · R1

2. U2 = p2 · R2

3. Select the option with the greater utility

This algorithm computes a utility variable (and in fact does so
twice, once for each option). Stages 1 and 2 can be considered
evaluation stages, since they assign a specific value to specific
options. The value they compute is scalar and allows for com-
parison between dissimilar options; it is thus a common currency
model of choice (Montague and Berns, 2002; Padoa-Schioppa
and Assad, 2006; Padoa-Schioppa, 2011).

The central question we asked is whether it is possible
to generate an algorithm that lacks a utility stage but makes
all the same choices as Algorithm 1. The reason an alterna-
tive algorithm that makes the same choices but has no util-
ity stage is scientifically interesting is because, if such an algo-
rithm exists, it would be impossible to ascertain which algorithm
was used to generate the choices, even with an arbitrarily large
dataset.

The algorithm we discuss here is a dimensional prioritiza-

tion heuristic. In general, a dimensional prioritization heuris-
tic identifies one dimension along which options vary and then
selects the option with the preferred value along that dimension
(Brandstätter et al., 2006). A dimensional prioritization heuris-
tic is utility-free because dimensions are considered separately at
all points in the task. As a trivial example, a hypothetical lottery
ticket buyer may simply ignore all information about probabil-
ities and focus on the amount winnable, and choose the con-
test with the highest jackpot even in cases when it has a lower
expected value. This gambler’s dimensional prioritization heuris-
tic is clearly costly. However, a gambler who carefully selects
which attribute to attend to may make wiser choices.

The two gambles [p1 R1] and [p2 R2] differ along two
dimensions (sometimes called attributes), probability (p) and
reward amount (R). How does the decision-maker choose which
dimension to prioritize in its choices? One possibility is to choose
the dimension with more variance. This is a plausible strat-
egy because that dimension will likely convey more information
about the options. As a measure of variance, we use the statis-
tical concept of relative difference. The relative difference of the
probability dimensions is:

RDprob =

∣

∣

∣

∣

p1 − p2

mean(p1, p2)

∣

∣

∣

∣

(1)

The relative difference of the reward dimension as:

RDrwd =

∣

∣

∣

∣

R1 − R2

mean(R1,R2)

∣

∣

∣

∣

(2)

Then, a decision-maker could implement the following
algorithm:

Algorithm 2 | (Utility-free dimensional prioritization algorithm).

1. Calculate RDprob

2. Calculate RDrwd

3. Select the dimension with the larger RD value

4. Select the option with the larger value along the

selected dimension

This heuristic does not involve computation of utility at any
point. The two RD variables (Steps 1 and 2) involve only a subset
of the aspects of both options, and thus do not indicate the overall
value of either. Both steps compute a value along a common scale,
but their common scale is a dimension-free abstract scale, not a
utility scale (or even, more generally, a reward value scale), so step
3 does involves evaluation of dimensions but not options. Like-
wise, the selection step (step 4) does not involve utility because it
is limited to a single dimension.

Proof that Algorithms 1 and 2 are Mathematically
Equivalent
Here we show that Algorithm 1 and Algorithm 2 are mathemat-
ically equivalent, and thus produce the same choices. Assum-
ing two gambles defined as [p1 R1] and [p2 R2]. For conve-
nience, let us define two new terms R and r such that R1 = R
+ r and R2 = R – r. We will also assume terms P and p such
that P1 = P + p and P2 = P – p. R is thus the average value
of reward for the set of options and P is the average value of
probability.

By Algorithm 1, option 1 is preferred if U1 >U2. Thus, option
1 is preferred if:

p1 ·R1 > p2 ·R2

Given our new terms R, r, P, and p, we can rewrite this
inequality as:
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(P + p) · (R+ r) > (P − p) · (R− r)

P ·R+ p ·R+ r ·P + p · r > P ·R− p ·R− r ·R+ p · r

p ·R+ r ·P > −p ·R− r ·P

2 · p

P
>

−2 · r

R

Note that at this point, the comparison is made entirely within
dimensions. No utility is computed. No common currency is
used. The term 2p/P is what is known in statistics as a relative
difference between probabilities.

Critically, the best choice will depend on the sign of p and
r. When p is positive and r is negative (i.e., option 1 has higher
probability but lower reward), option 1 is better only if proba-
bility has a greater relative difference between the options than
reward. Conversely, when p is negative but r is positive (i.e.,
option 1 has a lower probability but higher reward), option 1
is better only if reward has a greater relative difference than
probability. In other words, this equation can be summarized
with a very simple heuristic: look at the dimension (probabil-
ity or reward) that has a larger relative difference between the
two choices. Choose the winner based on which choice wins
along that dimension alone which is equivalent to Algorithm 2.
Algorithm 2 thus provably gives the same result as Algorithm 1.

This Relative Difference Heuristic Works in Many
Conditions
As presented so far, this model only applies to one spe-
cific decision model, the normative risk-neutral decision-maker.
However, the general approach can easily be extended to choice
models in which each dimension is arbitrarily deformed as long
as the deformation function is a linearly separable from the other
dimensions. For example, a popular model of risky choice, based
on ideas originally proposed by Bernoulli, posits that the sub-
jective value of winning is a monotonic but non-linear function
of its nominal value (e.g., Yamada et al., 2013). In practice, the
deformed subjective value function is often an exponential but
does not have to be; it may more generally be some function f (R).

(Note that in practice this value function, before probability
weighting, is sometimes called a utility function, and the decision
variable is called the expected utility function. This terminology is
confusing for present purposes because in that parlance the word
utility does not refer to the decisional utility of the gamble, but to
an earlier computational stage. For clarity therefore we will call it
the subjective value of the reward and reserve the term utility for
the final of the decisional value of the offer).

In the case of a general subjective value function for reward
f (R), our dimensional prioritzation heuristic (Algorithm 2 above)
can be made to make the same choices as the algorithm by
replacing R1 and R2 with f (R1) and f (R2).

RDprob =

∣

∣

∣

∣

p1 − p2

mean(p1, p2)

∣

∣

∣

∣

(3)

RDrwd =

∣

∣

∣

∣

f (R1)− f (R2)

mean(f (R1), f (R2))

∣

∣

∣

∣

(4)

Using these inputs, Algorithm 2 is still mathematically equiv-
alent to Algorithm 1, and must predict the same choices. As
long as f (R1) and f (R2) are not functions of p1 or p2, then
Algorithm 2 still does not involve anything resembling a utility
stage.

It is worth emphasizing at this point that our approach and
our goals diverge from those of most heuristic approaches. The
goal of a typical heuristic study is to identify extremely simple
rules that can approximate formal rules under a broad range of
conditions with a minimum of assumptions and fit parameters.
Our goal instead is to demonstrate the existence of a psycho-
logically plausible utility-free heuristic that has no utility com-
putation that perfectly mimics utility-stage models. Thus, we are
quite willing to add in the non-linear variable transformations
(the functions denoted by f above and by g below). While these
violate the spirit ofminimalism that is common in heuristics, they
are psychologically plausible.

Another choice model, prospect theory, involves both a
Bernoulli-type non-linear transformation of value and a trans-
formation of probability into decision weights (Kahneman and
Tversky, 1979). (Prospect theory also involves an editing stage
that we ignore here). This transformation is generally assumed
to be monotonic (although it does not have to be). As long as it
is not a function of reward, it is simple to compute new relative
difference values that can be used with Algorithm 2. Assuming
that g(p) is a reweighting of the probability curve:

RDprob =

∣

∣

∣

∣

g(p1)− g(p2)

mean(g(p1), g(p2))

∣

∣

∣

∣

(5)

RDrwd =

∣

∣

∣

∣

f (R1)− f (R2)

mean(f (R1), f (R2))

∣

∣

∣

∣

(6)

Thus, this stage of prospect theory has a utility-free equiva-
lent. Moreover, there is nothing special about the fact that these
choices involve risk. For example, in a well-known study, sub-
jects choose between two amounts of juice that differ in flavor
and quantity (Padoa-Schioppa and Assad, 2006). In another well-
known study, subjects choose between options that differ along
gamble amount and information value (Bromberg-Martin and
Hikosaka, 2009). It is plausible to assume that in these studies,
the utility of each option may be a product of its scalar values
along the two dimensions. If so, it is straightforward to create a
utility-free algorithm that makes the same choices as the choice
model using the same principles.

Going even further afield, these results are not restricted to
choice models in which utilities are defined as products of scalars;
they also apply to quotients (i.e., ratios). In many decision con-
texts preferences are well described as the outcome of a compar-
ison of benefit/cost ratios. One well-known example comes from
decisions involving a tradeoff between reward and effort (Rude-
beck et al., 2006; Walton et al., 2007). Another well-known exam-
ple from foraging theory comes from the diet selection problem
with simultaneous encounter; the value of each option is given
by the ratio of reward/delay (Blanchard and Hayden, 2014). In
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this case, the Algorithm 2 can be used by replacing delay with its
reciprocal:

RDdelay =

∣

∣

∣

∣

∣

D−1
1 − D−1

2

mean(D−1
1 ,D−1

2 )

∣

∣

∣

∣

∣

(7)

RDrwd =

∣

∣

∣

∣

f (R1)− f (R2)

mean(f (R1), f (R2))

∣

∣

∣

∣

(8)

This case extends to slightly more complex quotients. One of the
most well-known of these is the hyperbolic discounting equation:

U =
R

1+ k ·D
(9)

In this equation, k is a constant, D is the delay until the option is
given, and R is the original value. Despite its seeming complexity,
this equation is fundamentally a ratio of reward to delay:

U = R ·1 (10)

Where 1 is simply defined as 1/(1 + k · D). This term 1 may
look artificial but it has an intuitive psychological definition: it is
an impulsivity-weighted measure of “soonness.” Having defined
this soonness term, a relative difference can be straightforwardly
computed:

RDdelay =

∣

∣

∣

∣

11 − 12

mean(11,12)

∣

∣

∣

∣

(11)

RDrwd =

∣

∣

∣

∣

R1 − R2

mean(R1,R2)

∣

∣

∣

∣

(12)

Binary Choices with More than Two Attributes
Above, we considered the most well-known case, decisions in
which the two options vary along two dimensions. We next con-
sider the case of two-alternative choice with options that vary
along a finite number of discrete dimensions. The general form
of a utility function for one option will be U(x), where x refers to
the option and U refers to the utility function. For convenience,
we will label each of the dimensions with a subscript. So the utility
is U(x1, x2, x3,. . . , xn), and it can be written in the form of

U (x1, x2, x3, ..., xn) = g

(

n
∑

i=1

fi (xi)

)

. (13)

We restrict ourselves here to the case where g is a monotonically
increasing function: R → R and arbitrary functions f1, f2, . . . fn
with fi: R → R. (These assumptions apply to almost all deci-
sion models with which we are familiar). The letter g here refers
to some monotonic operator on the outcome of the summation
step. Thus, for example, we may have a diminishing marginal
utility of value, which would lead to a convex function g.

Within this framework, the comparison between options x
and y can be written as:

U(x1, x2, ..., xn) ≥ U(y1, y2,..., yn). (14)

In other words, the decision can be made by comparing scalar
utilities that are themselves functions of a vector of scalar dimen-
sion variables. These dimension variables may be quantities like
the probability of winning a gamble, the delay until the reward is
given, the amount of information an option offers, and the flavor
of the juice offered.

By simple replacement, this problem can be solved if we can
determine whether:

g

(

n
∑

i= 1

fi(xi)

)

≥ g

(

n
∑

i= 1

fi(yi)

)

. (15)

Because we are assuming that g is monotonic, Equation 3 can
only be true in the case that:

n
∑

i= 1

fi(xi) ≥

n
∑

i=1

fi(yi) (16)

which can easily be rearranged to the following:

n
∑

i= 1

(

fi(xi)− fi(yi)
)

≥ 0. (17)

This equation requires only comparison within each dimension
rather than the computation of an overall utility for each choice.
In other words, the algorithm performs a separate comparison
for each dimension, sums the differences, and compares the sum
of the differences to zero. This is a utility-free approach because
comparisons are made across dimensions first and only the dif-
ferences are carried onto the next step of the operation. At no
point in the process is the utility of a single option a part of the
calculation.

Note that these findings are anticipated in Tversky (1969), who
discussed rearrangements like those converting Equation (16)
to Equation (17). However, while he first identified this general
principle, here we point out that the same framework can accom-
modate a monotonic transformation (g). This change is mathe-
matically minor, but has important practical consequences as it
allows reframing of multiplicative terms into the requisite (addi-
tive) sum through choosing g(x) = exp(x). This transfers a much
broader class of problems into the framework Tversky identified.

Working through the Cases for Some
Well-Known Examples
Although Equation (13) is a restricted form, the flexibility of the fi
term makes it very general a broad class of utility functions. Here
we show how to generate linearly separable functions for some
well-known choice models:

Utility is a Mathematical Expected Value
(or, more generally, the product of two scalar variables)

U(p, r) = p · r

Let g(s) = es(i.e., exp(s)); f1(p) = log(p), f2(r) = log(r).
Then U(p, r) = g(f1(p) + f2(r)) = exp(log(p) + log(r)) =

exp(log(p · r)) = p r.
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This case is most intuitive for expected values, but applies in any
conditions in which two variables are combined by multiplying
to compute a utility.

Utility is the Product of Linear Transformations of Two

Scalar Variables

U(p, r) = s(p) · t(r)

Let g(s) = exp(s), f1(p) = log(s(p)) and f2(r) = log(t(r)).
Then (following the same logic as above), U(p, r) =

g(f1(s(p)) = f2(t(r))) = exp(log(s(p)) + log(t(r))) =

exp(log(s(p) · t(r)) = s(p) · t(r).

Utility is a Weighted Hyperbolically Temporally

Discounted Reward

U(A,R,D) = A ·
R

1+ k ·D

Let g(s) = exp(s), f1(A) = log(A), f2(r) = log(r) and f3(D) =

−log(1+ k ·D).

Utility is a Weighted Exponentially Temporally

Discounted Reward

U(A,R,D) = A · e−k ·D

Let g(s) = exp(s); f1(D) = log(exp(k ·D)) = kD.

Implications for Neural Signals
These findings have implications for the interpretation of neu-
ral data. Neuroeconomic studies typically involve the simulta-
neous presentation of a pair of offers followed by choice and
resolution of the choice (e.g., determining the outcome of a
gamble). Because neural measures are inherently noisy, stan-
dard practice is to create large datasets by aggregating across
trials.

The most important putative neural signature of evaluation
processes is the utility signal itself. That is, this signature is a cor-
relation between the utility of one of the two offers and neural
activity, whether that be firing rate of a single neuron, BOLD
activity of fMRI, or some other measure. However, much of our
math also applies to neural correlates. Thus, consider a single
offer consisting of two dimensions where utility is determined by
the product of their values. The utility of that offer is correlated
with both the values individually. Assuming offers are chosen
in such a way as to span the space of utilities, averaging across
many trials, the utility of the offer is correlated with the value of
both individual dimensions. This remains true even if only one
dimension is encoded on each trial.

To demonstrate this, we used a simulation to study the
expected correlation between hypothetical neural signals repre-
senting utility and signal representing single dimension choice
rule in Algorithm 2. We simulated a large number of presented
choices with probabilities and rewards for two options uniformly

distributed in [0,1]. For each, we computed the expected value
difference, as well as a signal relevant to the dimensional prioriti-
zation algorithm: the difference in the dimension (probability or
reward) that has the higher relative difference.

Figure 1A shows the probability of choice 1 as a function of
the difference between choices in the dimension with the greater
relative difference. These two are correlated at R = 0.45. This
means that a neural signal thought to be correlated with P1 (at
R ≤ 0.45) might actually reflect a representation that is part of
the dimensional prioritization algorithm. Note that in our sim-
ulation P and R have analogous roles and distributions, so this
correlation for P1 is also found for P2, R1, and R2.

Even more, the correlation between algorithmic components
holds for utility as well. Figure 1B shows the correlation between
the difference in the dimension with greater relative variance
against the expected value difference. This correlation is even
higher, R = 0.83, meaning again that neural signals that appear
to be correlated with expected value might actually reflect rep-
resentations of the dimensional prioritization algorithm. Given
our math in preceding sections, similar qualitative results will
necessarily hold for choices involving more factors.

In short, these figures show that neural correlates of utility in
the aggregate may instead reflect encoding of one dimension. For
this reason, single unit correlates of utility are confounded with a
core variable in the heuristic algorithm. This applies just as well
to aggregate measures of neural activity (BOLD signal for exam-
ple), but because thesemethods average across neurons, they have
an additional confound: individual neurons could consistently
encode one variable but as long as they are intercalated within
a voxel, the activity of the voxel will track the utility of the option,
even as no neurons do.

Discussion

We find that a broad range of binomial choice models that
involve an explicit utility computation stage have a mathemati-
cal equivalent that does not involve computation of utilities. In
other words, there exists at least one class of utility-free heuristics
flexible enough that it can generate utility-free doppelgangers of
utility models that make identical predictions. These alternatives
involve evaluation and comparison of dimensions rather than
evaluation and comparisons of options. These results apply to a
large set of binomial decisions with arbitrarily many dimensions;
the dimensions can be deformed although the dimensions must
be decomposable into additive functions.

It is well established that choice behavior alone cannot confirm
the existence of a utility stage in choice; however, we show that
utility-free alternatives are available that are simple and psycho-
logically plausible. We further show that neural correlates of util-
ity that have been tabulated across multiple choices may equally
reflect intermediate stages of the heuristic. Consequently neuroe-
conomic data providing clear correlates of utility computations
can arise from utility-free heuristics. These results suggest that
confirming the existence of a discrete evaluation stage in choice
may be more difficult than is generally believed.

Many scholars have identified heuristics or other simple
choice models, not limited to dimensional prioritization, that
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FIGURE 1 | (A) This density plot shows the difference in the dimension

chosen by the dimensional prioritization algorithm (x-axis) vs. the value of P1

(y-axis) in a simple simulation. The strong correlation (R = 0.45) indicates that

a neural representation of the key comparison in step 4 of Algorithm 2 can

appear erroneously to be representing the probability of choice 1, or other

variables (see text). (B) The correlation between the difference in the

dimension chosen by the dimensional prioritization algorithm (x-axis) and the

difference in expected value (y-axis). The correlation (R = 0.83) here

demonstrates that a neural representation of step 4 in Algorithm 2 can also

appear erroneously to be representing the difference in expected value.

provide better descriptions of behavior than utility models (Tver-
sky, 1969, 1972; Kahneman et al., 1982; Payne et al., 1993;
Gigerenzer and Goldstein, 1996; Brandstätter et al., 2006; Stew-
art et al., 2006, 2014; Johnson et al., 2007; Hayden and Platt,
2009; Reyna, 2009; Venkatraman et al., 2009a; Pearson et al.,
2010; Blanchard and Hayden, 2015). Our goals here are some-
what different: we are interested in whether it is possible to infer
the existence of a utility stage from a combination of behavioral
and neural data. We are agnostic about whether decision-makers
actually employ the dimensional prioritization heuristic as long
as it is plausible. Indeed, they probably don’t: there is evidence
that we select from a large number of possible strategies so that
strategy varies with the situation (Payne et al., 1993; Gigeren-
zer and Selten, 2002; Heilbronner and Hayden, 2013). Nor do
our results suggest that decision-makers favor utility-free deci-
sion strategies—although many others do (Tversky, 1969, 1972;
Kahneman et al., 1982; Payne et al., 1993; Brandstätter et al., 2006;
Stewart et al., 2006; Scheibehenne et al., 2007; Hayden and Platt,
2009; Scholten and Read, 2010; Vlaev et al., 2011; Blanchard et al.,
2013; Strait and Hayden, 2013).

One limitation of our findings is that they do not deal with
situations of perfect ambivalence, i.e., when two rewards are
perfectly matched in subjective value. This is, of course, just
as much of a problem for utility-based models. However, we
believe that the problem is not particularly important in either
case; adding a small dispersion term or even a modicum of
stochastic variability to either model will eliminate this prob-
lem. Another major limitation of our results is that they do
not apply to multi-option (more than two) choice. Indeed, a
strict dimensional prioritization heuristic cannot handle three-
option choices in which one option is closely dominated on
both dimensions by the one of the other two options but

strongly dominates on the other dimension. However, we sus-
pect this weakness may be less serious than it first appears.
In practice, humans are quite poor at multi-option choice and
very often resort to utility-free heuristics to reduce their set of
options before deliberation (Tversky, 1972; Payne et al., 1993).
In any case, it remains an open question whether utility mod-
els for multi-option choices have a utility-free mathematical
equivalent.

Implications for Neuroscience
In many studies of the neural basis of economic choice,
a subject chooses between two options that differ along
two or more dimensions and a best-fitting evaluation func-
tion is computed from the subject’s behavior. (Common
examples include risk functions and temporal discounting
functions). If measures of brain activity correlate with the
value predicted from the evaluation function, it is some-
times inferred that they are utility correlates and thus pre-
sumably utility representations—a signature of an evaluation
stage. Our findings suggest that the existence of such util-
ity correlates may arise artifactually from utility-free heuristic
processes.

Specifically, our model generates a decision variable that is
simply a scalar representation of one of the task dimensions,
not an integrated utility variable. Of course, the identity of this
variable differs depending on the parameters of the options, and
then, in the aggregate, has the same statistics that a utility vari-
able would—even though it is different from utility on each trial.
Given the equivalence of the heuristic and utility models, this dif-
ference is wholly irrelevant for predicting behavior. However, it
means that any neural variable that covaries with utility on aver-
age may instead covary with the output variable of the heuristic
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on individual trials and with utility only on average. Thus, we
have identified a potential confound to neural correlates of util-
ity. This confound is in addition to other well-known confounds
like salience, attention, and arousal (Maunsell, 2004; Heilbronner
et al., 2011; Schoenbaum et al., 2011; Leathers and Olson, 2012;
O’Doherty, 2014).

Our results do not imply that it is impossible to distinguish
utility-based choices from dimensional prioritization heuristics.
Data from carefully designed experiments, even data as sim-
ple as reaction times and eye movements, can shed light into
the mechanisms of choice (Krajbich et al., 2010; Kacelnik et al.,
2011; Pais et al., 2013). Of course, direct measures of brain activ-
ity are likely to be even more helpful. For example, we con-
jecture that the heuristic algorithm, but not the utility algo-
rithm, would elicit neural control signals that are categori-
cally different depending on the prioritized dimension, and also
adjudication processes that are strongest when dimensions are
close in variance. Future studies will be needed to test these
hypotheses (for work in this direction, see Venkatraman et al.,
2009a,b).

Finally, we speculate that utility may not be reified in the
brain at all, but may be an emergent property of the algorithm

that produces choices. It may be a scientifically useful concept to
describe behavior in terms of utility, just as minimization equa-
tions canmodel a soap film even if the film itself lacks any explicit
representations of the function it minimizes. To use the termi-
nology of Marr, the computation stage should be distinguished
from the algorithmic stage (Marr, 1982). To use the terminology
of the philosopher Paul Churchland, a dimensional prioritization
heuristic eliminates the concept of reward from reward-based
choice (Churchland, 1981). Elimination in this sense refers to the
philosophical position that basic folk psychology concepts like
beliefs, intentions, and desires do not correspond to coherent
neural processes, but are instead emergent properties of neural
architecture and function. While the present results do not pro-
vide evidence for or against the position that the psychological
concept of utility should be eliminated, they suggest it may be
possible to do so.
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