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Using functional magnetic resonance imaging in awake behaving monkeys we
investigated how species-specific vocalizations are represented in auditory and
auditory-related regions of the macaque brain. We found clusters of active voxels
along the ascending auditory pathway that responded to various types of complex
sounds: inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt,
and parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus
(STS). Regions sensitive to monkey calls were most prevalent in the anterior STG, but
some clusters were also found in frontal and parietal cortex on the basis of comparisons
between responses to calls and environmental sounds. Surprisingly, we found that
spectrotemporal control sounds derived from the monkey calls (“scrambled calls”) also
activated the parietal and frontal regions. Taken together, our results demonstrate that
species-specific vocalizations in rhesus monkeys activate preferentially the auditory
ventral stream, and in particular areas of the antero-lateral belt and parabelt.

Keywords: auditory cortex, monkey, species-specific calls, spectrotemporal features, higher-level representations

Introduction

The concept of two streams in auditory cortical processing, analogous to that in visual cortex
(Mishkin et al., 1983), was proposed more than a decade ago (Rauschecker, 1998a; Rauschecker and
Tian, 2000). The concept was supported by contrasting patterns of anatomical connections in the
macaque from anterior/ventral and posterior/dorsal belt regions of auditory cortex to segregated
domains of lateral prefrontal cortex (Romanski et al., 1999) and by different physiological proper-
ties of these belt regions. In particular, the anterior lateral belt (area AL) in the macaque exhibited
enhanced selectivity for the identity of sounds (monkey vocalizations), whereas the caudal lateral
belt (area CL) was particularly selective to sound location (Tian et al., 2001; see also Ku$mierek and
Rauschecker, 2014). Evidence for segregated streams of auditory cortical processing has also been
provided in human studies (Maeder et al., 2001; Arnott et al., 2004; Ahveninen et al., 2006).

Use of species-specific vocalizations for auditory stimulation in the macaque is of particu-
lar interest in the context of the ongoing debate about the evolution of speech and language
(Rauschecker, 2012; Bornkessel-Schlesewsky et al., 2015). Comparative approaches have focused
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on identifying the common neural networks involved in the
processing of speech in humans and of vocalizations in non-
human primates (Gil-da-Costa et al., 2004; Frey et al., 2008,
2014; Petrides and Pandya, 2009; Joly et al., 2012b). Monkey calls
convey semantic information about objects and events in the
environment as well as about affective states of individuals, sim-
ilar to information contained in human communication sounds
and speech (Cheney and Seyfarth, 1990; Ghazanfar and Hauser,
1999; Yovel and Belin, 2013). An open question regarding the
vocalization-processing network in the macaque brain is whether
it also carries information about the motor actions necessary to
produce the vocalizations, as has been shown in humans listening
to speech and music (Wilson et al., 2004; Leaver et al., 2009).

Several studies have examined the representation of complex
sounds, including vocalizations, in the macaque brain using neu-
roimaging techniques (Poremba et al., 2003; Petkov et al., 2008;
Joly et al., 2012b). In particular, the first fMRI study by Petkov
et al. (2008) found activation specific to monkey vocalizations
in the anterior STG region. One of the aims in later studies has
been to characterize the physiological properties of the anterior
superior temporal (aSTG) region that shows sensitivity to higher-
level spectrotemporal features in vocalizations (Russ et al., 2008;
Kikuchi et al., 2010, 2014; Perrodin et al., 2011; Fukushima et al.,
2014). A recent comparative study by Joly et al. (2012b) repli-
cated and extended these results by analyzing fMRI images of the
entire brain and found an involvement of orbitofrontal cortex in
the processing of monkey vocalizations. Given that the ventral
pathway continues into orbitofrontal and ventrolateral prefrontal
cortex (VIPFC) (Barbas, 1993; Romanski et al., 1999; Cohen et al.,
2007; Petkov et al., 2015), this finding is of particular interest.

In humans, the ventral auditory pathway is thought to be
particularly involved in the recognition and identification of
vocalizations as well as speech (Binder et al., 2000; DeWitt and
Rauschecker, 2012). By contrast, the dorsal pathway is involved
primarily in processing sound source location and motion in
both humans and animals (Maeder et al., 2001; Tian et al., 2001;
Arnott et al., 2004). However, a recent proposal, derived from
both human and non-human primate studies, suggests that the
dorsal stream may also play a role in sensorimotor integration
and control of complex sounds, including speech (Rauschecker
and Scott, 2009; Rauschecker, 2011). Thus, activation of frontal
and parietal regions might also be expected when monkeys are
presented with conspecific vocalization sounds.

Here we identified which brain regions of the macaque mon-
key are sensitive to conspecific vocalizations using whole-brain
functional magnetic resonance imaging (fMRI). We found the
most distinct activation in the anterior STG and along the audi-
tory ventral stream, but some clusters of activation were also
found in prefrontal, premotor, and parietal cortex when com-
paring monkey vocalizations to environmental sounds. These
findings are discussed in terms of their functional significance.

Materials and Methods

Subjects
Two male rhesus monkeys (Macaca mulatta) weighing 10-12 kg
participated in our awake-fMRI experiments. Each animal was

implanted with an MRI-compatible headpost (Applied Proto-
type) secured to the skull with ceramic screws (Thomas Record-
ing), plastic strips, and bone cement (Osteobond, Zimmer). All
surgical procedures were performed under general anesthesia
with isoflurane (1-2%) following pre-anesthetic medication with
ketamine (13 mg/kg) and midazolam (0.12 mg/kg). The experi-
ments were approved by the Georgetown University Animal Care
and Use Committee and conducted in accordance with standard
NIH guidelines.

Behavioral Training

To ensure the monkeys attended to each stimulus for which a
brain volume was acquired, we adapted a go/no-go auditory dis-
crimination task (Ku$mierek and Rauschecker, 2009; Kikuchi
etal., 2010) for sparse-sampling functional MRI.

First, each monkey was trained to lie in sphinx position in
an MRI-compatible primate chair (Applied Prototype) placed
inside a double-walled acoustic chamber simulating the scan-
ner environment. Inside the chamber, the animals were trained
to be accustomed to wearing headphone equipment and hear-
ing (simulated) scanner noise, presented by a loudspeaker. Eye
movements were monitored using an infrared eye-tracking sys-
tem (ISCAN). Analog output of the tracker was sampled with
an analog-to-digital conversion device (National Instruments).
A PC running Presentation software (Neurobehavioral Systems)
was used to present visual and auditory stimuli, control the
reward system, and trigger imaging data acquisition (see below).

After the animal completed the fixation training, a go/no-
go auditory discrimination task was introduced, in which the
monkeys could initiate a trial by holding fixation on a central
red spot while a block of auditory stimuli would be simulta-
neously presented. After the first 6 s of auditory stimulation, a
trigger was sent to the scanner, starting the acquisition of an
image volume (Figure 1B). Following acquisition and a random
delay, the target sound (white noise) was presented, cueing a sac-
cade to the left or to the right side as signaled at the beginning
of each experimental session (Figure 1A). To provide feedback,
after the response window, a yellow spot was shown indicating
the correct target location. Finally, contingent on performance,
the animal received a juice reward. An inter-trial interval of at
least 2s was enforced before the next trial could be initiated
by fixation. Every sound presentation trial was followed by a
“silence” trial, allowing for measurement of baseline blood oxy-
gen level dependent (BOLD) signal. Monkey 1 (M1) performed
the task correctly for over 90% of the trials. Monkey 2 (M2) was
not able to perform the saccadic go/no-go discrimination task
with high accuracy and was therefore scanned while passively
listening to the acoustic stimuli. To ensure stable attention, M2
was rewarded for successfully holding fixation throughout the
trial.

Auditory Stimuli

Three sound categories were used in the experiments: envi-
ronmental sounds (Env), monkey vocalizations or calls (MC),
and scrambled monkey calls (SMC). Spectrograms of exam-
ple clips from each of these three categories are illustrated in
Figure 1C. Environmental sounds were obtained from multiple
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Frequency (kHz)

Time (s)

FIGURE 1 | Behavioral paradigm and example stimuli for each
sound category. (A) The monkey had to keep fixation on a
central spot while stimuli were presented from one of three sound
categories: environmental sounds (Env), monkey calls (MC) and
scrambled monkey calls (SMC). Next, a target sound (white noise,
500ms) was played after a random delay of 0.5-1.5s at the end
of each stimulus period, and the animals were required to make a
saccade to an imaginary cue position (yellow cue). The imaginary
target was chosen to be either on the left or the right side of the
screen, and the animal was instructed at the beginning of each
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session where the target was going to appear (see Materials and
Methods). (B) All conditions were presented in a sparse-sampling
design to avoid interference between the hemodynamic response
(HR) generated by the scanner noise and by the stimuli. The
inter-trial interval (ITl) lasted for 2s, and the monkey was then
allowed to start a new trial by initiating fixation once again. (C)
Eight-second series of spectrograms from the three sound
categories presented. (D) Average modulation spectra for each
stimulus category. Pearson correlations between average modulation
spectra were: MC vs. SMC 0.92, MC vs. Env 0.86.

online sources and from recordings made in our laboratory facil-
ities (Ku$mierek and Rauschecker, 2009). They included the
sounds of vehicles, cages, water, food containers, clocks, cam-
eras, applause, coins, footsteps, chewing, heartbeats, horns, and
telephones (n 56). The mean duration of the Env stimuli
was 1.14s (range: 0.96-2.6 s). Monkey calls were obtained from
recordings made outside our colony [M. Hauser and/or Labo-
ratory of Neuropsychology (LN) library]. Monkey vocalizations
(n = 63) consisted of grunts, barks, warbles, coos, and screams,
as used in prior studies (Rauschecker et al., 1995; Tian et al., 2001;
Kuémierek et al., 2012). The mean duration of the vocalization
stimuli was 0.67s (range: 0.13-2.34s). SMC were generated by
randomly rearranging 200 ms by 1-octave tiles of the constant-
Q spectrogram (Brown, 1991) for each monkey call and recon-
structing a time-domain waveform with an inverse transform
(Schorkhuber and Klapuri, 2010). Transposition along the time
axis was not constrained while transposition along the frequency

axis was restricted to displacement by a single octave. For each
trial, a random selection of stimuli from one class (MC, Env, or
SMC) was arranged sequentially into a smooth auditory clip that
lasted for the duration of the trial (8 s).

Sounds were presented through modified electrostatic in-
ear headphones (SRS-005S + SRM-252S, STAX), mounted on
ear-mold impressions of each animal’s pinna (Sarkey Eden
Prairie) and covered with a custom-made earmuft system for
sound attenuation. To match loudness, the stimuli were played
through the sound presentation system and re-recorded with
a probe microphone (Briiel and Kjar, type 4182 SPL meter)
inserted in the ear-mold of an anesthetized monkey. The record-
ings were then filtered with an inverted macaque audiogram
(Jackson et al., 1999) to simulate the effect of different ear sen-
sitivity at different frequencies, analogous to the dB(A) scale for
humans. The stimuli were finally equalized so that they produced
equal maximum root mean square (RMS) amplitude (using
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a 200-ms sliding window) in filtered recordings (Ku$mierek
and Rauschecker, 2009). During experiments, all stimuli were
amplified (Yamaha AX-496) and delivered at a calibrated RMS
amplitude of ~80 dB SPL.

Analyses of Sound Categories

A modulation spectrum analysis (Singh and Theunissen, 2003)
was performed for each sound with the STRFpak Matlab tool-
box (http://strfpak.berkeley.edu). We obtained a spectrogram of
each sound by decomposing it into frequency bands using a bank
of Gaussian filters (244 bands, filter width = 125 Hz). The fil-
ters were evenly spaced on the frequency axis (64-48,000 Hz)
and separated from each other by one standard deviation. The
decomposition resulted in a set of narrow-band signals, which
were then cross-correlated with each other and themselves to
yield a cross-correlation matrix. This matrix was calculated for
time delays of 150 ms, and the two-dimensional Fourier trans-
form of this matrix was calculated to obtain the modulation
spectrum of each sound (Figure 1D).

Data Acquisition

Images were acquired with a horizontal MAGNETOM Trio 3-T
scanner (Siemens) with a 60-cm bore diameter. A 12-cm custom-
made saddle shape radiofrequency coil (Windmiller Kolster Sci-
entific) covered the entire brain and was optimized for imaging
the temporal lobe. The time series consisted of gradient-echo
echo-planar (GE-EPI) whole-brain images obtained in a sparse
acquisition design. Sparse sampling allows single volumes to be
recorded coincidentally with the predicted peak of the evoked
hemodynamic response (Hall et al., 1999). This helps to avoid
contamination of the measured stimulus-specific BOLD response
by the scanner-noise-evoked BOLD response. Further, by trigger-
ing acquisition 6 s after stimulus onset, the auditory stimulus was
presented without acoustic interference from gradient-switching
noise, typical of a continuous fMRI design. For the functional
data, individual volumes with 25 ordinal slices were acquired
with an interleaved single-shot GE-EPI sequence (TE = 34 ms,
TA = 2.18s, flip angle = 90°, field of view (FOV) = 100 x
100 mm?, matrix size = 66 x 66 voxels, slice thickness = 1.9 mm,
voxel size = 1.5 x 1.5 x 1.9mm?>). On each experiment day, a
low-resolution FLASH anatomical scan was acquired with the
same geometry as the functional images (TE = 14ms, TR =
3s, TA = 2.185, FOV = 100 x 100 mm?, matrix = 512 x 512
voxels, slice thickness = 1.9 mm, number of averages = 2, flip
angle = 150°). For overlaying our functional images, we cre-
ated a high-resolution anatomical template (0.5 x 0.5 x 0.5 mm?
isotropic voxels) by averaging five high-resolution anatomical
scans acquired under general anesthesia with an MP-RAGE
sequence (TE = 3.0ms, TR = 2.5s, flip angle = 8°, FOV =
116 x 96 x 128 mm?; matrix = 232 x 192 x 256 voxels).

Data Analysis

For M1, nine EPI runs (180 time points each) were acquired
over six sessions. For M2, seven runs were acquired over four
sessions. All data analyses were performed using AFNI (Cox,
1996) (http://afni.nimh.nih.gov/afni), FreeSurfer (Dale et al,
1999; Fischl et al., 1999) (http://surfer.nmr.mgh.harvard.edu/),

SUMA (http://afni.nimh.nih.gov/) and custom code written in
Matlab (MathWorks). Preprocessing involved slice timing cor-
rection, motion correction (relative to the run-specific mean
GE-EPI), spatial smoothing with a 3.0mm full width at half-
maximum Gaussian kernel, and normalization of the time series
at each voxel by its mean. All volumes that had motion val-
ues with shifts >0.5mm and/or rotations >0.5° were excluded
from further analyses. Lastly, we performed linear least-squares
detrending to remove non-specific variations (i.e., scanner drift).
Following preprocessing, data were submitted to generalized
linear model analyses. The model included three stimulus-
specific regressors and six estimated motion regressors of no
interest. For each stimulus category (Env, MC, SMC) we esti-
mated a regressor by convolving a one-parameter gamma dis-
tribution estimate of the hemodynamic response function with
the square-wave stimulus function. We performed ¢-tests con-
trasting all sounds vs. baseline (“silence” trials), MC vs. Env,
and MC vs. SMC. Finally we co-registered and normalized
our functional data to the population-average MRI-based tem-
plate for rhesus monkeys 112RM-SL (McLaren et al., 2009)
and then displayed the results on a semi-inflated cortical sur-
face of the template extracted with Freesurfer and displayed
with SUMA to facilitate visualization and identification of cor-
tical activations. The anatomical boundaries described here are
based on the macaque brain atlas of Saleem and Logothetis
(2012).

To quantify the lateralization of the BOLD response across
hemispheres we measured a lateralization index [LI = (Ry -
Lp)/(Ry + Ly)], where Ry, and Ly, are the mean responses in the
right and left hemisphere, respectively. The LI curve analyses
ensure that the lateralization effect is not caused by small num-
bers of highly activated voxels across hemispheres. The LI curves
were based on the ¢-values obtained from each contrast condi-
tion and were calculated using the LI-toolbox (Wilke and Lidzba,
2007) with the following options: £5mm mid-sagittal exclu-
sive mask, clustering with a minimum of 5 voxels and default
bootstrapping parameters (min/max sample size 5/10,000 and
bootstrapping set to 25% of data). The bootstrapping method cal-
culates 10,000 times LIs using different thresholds ranging from
zero until the maximum ¢-value for a specific contrast condition.
For each threshold a cut-off mean value is obtained from which
a weighted mean (LI-wm) index value can then be calculated
(Wilke and Lidzba, 2007). This yields a single value between —1
and 1 indicating right- or left-sided hemisphere dominance.

Results

Our first goal was to identify brain regions involved in the pro-
cessing of conspecific vocalizations by the macaque brain. To this
end, we collected functional MR images of two monkeys in a
horizontal 3-T scanner while stimuli from three different sound
categories were presented to the animals. Complex sounds are
characterized by having a wide range of spectrotemporal features.
While environmental sounds typically contain sharp temporal
onsets, monkey vocalizations contain greater modulations in the
spectral domain because of the harmonics contained in these
sounds. Environmental sounds also carry abstract information
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about the identity of objects, so a comparison between BOLD
responses to monkey vocalizations and environmental sounds is
useful in determining brain structures involved in higher-level
processing. However, specific spectrotemporal differences exist
between these two types of sounds. This can be seen, for instance,
in the spectral modulation of monkey vocalizations at approx-
imately 1.5-2 cycles/kHz, which is not present for other sound
categories (Figure 1D). Thus, scrambled versions of monkey calls
(SMC) were used to further control for the local spectrotempo-
ral features in the vocalizations (see Figure 1C and Material and
Methods). Comparison of average modulation spectra between
categories showed that SMC were acoustically better matched to

MC than Env (correlation coefficient between the modulation
spectra: SMC vs. MC: 0.92, Env vs. MC: 0.86; Figure 1D).
Overall, sound stimulation elicited significant BOLD
responses compared to silent trials irrespective of auditory
stimulus category [q (FDR) < 0.05, p < 1073, one-tailed t-test,
t range: 2.3-10, cluster size > 10 voxels] in a broad network
of brain regions, including subcortical auditory pathways,
classical auditory areas of the superior temporal gyrus (STG),
but also regions in parietal and prefrontal cortices (Figure 2).
The clusters in Figure 2A highlight the main activation sites on
the cortical surface of monkey M1. Figure 2B shows selected
coronal slices for both animals (M1 and M2) showing activation

T-Statistic
2.5 10

T-Statistic

=Left 2
= Right

% Signal change

o -
o o = O N

o

(&)
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FIGURE 2 | Mapping auditory and auditory-related regions with
complex sounds. (A) Representative cortical responses from monkey
(M1) for all sound conditions combined (q FDR < 0.05, p < 10~2; cluster
size > 10 voxels). The projection onto the semi-inflated surface preserves
sulcal and gyral landmarks while allowing visualization inside the
intraparietal sulcus (ips) and lateral sulcus (Is). Activation was observed
along the auditory ventral stream in the superior temporal gyrus (STG),
the superior temporal sulcus (STS), ventral intraparietal area (VIP), and the
frontal pole (Fp). Activated dorsal-stream regions included the ips and

2 2
15 1.5
1 1
0.5 0.5

R/AL RTL/RTp

ventral premotor cortex (PMv). Some active clusters were also observed
in the middle temporal area (MT) and the inferior temporal cortex (IT). (B)
Activation was robust across regions in the ascending auditory pathway
of the two monkeys: cochlear nuclei (CN), inferior colliculus (IC), medial
geniculate nucleus (MGN), primary auditory cortex (A1), rostral area (R),
anterolateral area (AL), lateral rostrotemporal area (RTL), and the
rostrotemporal pole region (RTp). (C) The average BOLD response for the
main auditory activation showed a right-hemisphere bias in both animals
(M1, weighted mean = —0.33, M2, weighted mean = —0.66).
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in the ascending auditory pathway. These regions include the
cochlear nucleus (CN), the inferior colliculus (IC), the medial
geniculate nucleus (MGN), the primary auditory cortex (Al),
and areas in the anterior superior temporal cortex, including
the rostral (R) and anterolateral (AL) areas, the rostrotem-
porolateral area (RTL), and the rostrotemporal pole (RTp)
region.

Activation clusters (averaged across animals and hemispheres)
taken from a normalized number of voxels (i.e., equal number of
left and right voxels) were found in: IC [N = 84 voxels, peak
coordinate = (4, —1, 12)]; A1 [N = 198 voxels, peak coordi-
nate = (22, 6, 24)]; R/AL [N = 131 voxels, peak coordinate =
(24, 17, 12)]; and RTL/RTp [N = 165 voxels, peak coordinate =
(23,22, 8)].

For both animals we observed a larger amplitude and spa-
tial extent of the BOLD response in the right hemisphere as
compared to the left hemisphere (Figure 2B). Activation (per-
cent signal change) in selected clusters for each hemisphere is
shown in Figure 2C. We compared the activation between the
two hemispheres by calculating a laterality index (LI), with a pos-
itive index indicating a left-hemisphere bias and a negative index
indicating a right-hemisphere bias. Given the fact that LIs show
a threshold dependency (Nagata et al., 2001), we measured LI
curves to provide a more comprehensive estimate over a whole
range of thresholds (Wilke and Lidzba, 2007). Using this adaptive
thresholding approach we found a right-hemisphere bias in the
LI curves for general auditory activation (all sounds vs. baseline)
in both monkeys (M1, weighted mean = —0.33; M2, weighted
mean = —0.66). For higher thresholds, the activation was clus-
tered in primary auditory cortex (A1) of the right hemisphere in
each animal.

Vocalizations are complex naturalistic stimuli that contain
behaviorally relevant information. In order to investigate if the

auditory system contained representations that are sensitive to
this sound category vs. other types of behaviorally relevant com-
plex sounds, we contrasted monkey calls against environmental
sounds (see Material and Methods). Environmental sounds also
carry abstract information about object identity in their spec-
trotemporal patterns. We, therefore, also looked for areas show-
ing elevated response to these sounds relative to monkey vocal-
izations. When correcting for multiple comparisons [q (FDR) <
0.05], no differences were observed for the contrast of MC vs.
Env. However, at uncorrected thresholds, we found significantly
higher activations by MC as compared to Env in both mon-
keys across regions in temporal, parietal and prefrontal cortices
(M1, p < 1073 uncorrected, ¢t-value range: —4.2 to 6.1, cluster
size > 5 voxels; M2, p < 1072 uncorrected, t-value range: —3.6
to 5.9, cluster size > 5 voxels) (Figure 3A). Specifically, activa-
tions sensitive to MC were found in the anterior STG region,
including areas AL and RTp of the rostral belt/parabelt, and fur-
ther along the auditory ventral stream in ventrolateral prefrontal
cortex (VIPFC). In addition, we observed activation patches in
the inferior parietal lobule (areas PF/PFG) of the right parietal
cortex, and bilaterally inside the inferior branch of the arcu-
ate sulcus, possibly corresponding to Brodmann’s area (BA) 44,
and posterior to the arcuate sulcus, in a region that is part of
ventral premotor cortex (PMv). In addition, we found regions
sensitive to environmental sounds (blue) along the superior tem-
poral sulcus (STS) and inferotemporal (IT) cortex. To investigate
hemispheric lateralization in the processing of vocalizations, we
measured LI curves for this contrast (Mc > Env), finding a slight
right hemispheric bias in monkey M1 (weighted mean = —0.19)
and a moderate right-hemisphere bias in monkey M2 (weighted
mean = —0.42).

In order to determine whether spectrotemporal features alone
could have driven the activation in these areas, we further

URTp -4-8 M 75

FIGURE 3 | Regions specifically activated by monkey
vocalizations. (A) Vocalization-sensitive regions obtained from
comparison between the effects of monkey calls and environmental
sounds. All activation maps were displayed on a semi-flattened
surface of the macaque monkey template. Active regions were
found in the anterolateral area (AL), lateral rostrotemporal area
(RTL), rostrotemporal pole (RTp), secondary somatosensory (Sll)

M2

MC > Env

MC > SMC

43 61

cortex, ventral premotor cortex (PMv), ventrolateral prefrontal cortex
(VIPFC), and inferior parietal areas (PF and PFG). (B) Regions
significantly more activated by monkey vocalizations than by
scrambled monkey vocalizations include areas in the anterior STG,
RTL/RTp. Red/orange: significantly higher activation by MC than by
control sounds (SMC or Env); blue: significantly higher activation by
SMC or Env than by MC.
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contrasted monkey calls (MC) with scrambled monkey calls
(SMC). The results showed similar patterns of MC activation in
both monkeys in the RTL region of the aSTG (M1; p < 1073
uncorrected, t-value range > —4.8 to 7.5, cluster size > 5 voxels
and for M2, p < 1072 uncorrected, t-value range > —4.3 to 6.1,
cluster size > 5 voxels) in both monkeys specifically in the RTL
region of the aSTG (Figure 3B). In monkey M2, a second region,
the middle medial belt (MB), was also more strongly activated by
monkey vocalizations than by their scrambled counterparts. The
weighted-mean lateralization index (LI) for this contrast (MC >
SMc) also showed higher values toward the right hemisphere
(M1: weighted mean = —0.34; M2: weighted mean = —0.44).
A summary is shown in Table 1.

Some differences in the patterns of activity were observed
across the two animals. These differences might be explained
either by variability across subjects or by differences in atten-
tional state: M1 was significantly engaged in completing the
task (>90% success), whereas M2 was scanned passively while
holding fixation. To compensate for this variability, we calcu-
lated the minimum ¢-statistic (p < 0.01 uncorrected) across
contrasts in each monkey (a conjunction test) and across mon-
keys in each contrast (Figure 4). Conjunction across contrasts
(MC > Env and MC > SMC) and monkeys (M1 and M2)
found a single area in the right hemisphere to be specifically
involved across both conjunction analyses, area RTL/RTp (peak
coordinate: 24, 17, 12).

Discussion

Species-specific vocalizations in non-human primates (“monkey
calls”) convey important information about affective/emotional
states as well as the recognition of objects and individuals (Ghaz-
anfar and Hauser, 1999). We used whole-brain functional mag-
netic resonance imaging (fMRI) in awake behaving monkeys
to examine auditory responses to stimuli from three different
sound categories: (a) multiple types of conspecific monkey calls,
(b) environmental sounds, and (c) scrambled versions of the
same monkey calls largely preserving their local spectrotemporal
features.

For all three sound categories combined we found robust
BOLD responses along various regions in the ascending auditory
pathways (CN, IC, MGB, and Al, Figures 2A,B). These results,

TABLE 1 | LI-weighted-mean values for the overall sound activation and
for each contrast condition.

All > baseline MC > Env MC > SMC
M1 -0.33 -0.19 -0.34
M2 —0.66 -0.42 -0.44

Mean lateralization index values (LI-wm) are shown that were obtained from LI curves
measured as a function of the statistical threshold (t-value) for the overall auditory activa-
tion (all sounds vs. baseline), for the contrast between monkey calls and environmental
sounds (MC > Env) and for the contrast between monkey calls and scrambled monkey
calls (MC > SMC). A positive index indicates a left-hemisphere bias, while a negative
index indicates a right-hemisphere bias. LI-wm values are shown separately for monkeys
M1 and M2.

using a 3-T scanner without contrast agent, corroborate previ-
ous fMRI findings obtained on a 1.5-T magnet with the contrast
agent MION, showing activation by complex sounds along the
auditory pathway (Joly et al., 2012a). The results further attest to
the fact that complex sounds are highly effective for mapping sub-
cortical and cortical auditory structures (Rauschecker et al., 1995;
Rauschecker, 1998b; Poremba et al., 2003). Furthermore, our
results confirm the general trend of a slight right-hemisphere bias
(Table 1) in the processing of complex sounds in the macaque
auditory cortex, as measured with fMRI (Petkov et al., 2008; Joly
et al., 2012a). Similar results have been found in humans for
non-speech voice sounds (Belin et al., 2000).

When we compared activations produced by monkey vocal-
izations vs. the other two sound categories using a conjunc-
tion analysis, we found consistent activations in regions along
the anterior STG, in particular in areas AL, RTL and RTp, in
both animals (Figure 4). Our results extend previous findings
of increased sensitivity to monkey vocalizations in anterior STG
regions (Poremba et al., 2003; Petkov et al., 2008; Kikuchi et al.,
20105 Joly et al.,, 2012a,b; Fukushima et al., 2014) by using con-
trol stimuli (SMC) that retained the low-level acoustic informa-
tion of macaque vocalizations and whose acoustic structure was
better matched to the vocalizations than the acoustic structure
of other complex sounds (Figure 1D). Single-unit studies of the
R/AL region have also found increased selectivity either to mon-
key calls, or to sound categories including vocalizations (Tian
et al., 2001; Ku$mierek et al., 2012), consistent with the present
results (Figures 3, 4).

Thus, the cortical representation of vocalizations involves an
auditory ventral pathway, consisting of a chain of interconnected
regions in anterior STG and vIPFC that extract abstract infor-
mation for the recognition and categorization of vocalizations
(Rauschecker, 2012). The rostral belt, parabelt and aSTG send
afferent projections into ventrolateral, polar, orbital, and medial
regions of the prefrontal cortex (PFC) (Jones and Powell, 1970;
Hackett et al., 1999; Romanski et al., 1999; Cavada et al., 2000;
Kaas and Hackett, 2000; Hackett, 2011; Yeterian et al., 2012),
and together these regions form the ventral cortical stream in
audition. Vocalization-sensitive neurons are found along with
face-sensitive neurons in the vIPFC (Romanski et al., 2005),
allowing these regions to integrate vocalizations with the corre-
sponding facial gestures (Romanski and Goldman-Rakic, 2002;
Cohen et al., 2007; Diehl and Romanski, 2014). The PFC is
involved in higher-level integrative processes for the cognitive
control of vocalizations as well as in the interpretation of seman-
tic content in vocalizations (Romanski and Averbeck, 2009). The
activation patterns observed in PFC (Figure 3A) could represent
categorical or affective information reflected in the vocalizations.
Further imaging studies and multivariate analyses comparing
multiple vocalization types might elucidate the differential con-
tribution of each subregion of the PFC.

Our stimuli also activated higher-level visual areas, such as the
middle temporal (MT) and inferior temporal areas (IT). These
areas are known to be involved in the processing of visual motion
(Maunsell and Van Essen, 1983) and in object perception (includ-
ing faces), respectively (Tsao et al., 2006; Ku et al., 2011). Their
activation by purely auditory stimuli raises interesting questions
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Conjunctlon across contrast M1

Conjunction across contrast M2
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FIGURE 4 | Conjunction results across contrast conditions and
across monkeys. (A) Conjunction across contrast (MC > Env and
MC > SMC) for monkey M1 (n voxels = 235, top panel) and for
monkey M2 (n voxels = 89, lower panel). (B) Conjunction across
monkeys (M1 and M2) for contrast MC > Env (n voxels = 248, top

Conjunctlon across monkeys Env

Conjunction across monkeys SMC

panel) and for contrast MC > SMC (n voxels = 58, lower panel).
Each individual contrast map was thresholded at p < 0.01
(uncorrected). Red region indicates conjunction voxels that were
differentially activated for both contrasts in each monkey or in both
monkeys for each contrast.

regarding their possible role in the multisensory processing of
dynamic audio-visual stimuli, such as facial expressions that nat-
urally occur in conjunction with vocalizations and/or motion of
the face (Furl et al., 2012; Polosecki et al., 2013; Perrodin et al.,
2014). However, to answer these questions more definitively, fur-
ther imaging experiments utilizing dynamic audio-visual stimuli
would be necessary. Such studies could enlighten us on how audi-
tory information combines with visual information in both the
ventral and dorsal pathways building multimodal representations
from dynamic facial expressions combined with vocalizations
(Ghazanfar and Logothetis, 2003).

When we contrasted monkey calls to environmental sounds,
we also found differential activation in regions PF/PFG (area 7b)
(Pandya and Seltzer, 1982; Rozzi et al., 2006) of the inferior pari-
etal lobule (IPL), in addition to the well-known regions in the
STG sensitive to monkey vocalizations. Parietal regions inside the
intraparietal sulcus (IPS) have been known to receive auditory
projections (Lewis and Van Essen, 2000) and to contain neurons
that respond to auditory and multimodal stimuli (Stricanne et al.,
1996; Bushara et al., 1999; Grunewald et al., 1999; Cohen and
Andersen, 2000; Cohen, 2009), but the role of these regions has
traditionally been assumed to lie in spatial processing and control
of eye movements.

Similarly, we found an engagement of the ventral premo-
tor cortex (PMv) in the processing of monkey vocalizations
(Figure 3A). This region has previously been thought to be
involved in the processing of the location (but not quality) of
nearby sounds (Graziano et al., 1999). Surprisingly, when we
compared the effects of vocalizations (MC) against vocaliza-
tions that were scrambled in both the spectral and temporal
domains (SMC), we did not observe greater activation in pari-
etal or prefrontal areas for MC, suggesting that the scrambled
versions of the MC evoked the same amount of activity in these
regions. Similar results were obtained by Joly et al. (2012b) with

temporally scrambled vocalizations activating large regions of
premotor and parietal cortices. Ventral premotor cortex (PMv)
has also been implicated in the initiation of vocalizations in the
macaque monkey (Hage and Nieder, 2013). It appears possible,
therefore, that the same neurons are the source of an efference
copy signal (Kauramaki et al., 2010), which is responsible for
the suppression of auditory cortex during self-initiated vocaliza-
tions (Eliades and Wang, 2003). More generally, they could be
part of an audio-motor network connecting perception and pro-
duction of sounds (Rauschecker and Scott, 2009; Rauschecker,
2011).
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