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Hasty decisions often lead to poor choices, whereas accurate decisions are ineffective if they take
too long. Thus, good choices require cognitive mechanisms to determine the appropriate balance
between speed and accuracy, and to control decision processing accordingly. This balance is
referred to as the speed-accuracy trade-oft (SAT) and the mechanisms by which it is determined and
imposed are the subject of this Frontiers Research Topic. Given the near-ubiquity of the SAT across
species and experimental tasks, it is not surprising that a wide range of methods have been used to
investigate it. Our aim is to provide a unified view of the SAT in light of this diverse methodology.
Computationally, decision making and the SAT are well characterized by the framework of bounded
integration, providing a solid foundation for this view. Under this framework, noisy evidence for
the available choices is added up (integrated) until the running total for one of them reaches a
criterion (the bound). The SAT is readily controlled by the bound, where a higher bound favors
accuracy at the expense of speed and vice versa. In this collection, we use bounded integration as a
reference point for considering the factors that determine the optimal balance between speed and
accuracy, the interpretation of behavior by different models from this general class, and the neural
implementation of the computations captured by these models. Articles herein further consider
conditions under which the above descriptions of the SAT and bounded integration do not explain
behavior, and the utility of the SAT for manipulating the context of decisions.

The review by Heitz (2014) describes the history of the SAT as a quantifiable behavioral
phenomenon and provides a critical appraisal of methodologies for its study. His historical
account describes the shaping of decision theory by the SAT, a perspective that nicely sets up the
original research article by Ivanoff et al. (2014), who used SAT methodology to investigate spatial
compatibility effects, that is, how the respective locations of stimuli and responses can influence
behavior. They found that SAT manipulations can systematically promote or impede the efficacy of
stimulus-response mappings.

Stone (2014) investigated the relationship between speed and accuracy in his original research
article, reasoning that the information gained by the observation of evidence should be reflected in
both the speed and accuracy of decisions. By fitting a bounded integration model to experimental
data, he used model parameters to estimate the mutual information between perceptual evidence
and speed, and between perceptual evidence and accuracy. These measures provide bounds on
the information gained by the observation of evidence and were used to calculate the smallest
detectable change in the strength of evidence.

Salinas et al. (2014) reviewed recent studies of perceptual decisions under extreme time pressure.
In this context, the respective contributions of perception and motor planning to choice behavior
can be distinguished from one another, quantifying how the former guides the latter. These
experiments showed that perceptual information can accelerate or decelerate the competition
between ongoing motor plans, revealing the SAT as the combined effect of multiple adjustments
to decision processing, not a monolithic phenomenon.
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The isolation of perception from motor planning under
extreme time pressure (Salinas et al,, 2014) is manifest in the
independence of accuracy from decision time, which constitutes
a violation of the SAT. Another well-known violation is the
improvement in speed and accuracy while learning a task. This
improvement is readily captured by increasing a parameter that
loosely corresponds to the difference in strength between sources
of evidence, often referred to as “drift.” In effect, learning mimics
a decrease in task difficulty. In their original research article,
Zhang and Rowe (2014) used a bounded integration model to
investigate the effects of speed and accuracy emphasis during
and after learning. Under accuracy emphasis, increasing the
bound and the drift captured subjects’ behavior at the beginning
of learning, whereas only an increase in the bound captured
behavior after learning. Their results suggest that learning
and speed-accuracy emphasis differentially influence decision
processing on different timescales.

It is widely accepted that the objective of the SAT is to optimize
decisions in terms of reward rate, that is, decision makers aim to
maximize the pay-off of the task at hand. Three original research
articles in the collection investigated optimal decision making,
each considering a different set of conditions and corresponding
strategies. Khodadadi et al. (2014) considered the case of a limited
time interval, during which decision makers can make as many
(or as few) decisions as they wish. This task can be formulated as
a search for the reward-maximizing bound in a given condition.
Khodadadi et al. (2014) took a reinforcement learning approach to
this problem, specifying a set of conditions, each corresponding
to a configuration of task constraints, e.g., the difficulty of the
task, the magnitude of reward and so forth. In the terminology of
reinforcement learning, each condition is a “state” and the bound
that maximizes the reward rate in that condition is its “action”
under the optimal “policy.” Their model took a conservative
strategy, choosing a high, sub-optimal bound in the early stages of
learning, before lowering it with experience to achieve optimality.
This result is a testable prediction for behavioral experiments.

Karsilar et al. (2014) investigated decisions with deadlines, in
which the optimal strategy is to reduce the bound during each
decision. This strategy ensures that decisions are always made
by the deadline, at a cost of lower accuracy. As such, decision
makers have to estimate the upcoming deadline and have to
account for the variability in these estimates. Crucially, models
that implement this strategy predict that accuracy will decline
to near-chance levels as the deadline approaches. Karsilar et al.
(2014) tested this prediction with a perceptual choice task, finding
that subjects’ performance did not decline to chance levels near
the deadline, and that a slight decline did not relate to timing
variability. Furthermore, subjects’ behavior was captured by a
standard bounded integration model. These results suggest that
perceptual decisions are too short for within-trial adaptation of
the neural mechanisms captured by the bound.

As described above, the fundamental principle of bounded
integration is that the effect of within-trial noise can be limited
by integrating evidence. Goldfarb et al. (2014) compared several
bounded integration models with a popular model that does
not include within-trial noise, in which decision-time variability
and error rates are determined only by between-trial noise,

i.e., parameter values that vary from trial to trial. Their study
focused on reward-maximization tasks, in which task difficulty
is held constant for a block of trials and subjects try to earn
as much reward as possible, i.e., they try to optimize the trade-
off between speed and accuracy for a given task difficulty.
Significant differences were found between the classes of model,
especially on difficult tasks. As such, the models provide different
interpretations of behavior as task difficulty increases.

The issue of optimality is further considered by Pirrone et al.
(2014), who took an evolutionary perspective in their opinion
article. They argued that in most real-world decisions, each of
the alternatives offers some quantity of reward (e.g., deciding
between food items), whereas the dominant experimental
approach to date has been to reward a single alternative
only. Therefore, they suggest that most natural decisions are
value-based, necessitating a speed-value trade-off, optimized by
natural selection. They formalized this optimization problem and
argued that bounded integration models that optimize the SAT
can only account for value-based decisions if their parameter
values are assigned on a case-by-case basis, limiting their
generality.

The hypothesis and theory article by Standage et al.
(2014b) questioned the commonly held view that the bound is
implemented by the rate of decision-correlated neural activity at
the time of commitment to a choice, as well as the view that the
difference between this rate and a “baseline” rate controls the
SAT. Using a model derived from biophysical considerations,
they showed that these views may be inconsistent with widely-
held principles of cortical computation, which account for
the SAT. According to their hypothesis, the behavior of the
bound is well-approximated by an emergent property of cortical
dynamics, but not by the aforementioned difference in firing
rates.

The SAT has long been investigated as a behavioral
phenomenon, but studies addressing its neural basis are a recent
development. Standage et al. (2014a) reviewed hypotheses on the
neural basis of the SAT, considering three general mechanistic
categories: modulation of the encoding of evidence under speed
and accuracy emphasis, modulation of the integration of encoded
evidence, and modulation of the amount of integrated evidence
sufficient to make a choice. Thus, their review is structured by the
principles of bounded integration, but they focused on models
addressing the neural implementation of these principles, and on
the explanations offered by these models for a growing body of
neuroimaging and electrophysiological data. This convergence
of neural and behavioral data with models at different levels of
abstraction is exemplary of interdisciplinary neuroscience, and
suggests a productive future for the mechanistic study of decision
making, the SAT and cognition.

We believe this collection of articles provides a useful
reference for future SAT research, with review articles to
direct readers to relevant work in the literature, opinions and
hypotheses on the interpretation of topical methodologies
and data, and original research articles that make important
advances in the field. Moreover, we believe that bounded
integration has successfully provided a unifying framework
for the collection, supporting the systematic consideration
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of the SAT wunder different methodologies, at different
levels of abstraction, and from different perspectives.
A complete theory of decision making must explain

References

Goldfarb, S., Leonard, N. E., Simen, P., Caicedo-Nez, C. H., and Holmes, P. (2014).
A comparative study of drift diffusion and linear ballistic accumulator models
in a reward maximization perceptual choice task. Front. Neurosci. 8:148. doi:
10.3389/fnins.2014.00148

Heitz, R. P. (2014). The speed-accuracy tradeoff: history, physiology, methodology,
and behavior. Front. Neurosci. 8:150. doi: 10.3389/fnins.2014.00150

Ivanoff, J., Blagdon, R., Feener, S., McNeil, M., and Muir, P. H. (2014).
On the temporal dynamics of spatial stimulus-response transfer between
spatial incompatibility and simon tasks.  Front. Neurosci. 8:243. doi:
10.3389/fnins.2014.00243

Karsilar, H., Simen, P., Papadakis, S., and Balci, F. (2014). Speed accuracy trade-off
under response deadlines. Front. Neurosci. 8:248. doi: 10.3389/fnins.2014.00248

Khodadadi, A., Fakhari, P., and Busemeyer, J. R. (2014). Learning to maximize
reward rate: a model based on semi-markov decision processes. Front. Neurosci.
8:101. doi: 10.3389/fnins.2014.00101

Pirrone, A., Stafford, T., and Marshall, J. A. R. (2014). When natural selection
should optimize speed-accuracy trade-offs.  Front. Neurosci. 8:73. doi:
10.3389/fnins.2014.00073

Salinas, E., Scerra, V. E., Hauser, C. K., Costello, M. G., and Stanford, T. R.
(2014). Decoupling speed and accuracy in an urgent decision-making task
reveals multiple contributions to their trade-off. Front. Neurosci. 8:85. doi:
10.3389/fnins.2014.00085

the SAT. We hope this Research Topic makes a valued
contribution toward this fundamental goal of cognitive
neuroscience.

Standage, D., Blohm, G., and Dorris, M. C. (2014a). On the neural
implementation of the speed-accuracy trade-off. Front. Neurosci. 8:236. doi:
10.3389/fnins.2014.00236

Standage, D., Wang, D.-H., and Blohm, G. (2014b). Neural dynamics implement
a flexible decision bound with a fixed firing rate for choice: a model-based
hypothesis. Front. Neurosci. 8:318. doi: 10.3389/fnins.2014.00318

Stone, J. V. (2014). Using reaction times and binary responses to estimate
psychophysical performance: an information theoretic analysis.
Neurosci. 8:35. doi: 10.3389/fnins.2014.00035

Zhang, J., and Rowe, J. B. (2014). Dissociable mechanisms of speed-accuracy
tradeoff during visual perceptual learning are revealed by a hierarchical
drift-diffusion model. Front. Neurosci. 8:69. doi: 10.3389/fnins.2014.
00069

Front.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Standage, Wang, Heitz and Simen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org

April 2015 | Volume 9 | Article 139


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Toward a unified view of the speed-accuracy trade-off
	References


