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The neocortex is unique to mammals and its evolutionary origin is still highly debated.

The neocortex is generated by the dorsal pallium ventricular zone, a germinative domain

that in reptiles give rise to the dorsal cortex. Whether this latter allocortical structure

contains homologs of all neocortical cell types it is unclear. Recently we described a

population of DCX+/Tbr1+ cells that is specifically associated with the layer II of higher

order areas of both the neocortex and of the more evolutionary conserved piriform

cortex. In a reptile similar cells are present in the layer II of the olfactory cortex and

the DVR but not in the dorsal cortex. These data are consistent with the proposal that

the reptilian dorsal cortex is homologous only to the deep layers of the neocortex while

the upper layers are a mammalian innovation. Based on our observations we extended

these ideas by hypothesizing that this innovation was obtained by co-opting a lateral

and/or ventral pallium developmental program. Interestingly, an analysis in the Allen brain

atlas revealed a striking similarity in gene expression between neocortical layers II/III

and piriform cortex. We thus propose a model in which the early neocortical column

originated by the superposition of the lateral olfactory and dorsal cortex. This model is

consistent with the fossil record and may account not only for the topological position

of the neocortex, but also for its basic cytoarchitectural and hodological features. This

idea is also consistent with previous hypotheses that the peri-allocortex represents the

more ancient neocortical part. The great advances in deciphering the molecular logic

of the amniote pallium developmental programs will hopefully enable to directly test our

hypotheses in the next future.

Keywords: neocortex evolution, piriform cortex, pallium, upper layers, cell type homology, spatial patterning,

temporal patterning, doublecortin

Introduction

The Neocortex is a pallial structure that is divided in multiple sub-regions and is made by six
layers of distinct neuronal types. Despite more than a century of intense research and speculation,
the evolutionary origin of this brain region is still unclear (Reiner, 2000; Butler et al., 2011;
Aboitiz and Zamorano, 2013; Medina et al., 2013). Early work of Karten identified neuronal
types in the hyperpallium/dorsal cortex and dorsal ventricular ridge (DVR) of sauropsids that
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show patterns of connections similar to neurons of the
mammalian neocortex (Karten, 1969, 2013; Butler, 1994). In
particular the hyperpallium/dorsal cortex has been shown
to receive visual and somatosensory information from
lemno-thalamic nuclei and may thus be homologous to the
visual and somatosensory cortex of mammals, while the DVR
receive collo-thalamic auditory and visual projections and may
be homologous to regions receiving similar projections in the
temporal neocortex (Karten, 1969, 2013; Desan, 1984; Butler,
1994; Butler et al., 2011).

Nonetheless, subsequent work showed that during early
development pallial progenitors of all tetrapods are regionalized
into at least four conserved domains, referred as medial
(MP), dorsal (DP), lateral (LP), and ventral (VP) pallium,
that give rise to distinct radially migrating glutamatergic
neurons (Fernandez et al., 1998; Puelles et al., 2000; Brox
et al., 2004). The neocortex is generated by DP progenitors
that in sauropsids give rise only to the hyperpallium (in
birds) and the dorsal cortex (in reptiles; Figure 1A). By
contrast the DVR is generated by LP and VP progenitors that
in mammals give rise to claustro-amygdalar nuclei together

FIGURE 1 | Development and evolution of dorsal pallial derivatives

in amniotes. (A) Spatial patterning mechanisms subdivide the

embryonic pallial progenitors in at least four domains: Medial pallium

(MP, yellow), dorsal pallium (DP, pink), lateral pallium (LP, violet) and

ventral pallium (VP, cyan). The brain regions produced by each domain

are shown in a mammal (left) and a reptile (right) with the same color

code. (B) Schematic representation of the organization of the cellular

layers and main input and output projections in the neocortex (left) and

in the reptilian dorsal cortex (right). (C) Development of dorsal pallium

glutamatergic neurons in mammals and reptiles. In the neocortex the

same progenitor produces multiple cell types in an inside-out sequence.

In the reptilian dorsal cortex, the dorsal pallium progenitors produce a

reduced number of cells in an outside-in sequence. The migration of

immature neuroblasts is indicated by a dashed red arrows. Please note

that, along with our theory, in (B,C) we used the same color code for

the mammalian DL and reptilian dorsal cortex neurons. Nonetheless, it is

important to note that the precise correspondence between layer II and

III neurons of the dorsal cortex and layer V and VI of the neocortex is

not known. (D) Models of the evolution of the principal neurons of the

neocortex. Each color represent a set of gene modules specifying a

particular neuronal types in the modern neocortex (right). Three different

possibile pattern of expression of these gene modules in cells of the

dorsal cortex of the stem amniote are shown (left). Abbreviations: HIP,

hippocampus; MC, medial cortec; LC, lateral cortex; PC, piriform cortex.

with structurally and functionally conserved regions receiving
olfactory and pheromonal information (olfactory cortex and
cortical/medial amygdala respectively). These studies strongly
suggests that the neocortex is homologous, as a field, only to
the hyperpallium/dorsal cortex while the DVR is homologous
to the amygdala, that also receives auditory and collo-thalamic
visual projections, the claustrum and the entopeduncular nucleus
(Bruce and Neary, 1995; Striedter, 1997; Puelles et al., 2000;
Puelles, 2001; Butler and Molnár, 2002; Bruce, 2007; Medina
et al., 2013).

Organization of Dorsal Pallial Derivatives in
Mammals and Reptiles

It is generally accepted that in the reptilian ancestor of mammals
the medial, dorsal and lateral cortices were laminated but
were made only by three layers, an organization that is also
called allocortex (Figure 1B; Nieuwenhuys, 1994; Reiner, 2000;
Shepherd, 2011; Fournier et al., 2015). In mammals, this type of
cortex is still present in two structurally and functionally well
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conserved regions that border the neocortex: the hippocampus,
a MP derivative, and the piriform cortex, a LP derivative that
receive a direct input from the olfactory bulb. In the allocortex
the more superficial layer I is a plexiform layer where extrinsic
and intrinsic projections meet the apical dendrites of pyramidal
neurons whose cell bodies settle in layers II and III (Haberly,
1990; Ulinsky, 1990). In general, the cellular density is higher in
layer II than in layer III particularly in the piriform/lateral cortex
and the hippocampus. The neocortex shares with allocortex the
basic microcircuits, but it stands out for the higher number
of neurons and layers (Shepherd, 2011; Fournier et al., 2015).
In many respects the neocortex can be described as a double
allocortex, with two couples of pyramidal layers, namely upper
(II,III,IV; UL) and deeper (V,VI, DL), each below a plexiform
layer carrying extrinsic inputs, namely layer I and IV (Figure 1B;
Shepherd, 2011). In primary sensory areas the layer IV is
enriched in stellate cells, a glutamatergic cell type that lack
apical tufts and output projections and is specialized in receiving
thalamic inputs (Sanides, 1969; Jones, 1975). By contrast, most
of the glutamatergic neurons in the other layers possess an
apical dendrite directed to layer I and output connections
emerging at the opposite pole of the cell body (Figure 1B).
The UL neurons axons are mainly involved in cortico-cortical
connectivity and include homotopic and heterotopic callosal
projections to the contralateral hemisphere, while DL neurons
target various subcortical structures (Figure 1B; Shepherd, 2011;
Greig et al., 2013). To understand the evolution of the neocortex
we should thus first disclose the developmental mechanisms that
triggered the multiplication of cellular and plexiform layers. As
expected, comparative studies shows that in respect to reptiles,
the mammalian DP progenitors have an increased proliferation
(Nomura et al., 2013, 2014) that include the appearance of a well
defined layer of intermediate progenitor cells: the SVZ (Martínez-
Cerdeño et al., 2006; Abdel-Mannan et al., 2008; Cheung
et al., 2010). In mammals, this increase in cell proliferation is
accompanied by a distinct pattern of migration of neuroblasts
that passes older cells (n.b. in both piriform cortex and neocortex;
Bayer, 1986) rather than accumulating below them as in reptiles
(Goffinet et al., 1986; Figure 1C). Since cortical neurons are
generally considered to be already committed to a specific cell
type at their birth (Greig et al., 2013; Rouaux and Arlotta, 2013),
a major point to understand the emergence of the neocortex will
be to unravel the evolution of the developmental program set up
by dorsal pallium progenitors and regulating the production of
neocortical glutamatergic neurons.

Models of Transition from a Three to a Six
Layered Cortex

The study of the organization of genes underlying cell identity
suggests that genes sub-serving specific functions can be grouped
into modules whose expression is regulated by a limited number
of transcription factors also called “selector genes” (Arendt, 2008;
Achim and Arendt, 2014). In this model, during development
morphogens regulate patterning by inducing the expression of
the selector genes at specific times and place. Starting from

these considerations, three major mechanisms have been recently
proposed to underlie the evolution of new cell types from a
precursor cell in a given lineage: (1) Divergence of functions, in
which two sister cell types inherit the same gene modules and
gradually modify them with time, (2) Segregation of functions,
in which two sister cell types lose complementary parts of the
gene modules of the former precursor cells. (3) Co-option of
functions, in which the precursor cell co-opts the gene modules
of an unrelated cell type (Arendt, 2008; Achim and Arendt,
2014). It is to note that the term co-option generally refers to
the acquisition of new roles by pre-existing characters (True
and Carroll, 2002). In the specific case of the gene regulatory
networks controlling cell type specification, co-option may occur
for cis- and trans- acting transcriptional regulators at multiple
levels and can thus be involved in all the presented modes of
cell type evolution. Nonetheless, for the co-option of functions
hypothesis these mechanisms should act at the level of selector
genes, thus leading to the ectopic expression of the pre-existent
gene regulatory networks of complex developmental programs.
This latter possibility has been proposed to explain multiple
evolutionary innovations such as the evolution of novel sex
determining genes (Sutton et al., 2011; Takehana et al., 2014) or
the acquisition of a chondrogenic fate in the neural crest lineage
(Meulemans and Bronner-Fraser, 2007; Hall and Gillis, 2013).

The specification of neocortical neurons depends on spatial
patterning events delimiting the DP progenitors (Figure 1A;
see for review Puelles, 2011), followed by temporal patterning
mechanisms that lead these cells to sequentially produce the DL
(first) and UL (last) (Figure 1C; Angevine and Sidman, 1961;
Greig et al., 2013; Gao et al., 2014). When applying the above
mentioned concepts to the evolution of the neocortical neurons,
three main hypotheses can be drawn (Figure 1D): (1) Simple
Expansion: DP progenitors of the reptilian ancestors produced
homologous of both UL and DL neocortical neurons following
the same temporal patterning mechanisms as in the modern
neocortex. In this model the emergence of the neocortex was
driven by changes only in the proliferation of DP progenitors and
migration of their daughter cells. (2) Expansion and Segregation:
gene modules underlying specific functions of UL and DL
were present in a single precursor cell in the ancestral DP
derivatives and became segregated and subsequently refined in
distinct sister cell types. In this case the temporal patterning
of DP progenitors will be a mammalian innovation. (3) Spatial
to Temporal patterning switch: DP progenitors co-opted the
expression of genemodules specifying the neuronal types of other
pallial regions (i.e., MP, VP or LP), thus leading to the appearance
of new cell types in the DP derivatives. The temporal patterning
of neocortical progenitors may thus represent a patchwork of
formerly spatially segregated developmental programs. In this
case part of the neocortical cells may have a sister cell type in a
different pallial domain.

Some evidences against the first two hypotheses were first
presented by Ebner based on hodological considerations (Ebner,
1976). Indeed, reptilian dorsal cortex neurons have projections to
subcortical targets that resemble those of neocortical DL neurons
but lack the extensive network of intracortical connections,
including homotopic contralateral projections, that are typical
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of UL neurons (Ebner, 1976; Desan, 1984; Hoogland and
Vermeulen-Vanderzee, 1989). Thus, Ebner proposed that the
UL neurons may represent an evolutionary novelty. In the
early’90 Anton Reiner extended Ebner hypotheses by showing
that UL specific interneurons are lacking from the reptilian dorsal
cortex (Reiner, 1991, 1993). However, later studies showed that
interneurons are generated in the sub-pallium (Cobos et al., 2001;
Wichterle et al., 2001) and this makes the Reneir’s observations
only indirectly related to the DP progenitors developmental
program. In 2009 we described a specific population of neurons
of the layer II of the neocortex that according with Ebner and
Reiner ideas was absent from the dorsal cortex of LacertaMuralis,
a lizard. However, virtually identical cell types were observed
in the LP and VP derivatives of both lizard and mammals thus
supporting the spatial to temporal patterning switch hypothesis
(Luzzati et al., 2009). The interest about these cells comes from
the fact that (1) they express Tbr1, suggesting a pallial origin,
and (2) morphological and distributive features support that
they represent a specific neuronal population that is shared by
different pallial derivatives and tetrapod species. In the following
sections we will describe and discuss in detail our observations
in the context of more recent data that further support these
hypotheses.

Old Cells in New Layers: The Strange Case
of the DCX+ Cells in the Layer II of
Different Amniote Pallial Derivatives

Doublecortin (DCX) is amicrotubule associated protein involved
in cytoskeletal dynamics during migration and differentiation
of immature neurons (Francis et al., 1999; Gleeson et al., 1999;
Friocourt, 2003). Accordingly, in the adult brain the expression
of DCX is restricted to regions of ongoing neurogenesis (Nacher
et al., 2001; Brown et al., 2003; Couillard-Despres et al., 2005;
Luzzati et al., 2006; Balthazart and Ball, 2014). The only clear
exception to this rule is a population of neurons in the layer
II of the piriform cortex and neocortex (Gómez-Climent et al.,
2008; Luzzati et al., 2009) that are not adult generated but show
a strong and homogeneous DCX immunoreactivity that closely
resembles that of immature neurons. Layer II DCX+ cells occurs
in two main morphological subtypes: Type I cells have small cell
bodies and dendrites confined to layer II, while type II cells have
larger cell bodies and send one or two dendritic branches to layer
I (Luzzati et al., 2009). Electrophysiological analyses in DCX-GFP
mice piriform cortex revealed that type I cells resemble immature
neurons, while most type II cells shows mature features with
large Na+ currents andmultiple action potentials (Klempin et al.,
2011). In both piriform cortex and neocortex type I and II
DCX+ cells express Tbr1 suggesting that they are glutamatergic
neurons derived from pallial germinative zones (Englund et al.,
2005; Hevner et al., 2006; Luzzati et al., 2009). Interestingly the
clear predominance of subpial dendrites over basal dendrites
place type II cells within the population of atypical pyramidal
cells previously defined as “extraverted neurons” (Sanides and
Sanides, 1972). Since the lack of basal dendrites represent an
ancient feature in the evolution of pyramidal cells, extraverted

neurons in the neocortex were originally considered a conserved
cell type. Besides laboratory mice and rats (Nacher et al., 2001;
Luzzati et al., 2009), in which layer II DCX+ cells are scarce and
mostly restricted to the piriform and perirhinal cortices (Nacher
et al., 2001), in all other mammalian species analyzed so far such
as rabbits (Luzzati et al., 2009), guinea pigs (Xiong et al., 2008;
Luzzati et al., 2009), cats (Cai et al., 2009), dogs (De Nevi et al.,
2013), giant african mole rats (Olude et al., 2014), epaulatted fruit
bats (Gatome et al., 2010), reshusmacaques (Cai et al., 2009; Fung
et al., 2011), and humans (Cai et al., 2009), DCX+ cells in layer II
are abundant and widely distributed in both piriform cortex and
neocortex. A detailed analysis of the distribution of these cells
in rabbits and guinea pigs revealed that layer II DCX+ cells are
specifically associated to the network of brain regions connected
to the lateral entorinal cortex (LEC; Figure 2A; Luzzati et al.,
2009). These brain regions, including the rostro-lateral neocortex
and piriform cortex, receive information about local sensory
objects and have been implicated in non-spatial cognition. By
contrast caudo-medial neocortical areas connected to the Medial
EC (MEC) and processing information of both external and
internal stimuli involved in spatial cognition, are mostly negative
for DCX (for anatomical and functional descriptions of LEC
and MEC connections see Burwell and Amaral, 1998a,b; Jones
and Witter, 2007; Knierim et al., 2014). Within LEC connected
networks the DCX+ cells show a strong preferential distribution
in higher order areas such as posterior piriform cortex, secondary
sensory areas, insular, perirhinal cortex and prefrontal cortex
(Figure 2A). Altogether, the similarities in the morphology,
laminar position and preferential distribution in higher order
areas strongly suggests that DCX+ cells of the neocortex and
piriform cortex may represent a common cell type that is shared
by these two regions.

Notably, in the lizard L. Muralis we identified DCX+/Tbr1+
cells morphologically similar to those of mammals in the layer II
of the olfactory cortex and DVR, with a preferential distribution
in higher order areas, but not in the dorsal cortex (Figure 2B).
When compared to the DCX+/Tbr1+ cells in the neocortex, the
general distribution of these cells in the lizard was consistent with
the homologies proposed by Karten (Karten, 1969; Butler et al.,
2011). Indeed, the DVR has been proposed to be homologous
to temporal neocortical areas, such as auditory and secondary
somatosensory and visual cortices, that in mammals show high
numbers of DCX+/Tbr1+ cells. By contrast, the neocortical
regions proposed as homologous of the dorsal cortex, that
include primary somatosensory and visual cortices as well as
the posterior cingulate, retrosplenial, and postrhinal cortices,
are largely devoid of DCX+/Tbr1+ cells. Collectively, these
data strongly support that layer II DCX+/Tbr1+ cells represent
a conserved cell type in amniotes. In addition, although the
sauropsids homologs of mammalian MEC and LEC associated
circuits are still poorly defined (Rattenborg and Martinez-
Gonzalez, 2011; Allen and Fortin, 2013; Abellán et al., 2014), it is
tempting to speculate that non-newly generated DCX+/Tbr1+
cells may be involved in a conserved form of structural plasticity
selectively associated to higher order areas of non-spatial learning
and memory networks in amniotes. At the same time, our
data suggests that the presence of DCX+/Tbr1+ cells in
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FIGURE 2 | Distribution of DCX+/Tbr1+cells in the pallium of

mammals and a lizard. (A) The distribution of layer II DCX+/Tbr1+ cells

either newly generated (yellow) or non-newly generated (red) is shown in a

schematic view of mammalian allocortical and neocortical regions. The

neocortex is schematized according to Sanides in three concentric rings:

peri-allocortex, proisocortex, and isocortex. The isocortex contains the

primary sensory areas from which information flows through a hierarchichal

sequence of areas and reaches either the lateral (LEC) or medial enthorinal

cortex (MEC). Areas connected with LEC and MEC are shown in pink and

turquoise green respectively, feedforward (solid arrows) and feedback

(dashed arrow) pathways are also shown. (B) Schematic coronal sections

showing the distribution of DCX+/Tbr1+ cells in different pallial domains in

mammals (left) and lizard (right). Additional abbreviations: A1, primary

auditory cortex; AC, anterior cingulate cortex; DP, dorsal pallium; IL,

infralimbic cortex; Ins, insular cortex; pPC posterior piriform cortex; aPC;

anterior piriform cortex; PreL, prelimbic cortex; PreS, presubiculum; POR,

postrhinal cortex; Prh, perirhinal cortex; RSP, retrosplenial cortex; SUB,

subiculum. Redrawn from Luzzati et al. (2009).

DP derivatives may represent a mammalian innovation. This
supports the hypothesis of Reiner that the UL are an evolutionary
novelty, but in parallel introduces the possibility that this novelty
has been produced by re-using (or co-opting) pre-existing cell
types. In particular, we propose that in the transition from the
stem-amniote to mammals, DP progenitors instead of exiting
from the cell cycle after the production of the DL neurons
homologs, continued to proliferate by setting up a LP and/or
VP developmental program, giving rise to the UL of the NC.
Thus, the evolution of the neocortex could be attributed to a
spatial to temporal patterning switch involving DP and LP/VP
developmental programs. An interesting aspect of this model is

that it could reconcile the developmental data supporting the

field homology of the primary progenitors, with the striking
similarities existing between neurons of the neocortex and LP

and VP derivatives of sauropsids. Future studies in other reptilian
species will be required to understand if the distribution of
DCX+/Tbr1+ cells in L. Muralis represents the basal reptilian

condition or, as happen in mice, this species simply lack this
feature. An important point will be also to define where and when
these cells are generated in different tetrapod species. Indeed,
previous studies have shown that the VP and LP progenitors

give rise to neurons that tangentially migrate to the neocortex in

mice (Puelles, 2011; Teissier et al., 2012). Most of these VP/LP
derived cells have a transient existence in mice, but we cannot

exclude that in other mammalian species some of these cells may
persist for longer post-natal periods (Teissier et al., 2010, 2012).
Finally, molecular and functional analyses will be necessary to

understand if these cells in different amniote species and pallial

derivatives actually represent sister cell types. Nonetheless, as

we will discuss in the next paragraphs, beside this intriguing

cell population the hypothesis of the co-option of the LP/VP

developmental program is supported also by other anatomical
and developmental data.

Similarity in Gene Expression Between PC
and Neocortical Layers II/III and a
Hypothesis of Their Evolutionary
Relationships

According to our hypothesis, the UL neurons of the neocortex
may have sister cell types in other pallial regions. To gain
insight on this issue and to identify the best candidate regions
whose developmental program may have been co-opted in
the evolution of the UL, we performed an analysis in the in
situ hybridization database of the Mouse Allen Brain Atlas
(Lein et al., 2007). In this analysis we compared the lists
of the first 500 genes that were enriched relative to the
rest of the CNS (contrast structure, gray) in each of the
following regions: neocortical layers II/III, layer IV, layer V/VI,
piriform cortex, subiculum and cortical subplate (claustro-
amygdaloid complex, and endopiriform nucleus; Figure 3,
Supplementary data sheet 1A). Layer II/III is closely related
to layer IV, with 352 co-expressed genes, and relatively well
correlated with layer V/VI, with 250 co-expressed genes (Table 1,
Figure 3, Supplementary data sheet 1B, Supplementary Figure
1). Surprisingly, layers II/III cells also shared about 208 enriched
genes with the piriform cortex (42%; Table 1, Figures 3, 4,
Supplementary Figure 1). The layers V/VI were less related to
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FIGURE 3 | Comparison of gene expression in PC and NC.

Representative coronal sections from the Allen Brain Atlas showing

the expression of few representative genes selectively enriched in

the UL and PC (A–D), in DL and PC (E,F) in DL, UL and PC

(G) or only in DL (H). Please note that CUX2, was not present

in the list of genes enriched in PC relative to the rest of the

gray matter likely because of its relatively widespread expression in

the CNS.

the piriform cortex with only 143 co-expressed genes (29%;
Table 1, Figures 3, 4, Supplementary Figure 1). In addition
only 41 genes were exclusively enriched in piriform cortex and
layers V/VI but not in layers II/III (29% of PC and layer V/VI
common genes). By contrast 106 genes were specifically enriched
only in layer II/III and in piriform cortex but not in layer
V/VI (51% of PC and layer II/III common genes; Figures 3, 4,
Supplementary data sheet 1C). These striking similarities in the
gene expression profile raise the intriguing possibility that the
developmental program that provided the base for the evolution
of the neocortical layers II/III have been that of the olfactory
cortex.

This idea is not new and dates back to the beginning of

twentieth century. Indeed, early neuroanatomist proposed that a
primordium of the neocortex may be found in the superposition
of lateral and dorsal cortex, the so called superpositio lateralis
(Figure 5; Kappers and Theunissen, 1908; Kappers, 1909; De
Lange, 1911; Schepers, 1948). This superposition is observed only
in some species and its extension correlates with the development
of the olfactory system (Ulinsky, 1990). Given that most of
the increased encephalization of the first mammaliaformes was
due to a huge expansion of the olfactory bulbs and olfactory
cortex (Rowe et al., 2011), a substantial development of the
lateral superposition could have been present in these species and

TABLE 1 | Percentage of shared genes among the first 500 genes enriched

in each of the indicated pallial sub-regions.

Percentage of gene co-expression in different pallial regions

PC NC II/III NC IV NC V/VI C. Sub Subic.

PC 42 30 29 37 16

NC II/III 42 70 49 21 16

NC IV 30 70 51 13 11

NC V/VI 29 49 51 20 26

C. Sub 37 21 13 20 38

Subic 16 16 11 26 38

PC, Piriform cortex; NC, Neocortex; C. Sub, Cortical subplate; Subic., Subiculum.

preceded the emergence of the neocortex. In these superpositions
the medial edge of the lateral cortex is located on top of the lateral
edge of the dorsal cortex giving rise to a rudimentary six layered
arrangement (Figure 5A). Indeed, this region have a dense layer
II on top of a sparser layer III that are continuous with the
olfactory cortex and receive a direct projection from the olfactory
bulb (Minelli, 1967; Regidor, 1977; Desan, 1984; Martinez-Garcia
et al., 1991), it posses a parvo-cellular layer IV that receive
thalamic inputs (Bruce and Butler, 1984; Desan, 1984; Desfilis
et al., 2002) and two deep cellular layers (V and VI) that project to
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FIGURE 4 | Comparison of genes shared by piriform cortex and laiers

II/III or V/VI of the neocortex. The pie chart represents the 500 genes

enriched in the piriform cortex. Each sector indicate the number of genes

shared only with layers V/VI (violet), only with layer II/III (red) or with both layer

II/III and V/VI (green). The fraction of genes that are not enriched neither in layer

II/III nor in layer V/VI are in blue.

various subcortical targets (Minelli, 1967; Ebner, 1976; Regidor,
1977; Desan, 1984; Hoogland and Vermeulen-Vanderzee, 1989).
This layer arrangement is closely reminding that of the neocortex
and in particular of the lateral peri-allocortical regions (insular
and perirhinal cortices; Figure 2A) which receive olfactory
information, lacks layer IV and have a dense layer II that is
continuous with the priform cortex (Sanides, 1969; Sanides and
Sanides, 1972; Shipley and Geinisman, 1984; Haberly, 1990).
Previous authors also highlighted the presence of numerous
allocortical features in the peri-allocortical ring, and accordingly
proposed that it represent the more ancestral part of the
neocortex (Abbie, 1940, 1942; Sanides, 1969; Sanides and Sanides,
1972). The cytoarchitectural similarities between the lateral
superposition and the neocortex include also their relationships
with bordering regions. In particular, on the medial side the
deeper layers of the superposition are in continuity with the
non-superposed part of the dorsal cortex while DL of the
neocortex are in continuity with the subiculum. An homology
between the non-superposed part of the dorsal cortex and
the subiculum has been previously proposed (Hoogland and
Vermeulen-Vanderzee, 1989). Moreover, this latter region share
many features with the DL (Ishizuka, 2001) and accordingly
our analyses in the Allen Brain Atlas indicated that it has more
enriched genes in common with layer V/VI than layer II/III (26
and 16%, respectively, Table 1, Supplementary Figure 1).

Another interesting aspects of the hypothesis that the
neocortex derived from the superposition of lateral and dorsal
cortex, is that it may account for some hodological features
that the UL shares with the olfactory cortex but not with the
reptilian dorsal cortex. For instance, the olfactory cortex of

FIGURE 5 | Model for the origin of the neocortex from the

superposition of lateral and dorsal cortex. (A) Schematic view of the

putative organization of the dorso-lateral part of the telencephalon in an early

mammaliaform (pre-mammlian synapsid). In these animals the lateral cortex

(LC, violet) may have expanded over the dorsal cortex (DC, green), and at

some point some radial glial progenitor (dark cells) may have started to

produce both LC and DC cells. Note that since the internal anatomy of these

animals is unknown, this scheme was based on modern macrosmatic reptiles.

Radial glial cells of other brain regions are omitted for clarity. The proposed

homology with neocortical layers is indicated with roman nueral. (B) Tangential

expansion of the progenitors of the proto-neocortical column gave rise to the

establishement of the neocortex. Note that the more lateral part of the

neocortex maintains a direct olfactory input. Abbreviations: H.comm.,

hippocampal commissure; AC, Anterior commissure.

tetrapods possesses homotopic projections to the contralateral
hemisphere passing through the anterior commissure (Zeier and
Karten, 1973; Butler, 1976; Hoogland and Vermeulen-Vanderzee,
1995; Sassoè-Pognetto et al., 1995; Suárez et al., 2014). Inter-
hemispheric projections arising from UL neurons still decussate
exclusively through this commissure in monotreme and
marsupials, and this is generally thought to represent the basal
condition in mammals (Ashwell et al., 1996; Suárez et al., 2014).
Nonetheless, in sauropsids inter-hemispheric connections of DP
and MP derivatives decussate at the nearby pallial/hippocampal
commissure (Butler, 1976; Martinez-Garcia et al., 1990; Atoji
et al., 2002). Thus, our hypothesis may account for the strange
evolutionary history of the inter-hemispheric connections of the
mammalian DP derivatives that at first flipped their direction
and coursed a long lateral trip to decussate with fibers of the
olfactory cortex at the anterior commissure. Only in eutherian
mammals most, but not all, of the neocortical inter-hemispheric
connections turned medially again decussating at the corpus
callosum (Suárez et al., 2014). Another interesting similarity
between the connections of olfactory cortex and UL is that
they are both the source of feed-forward projections that flow
to a series of hierarchical areas progressively defining sensory
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objects and ultimately converging on the LEC (Felleman and Van
Essen, 1991; Haberly, 2001; Gilbert and Sigman, 2007; Wilson
and Sullivan, 2011). In summary, the idea that the six layered
neocortex originated from the superposition of lateral and dorsal
cortex is consistent with the fossil record and may account not
only for the topological position of the neocortex, but also for its
basic cytoarchitecthural and hodological features. Unfortunately
very little is known about the embryonic development of this
putative six-layered primordium in modern reptiles. Guirado
and Davila identified radial glial processes crossing both dorsal
and lateral cortex in the lateral superposition of the lizard
Podarcis Hispanica (Guirado and Dávila, 2002) and we made
similar observations in Golgi stains of Lacerta Sicula (Luzzati
unpublished observation). These authors raised the possibility
that an independent progenitor domain giving rise to neurons
of both dorsal and lateral cortex may actually exist in some
living reptiles. In contrast to this interpretation however, Ulinsky
reported that during development the layer II of the reptilian
dorsal and lateral cortex is a continuous stratum of cells that
is secondarily ruptured during differentiation (Ulinsky, 1990).
Starting from this latter observation, a possible scenario for the
evolution of the neocortex may be that in early mammaliaforms
the homologs of UL andDL cells organized in a proto-neocortical
column that was initially produced by spatially segregated
progenitors. At some point a spatial to temporal patterning
switch, together with the evolution of the inside-out neurogenic
gradient, led to the generation of the proto-neocortical module
from a single population of progenitors (Figure 5A). This crucial
event enabled the tangential expansion of this module providing
the basis for the establishment of the modern neocortex (Rakic,
1995; Lewitus et al., 2014; Figure 5B). According to the growth
rings hypothesis of Sanides, during this tangential expansion the
internal parts of the neocortical island progressively lost their
allocortical features with the addition of stellate cells in layer IV
and a reduction of cell density in layer II (Sanides, 1969; Sanides
and Sanides, 1972). An intriguing aspect of this model is that
it implies that the early neocortex worked as an higher order
association cortex and that primary sensory areas appeared only
subsequently. This latter idea has been also recently proposed
based on functional models of both mammalian and reptilian
allocortices (Fournier et al., 2015).

Several crucial questions remain regarding the emergence of
the inside out-gradient of neurogenesis, the appearance of layer
IV cells and the arrival of the collo-thalamic projections to the
dorsal pallial derivatives.

Genetic and Developmental Data
Supporting a Spatial to Temporal
Patterning Switch in the Evolution of the
Mammalian Neocortex

A hallmark of the evolution of the mammalian neocortex is
the emergence of a SVZ in the DP (Martínez-Cerdeño et al.,
2006; Cheung et al., 2010), and interestingly the intermediate
progenitors (IPc) that populate this germinative layer are mainly
involved in the generation of UL neurons (Tarabykin et al.,

2001; Martínez-Cerdeño et al., 2006; Kowalczyk et al., 2009).
Although, an SVZ is not always evident in sauropsids, studies
in turtle and chick showed that putative IP like cells are present
in late developmental phases of the LP and VP of turtle and
chick (Martínez-Cerdeño et al., 2006; Cheung et al., 2007).
The acquisition by DP progenitors of a character (the IPc)
that pre-existed in LP/VP progenitors is consistent with our
hypothesis. Nonetheless, the IPc step is a common feature in
stem cell systems and it has been described for multiple neuronal
progenitors populations in both vertebrate and invertebrate
brains (Brand and Livesey, 2011). Mammalian DP progenitors
may have independently increased the generation of IP to amplify
neuron production. Future studies defining the role of the SVZ
during pallial development will be necessary to understand the
role of this germinative layer in the emergence of the neocortex.
While deciphering the developmental program set up by pallial
progenitors is a fundamental issue, recent studies also tried to
extend previous inter-species comparisons of pallial neuronal
types with more modern molecular techniques. The comparison
of the chick and mouse transcriptomes of telencephalic regions
with either disputed or undisputed homology (Belgard et al.,
2013) revealed significant similarities for the hippocampus but
failed to identify specific relationships between any other pallial
region. The only exception was a weak correlation between
the neocortical layer IV and a thalamorecipient field of the
nidopallium (a VP derivative). Along with our hypothesis
for the evolution of layer II/III it would be interesting to
evaluate whether the appearance of stellate cells in layer IV
was due to the co-option of the developmental program of the
thalamo-recipient VP cells. Unfortunately the olfactory cortex
was not analyzed in this study, probably because it is highly
reduced in chick. These transcriptomes comparisons supported
the view that DP and VP derivatives underwent dramatic changes
in morphology and function during amniote evolution (Montiel
and Molnár, 2013). At the same time, although such analyses
can make a strong case for homology, negative results are more
difficult to interpret. Huge differences in the transcriptome do
not rule out the occurrence of homologous cell types that greatly
changed their relative proportions or mixed with novel cell
types. This further indicates the importance of defining the
evolutionary history of individual pallial cell types (the so called
cell type homology or deep-homology; Arendt, 2008; Shubin
et al., 2009) to understand the divergence of DP derivatives in
amniotes.

In this perspective, in the last years different authors have
analyzed the pattern of expression of the sauropsid orthologs
of genes expressed in specific neocortical layers (Nomura et al.,
2008, 2013; Dugas-Ford et al., 2012; Suzuki et al., 2012; Chen
et al., 2013; Suzuki and Hirata, 2014). The drawback of this
approach is that the few individual genes that have been analyzed
are expressed by multiple cell types not only in the neocortex
but also in other brain regions (Medina et al., 2013). Moreover,
the layer specificity of some of the markers of upper layer cells
have been disputed (Dugas-Ford et al., 2012). Nonetheless, from
these studies a general pattern emerged in which the orthologs
of DL markers tend to be expressed more medially than those of
the UL. These latter genes are mostly expressed in LP derivatives
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such as the mesopallium/pallial thickening or the olfactory cortex
(Dugas-Ford et al., 2012; Suzuki and Hirata, 2013; Nomura et al.,
2014). Since clonal analyses in chick indicate that pallial neurons
expressing the orthologs of DL and UL markers are produced
by spatially segregated progenitors (Suzuki et al., 2012), these
observations are consistent with the hypothesis that the evolution
of the mammalian neocortex involved a spatial to temporal
patterning switch (Dugas-Ford et al., 2012; Suzuki and Hirata,
2013; Nomura et al., 2014).

Surprisingly, early dorso-medial and dorso-lateral progenitors
of the chick pallium were able to sequentially produce cells
expressing DL and UL markers in vitro (Suzuki et al., 2012).
Caution should be made in the interpretation of these data, first
because the authors did not verified the purity of the explanted
regions and second because the expression of fewmarker is a very
weak evidence that chick and neocortical progenitors generates
the same cell types.

Nonetheless, these results introduce the intriguing possibility
that an intrinsic temporal patterning mechanism specifying
pallio-fugal, thalamo-recipient, and pallio-pallial neuronal types
was present in pallial progenitors of the common ancestor of
all amniotes or even vertebrates. This idea would be consistent
with the fact that temporal patterning of primary progenitors
is a major mechanism for generating neuronal diversity in
Drosophila (Li et al., 2013a,b; Eroglu et al., 2014). At some
point in vertebrate evolution, spatial patterning cues may
have differentially repressed specific parts of this program
along medio-lateral and anterior-posterior axes. The molecular
mechanism that led to the evolution of the six-layered neocortex
could thus be a de-repression of the ancestral developmental
program in DP progenitors or a subpopulation of them. A
similar idea has also been proposed by Luis Puelles to explain
the stratified birth dates of VP derived neurons migrating to the
neocortex (Puelles, 2011): “One wonders whether this implies a
normally repressed, cryptic 6-layer potency existing throughout
the pallium, which is simply de-repressed and thus allowed to
emerge at the neocortex.” Interestingly, the transcription factor
zbtb20 has been recently shown to play a general repressive
activity over the specification of neocortical cell types of both
UL and DL (Nielsen et al., 2014). In the mammalian pallium,
this transcription factor is expressed in MP, LP, and VP but not
DP regions and gain and loss of functions have been shown to

shift the neocortical limit, at least medially (Nielsen et al., 2007,
2014; Rosenthal et al., 2012). Detailed comparative analyses will
be necessary to understand if down-regulation of zbtb20 or other
transcriptional repressors in DP progenitors may have played a
role in the evolution of the neocortex.

In conclusion, our understanding of the genetic logic of cell
type specification in the neocortex and other pallial regions of
amniotes is constantly growing and this will likely enable to test
current theories of the evolution of the mammalian pallium.
These analyses would be greatly helped by the comparison of
the genetic fingerprint of more restricted cell populations and the
layer II DCX+/Tbr1+ cells represent an attractive candidate for
such analyses.
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Supplementary data sheet 1 | Gene expression comparisons between

different pallial regions of the mouse brain. (A) List of the first 500 genes

enriched in neocortical layer II/III, neocortical layer IV, neocortical layer V/VI,

piriform cortex, cortical subplate, and subiculum in respect to the rest of the gray
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Lists of genes selectively shared by Piriform cortex (PC) and neocortical layers

V/VI and by PC and neocortical layers II/III. For each gene a manually evaluated

estimate of the level of preferential labeling is indicated by crosses ranging from 0
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