'," frontiers
in Neuroscience

ORIGINAL RESEARCH
published: 20 May 2015
doi: 10.3389/fnins.2015.00180

OPEN ACCESS

Edited by:
Elisabetta Chicca,
University of Bielefeld, Germany

Reviewed by:

Johannes Schemmel,

University of Heidelberg, Germany
Michael Pfeiffer,

University of Zurich and ETH Zurich,
Switzerland

Francesco Tenore,

Johns Hopkins University Applied
Physics Laboratory, USA

*Correspondence:

Runchun M. Wang,

The MARCS Institute, University of
Western Sydney, Room 109, Building
XB, Kingswood Campus, Sydney,
NSW 2747, Australia
mark.wang@uws.edu.au

Specialty section:

This article was submitted to
Neuromorphic Engineering,
a section of the journal
Frontiers in Neuroscience

Received: 21 October 2014
Accepted: 06 May 2015
Published: 20 May 2015

Citation:

Wang RM, Hamilton TJ, Tapson JC
and van Schaik A (2015) A
neuromorphic implementation of
multiple spike-timing synaptic
plasticity rules for large-scale neural
networks. Front. Neurosci. 9:180.
doi: 10.3389/fnins.2015.00180

A neuromorphic implementation of
multiple spike-timing synaptic
plasticity rules for large-scale neural
networks

Runchun M. Wang *, Tara J. Hamilton, Jonathan C. Tapson and André van Schaik

The MARCS Institute, University of Western Sydney, Sydney, NSW, Australia

We present a neuromorphic implementation of multiple synaptic plasticity learning
rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing
Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well
as a mixed-signal implementation, both of which use a novel dynamic-assignment
time-multiplexing approach and support up to 226 (64M) synaptic plasticity elements.
Rather than implementing dedicated synapses for particular types of synaptic plasticity,
we implemented a more generic synaptic plasticity adaptor array that is separate from the
neurons in the neural network. Each adaptor performs synaptic plasticity according to the
arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted
or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This
strategy provides great flexibility for building complex large-scale neural networks, as a
neural network can be configured for multiple synaptic plasticity rules without changing its
structure. We validate the proposed neuromorphic implementations with measurement
results and illustrate that the circuits are capable of performing both STDP and STDDF.
We argue that it is practical to scale the work presented here up to 236 (64G) synaptic
adaptors on a current high-end FPGA platform.

Keywords: mixed-signal implementation, synaptic plasticity, STDP, STDDP, analog VLSI, time-multiplexing,
dynamic-assigning, neuromorphic engineering

Introduction

Plastic synapses, i.e., synapses that can adapt their gain according to one or more adaptation rules,
are extremely important in neural systems, as it is generally accepted that learning in the brain arises
from synaptic modifications. The Spike Timing Dependent Plasticity (STDP) algorithm (Gerstner
et al,, 1996; Magee, 1997; Markram et al., 1997; Bi and Poo, 1998), which is one of the adaptation
rules observed in biology, modulates the weight of a synapse based on the relative timing between
the pre-synaptic spike and the post-synaptic spike. Besides weight adaptation, some observations
suggest that the propagation delays of neural spikes, as they are transmitted from one neuron to
another, may be adaptive (Stanford, 1987). Axonal delays are an important feature that seems
to play a key role in the formation of neuronal groups and memory (Izhikevich, 2006). In our
previous work (Wang et al., 2011b, 2012), a delay adaptation algorithm, Spike Timing Dependent
Delay Plasticity (STDDP), inspired by STDP was developed to fine-tune delays that had been
programmed into the network. We recently showed that the time delays of neural spike propagation

Frontiers in Neuroscience | www.frontiersin.org 1

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00180
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:mark.wang@uws.edu.au
http://dx.doi.org/10.3389/fnins.2015.00180
http://journal.frontiersin.org/article/10.3389/fnins.2015.00180/abstract
http://community.frontiersin.org/people/u/71414
http://community.frontiersin.org/people/u/21622
http://community.frontiersin.org/people/u/784
http://community.frontiersin.org/people/u/12768

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

in the rat somatosensory cortex can be modified by
suprathreshold synaptic processes such as STDP (Buskila
et al., 2013). This suggests that it is likely that synaptic weights
and the propagation delays are adapted simultaneously.

The main goal of this work is to develop a design framework
that is capable of implementing neural networks with maximum
size, using simplified biological models. To allow for future
implementations that interface with the real world, these neural
networks should be running in real time. While detailed
simulations of small networks of neurons are one way of studying
neural systems, such small networks are not able to capture all
the complexity and dynamics of a large scale neural network with
non-linear properties, such as a model of neocortex, as pointed
out by Johansson and Lansner (2007). In the work reported
here, we have therefore focussed on attaining maximum network
size.

As synaptic plasticity has not yet been fully characterized
and models of synaptic plasticity remain in flux (Brenner
and Sejnowski, 2011; Sejnowski, 2012), dedicated hardware
implementations that have been hardwired to one particular type
of plasticity rule will not be able to adapt to likely future changes
in plasticity models. Thus, the design framework we present here
will be capable of including various substantial neural networks,
each of which may be designed to solve a particular task.

In this paper, we will focus on exploring hardware friendly
implementations rather than comparing our learning rules
with the vast, well established complex algorithms used in
computational neuroscience. As a result of our hardware focus,
mathematical analysis of the long-term behavior of the plasticity
rules in benchmark networks and quantifying the effects of our
learning rules on the synaptic weight, which are commonly used
in computational modeling papers, are out of the scope of this
paper and will therefore not be addressed.

Simulating neural networks on computers has been successful
in informing the computational neuroscience community on
promising learning strategies, network configurations and neural
models for many decades. This approach, however, does not scale
very well, slowing down considerably for large networks with
large numbers of variables. For instance, the Blue Gene rack, a
two-million-dollar, 2048-processor supercomputer, takes 1 h and
20 min to simulate 1s of neural activity in 8 million integrate-
and-fire neurons (Izhikevich, 2003) connected by 4 billion static
synapses (Wittie and Memelli, 2010). For smaller scale networks,
Graphic Processing Units (GPUs) can perform certain types of
simulations tens of times faster than a PC (Shi et al., 2015). GPUs
still perform numeric simulations, however, and, depending on
the complexity of the network, it can take hours to simulate 1s
of activity in a tiny piece of cortex (Izhikevich and Edelman,
2008). Along with general hardware solutions, there have been
a number of more dedicated hardware solutions (Pfeil et al.,
2012, 2013; Painkras et al., 2013). A good example of a dedicated
solution that implements numeric simulation of neurons is the
SpiNNaker project (Galluppi et al., 2012). In SpiNNaker, ARM
processors run software neuron models. Their most recent work
shows that the SpiNNaker cores are capable of implementing
96,000 synapses (7500 synapses per core) for STDP in real time
(Galluppi et al., 2014).

An alternative approach is to use the analog VLSI (aVLSI)
circuits, which avoid any need to discretise differential equations
of neuronal dynamics. These implementations will also add
stochasticity to the system through electronic noise and device
mismatch, resulting in more realistic simulations of biological
neural networks. The basic STDP learning rule, which is a paired
pulse protocol (Gerstner et al., 1996), has been successfully
implemented using aVLSI circuits (Bofill-i-petit and Murray,
2004; Indiveri et al., 2006; Hifliger, 2007; Koickal et al., 2007).
More variants of the STDP algorithm have been proposed by
Brader et al. (2007a) and Graupner and Brunel (2012). These
algorithms capture more of the synaptic dynamics but still follow
the principle that the modification of the synaptic weight depends
on the relative timing of individual pre- and post-synaptic spikes.
Many aVLSI implementations of these algorithms have been
proposed (Chicca et al., 2003; Mitra et al., 2009; Giulioni et al.,
2012). Similarly, aVLSI circuits have also been used to implement
the STDDP learning rule (Wang et al., 2011a,b, 2012, 2013a).
This aVLSI approach is useful for studying the dynamics of small
and densely interconnected networks, but less so for the study of
large and sparsely connected networks, such as complex models
of various areas of cortex. The aVLSI implementations all used
dedicated synapses for a specific type of synaptic plasticity and
the number of plastic synapses integrated on single chip is usually
fewer than tens of thousands. This significantly limits the size of
the network these approaches can implement.

We chose to implement a synaptic plasticity adaptor array
that is separate from the neurons (see Figure 1). In this scheme,
the address of the pre-synaptic spike from the pre-synaptic
neuron will have already been remapped to the address of the
post-synaptic neuron by the router shown in Figurel. For
each synapse, which remains part of the neuron, a synaptic
adaptor will be connected to it when it needs to apply a certain
synaptic plasticity rule. The synaptic adaptor will carry out the
weight/delay adaptation by updating weight/delay values that are
stored in digital memory. For each incoming pre-synaptic spike,
the adaptor will send a weighted/delayed pre-synaptic spike to
the post-synaptic neuron in the neuron array.

This strategy provides great flexibility, as a hardware neural
network can be configured to perform multiple synaptic plasticity
rules without needing to change its own structure, simply
by connecting the synapses to the appropriate modules in
the synaptic plasticity adaptor array. This structure was first
proposed by Vogelstein and his colleagues in the IFAT project
(Vogelstein et al, 2007). However, they didn’t implement
synaptic plasticity in that work although they did discuss
the implementation of STDP with this structure. It seems
that this flexibility will generate a communication overhead.
The communication between neurons and adaptors has the
same overhead as the communication between neurons and
other neurons in a network without a separate adaptor array.
Thus, the additional overhead stems from the communication
from the adaptor array to each of the synapses. This will
be discussed in more detail in the next section. The major
disadvantage of our approach is that it is incapable of modeling
the ion channels in the biological synapses. Compared to the
aVLSI approach, our approach is less useful for studying the

Frontiers in Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

Synaptic plasticity adaptor array

. '~

synaptic adaptor

Pre . Weighted/dehyedEﬂ_,
~ 1 synaptic adaptor
Weighted/delayed Pre .-_)

Neuron array

FIGURE 1 | The synaptic plasticity adaptor array that is separate
from the neurons. For each synapse, which remains part of the
neuron, a synaptic adaptor will be connected to it when it needs to
apply a certain synaptic plasticity rule. The synaptic adaptor will carry

s i
' —>» soma Axon
%
|
: Weighted/delayed Pr
.P_n., synaptic adaptor B Pre)-..)
- R ——— Neuron[0]
t Router
Pre {""Adaptors for }Weighted/delayed Pre Pre
| —d Neuron[1]
Neuron|1]
t Post ;
'
i
i
!
Pre [Adaptors for | Weighted/delaycd Pre N < Pre
"1 Neuron|N] " euron|N]
é, Post ¢

out the weight/delay adaptation by updating weight/delay values. For
each incoming pre-synaptic spike, the adaptor will send a
weighted/delayed pre-synaptic spike to the post-synaptic neuron in the
neuron array.

dynamics of the networks that require high degrees of biological
realism. Furthermore, our approach is less power efficient
compared to the aVLSI implementations. This is because our
implementation has to employ configurable but power hungry
devices, such as FPGAs/MCUs, to achieve its flexibility. Analog
VLSI implementations, in contrast, especially those operating
in weak inversion (Liu et al., 2002), are capable of achieving a
significantly low power consumption.

We have previously presented a compact reconfigurable
mixed-signal implementation of a synaptic plasticity adaptor that
is capable of performing both STDP and STDDP (Wang et al.,
2014a). Here, we present its follow-up work that uses a novel
approach to scale up the numbers of synaptic plasticity adaptors
up by 128 (27) times more without increasing the hardware cost
significantly. While the design of the router and the neuron arrays
are out of the scope of this paper and will not be presented.

Materials and Methods

Learning Rules

Spike Timing Dependent Plasticity

The STDP algorithm modulates the weight of a synapse based
on the relative timing of the pre- and post-synaptic spikes. The
weight of a synapse will be increased if a pre-synaptic spike
arrives several milliseconds before the post-synaptic spike fires.

Conversely, the weight will be decreased in the case that the
post-synaptic spike fires earlier than the arrival of a pre-synaptic
spike by several milliseconds. The amount and direction of
modification of the weight are determined by the time between
the arrival of the pre- and post-synaptic spike.

To obtain this time difference, we need to know when the
pre- and post-synaptic spike arrives. This is implemented by
introducing a time window generator, which is composed of a
4-bit counter, it will be reset by either spike and increased by
one bit at each time step, e.g., 1 ms until it reaches its maximum
value 0 x F. The time at which the alternative spike arrives is
represented by the value of the counter. We also define that the
time window is “active” before it reaches its maximum value. As
we assume that the adaption will not be carried out if the pre-
and post- synaptic spikes arrive simultaneously, only one time
window generator will be needed.

In the original STDP learning rule (Gerstner et al., 1996), the
amount of synaptic modification is summarized by the following
equations:

At exp (At/ty), if At <0

—A—exp (AtjT_), if At >0 (1)

|

where Aw is the modification of the synaptic weight, At
is the time difference between the arrival time of the pre-

Frontiers in Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

A+

A*+ At

.’_1

-A°+ At

-A-

FIGURE 2 | The STDP modification function. At is the time difference
between the arrival time of the pre- and post-synaptic spike. The blue
line represents synaptic modification Aw, which is linearly proportional At. The
red line represents the synaptic modification Aw, which is a fixed step. The
dashed line represents the range of pre-to-post-synaptic interspike intervals
over which synaptic modification is performed.

and post-synaptic spike. The maximum amounts of synaptic
modification Aw are determined by two positive parameters:
AT and A™. The ranges of pre-to-post-synaptic interspike
intervals over which synaptic modifications are performed
are determined by the parameters t; and t_. The authors
in Song et al. (2000) concluded that this function provides
a reasonable approximation of the dependence of synaptic
modification on spike timing observed experimentally. However,
it is a computationally intensive function since it requires
exponentiation and division operations, both of which would
occupy a large silicon area.

To reduce the required silicon area, in our system, we have
implemented two simplified modification rules. The first one is to
change the weight proportionally to the calculated time difference
(see the blue line in Figure 2) and is summarized by the following
equations:

Aw = { A+_+ At, if.Tacm,e =land At < 0 2)
—A~ + At, if Tactive =1 and At > 0

where Aw is the modification of the synaptic weight, At is the
time difference between the arrival time of the pre- and post-
synaptic spike. Tgcrive is @ Boolean value that indicates the time
window generator is active (see the dashed line in Figure 2). In
this system, the synaptic weight is an unsigned integer, which
ranges from 0 to 15. AT and A~ are both set to 16 here. The
second one is to change the value of the weight by a fixed value
(see the red line in Figure 2) and is summarized by the following
equations:

+ step, if Tactive = 1 and At< 0

— step, if Tactive = 1and At > 0 (3)

|

where step is the fixed value and is set to 1 here. No weight
modification will be performed if the pre- and post-synaptic

A At At
axonal axonal % axonal |
delay delay delay time
B
At At
axonal - axonal axonal f{
delay delay delay time

FIGURE 3 | lllustration of Delay adaptation. (A) Delay increment; (B) Delay
decrement. The axonal delay presents the delay between the firing time of the
pre-synaptic neuron (the green one) and arrival time of the pre-synaptic spike
(the red one) at the post-synaptic neuron. At represents the time difference
between the pre- and post-synaptic spike (the blue spike) to and from the
post-synaptic neuron.

spikes arrive simultaneously. The efficacy of these two simplified
learning rules will be presented in Section Performance of STDP.

Spike Timing Dependent Delay Plasticity

Two examples of the adaptation of axonal delays are shown in
Figure 3, an increment of the delay (Figure 3A) and a decrement
of the delay (Figure 3B). After the pre-synaptic neuron fires
there is an axonal delay before the delayed pre-synaptic spike
is sent to the post-synaptic neuron. If the post-synaptic spike,
which is from the post-synaptic neuron, is not simultaneous
with the delayed pre-synaptic spike, we may adapt the axonal
delay by increasing or decreasing it by a small amount. This
procedure is repeated until the delayed pre-synaptic spike occurs
simultaneously with the post-synaptic spike.

Since this learning rule also needs to obtain the time difference
between the pre- and post-synaptic spikes, we will use the same
time window generator as described above, to generate the axonal
delay. In this case, however, the time window generator will be
started by the pre-synaptic spike (the green spike in Figure 3).
Moreover, the duration of the generated time window will be
modulated according to the axonal delay. The modification of
the axonal delay will only be performed by the post-synaptic
spike: when the post-synaptic spike arrives, if the time window
is active, then there is a decrease the axonal delay and vice versa.
The modification of the axonal delay Ad is summarized by the
following equations:

- — step, lf Tactive =1
Ad = { + step, lf Tactive =0 “

where step is a fixed value and is set to 1 here. Modifying the
axonal delay by a single step is one of the three strategies, which
were proposed and proved to be functional in our previous
work (Wang et al,, 2013b). No delay modification will be
performed if the delayed pre-synaptic spike and post-synaptic
arrive simultaneously. In this system, the axonal delay is also an
unsigned integer, which ranges from 0 to 15.

Design Choice

To implement multiple synaptic plasticity rules for large scale
spiking neural networks, the design choice we made were based
on the following principles:

Frontiers in Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

Time-multiplexing

In digital implementations of spiking neural networks, a single
physical neuron can be time-multiplexed to simulate many
virtual neurons, since digital hardware neurons can operate
much faster than biological neurons. Each virtual neuron only
needs to be updated every millisecond or so, as a millisecond
time resolution is generally acceptable for neural simulations.
Digital implementations of neurons using this time-multiplexing
approach have been described in Cassidy and Andreou (2008);
Cassidy et al. (2011); Wang et al. (2013b, 2014c). In the
implementation presented here, we are time-multiplexing both
the synaptic adaptors and the neurons.

Dynamic-assignment

It is not necessary to implement all neurons physically on silicon
as based on the physiological metabolic cost of neural activity, it
has been concluded that fewer than 1% of neurons are active in
the brain at any moment (Lennie, 2003). A larger address space
can be mapped onto a smaller number of physical components
through dynamically assigning these components. Based on this
principle, we have presented a dynamically-assigned digital and
analog neuron array in Wang et al. (2013b) and Wang et al.
(2014d), respectively. In these two systems, 4096 (4 k) neurons
were achieved with only tens of neurons implemented physically
on silicon. Here we also use this approach for both the neurons
and the synaptic adaptors.

Mixed-signal

This implementation style can combine some of the
advantages of both analog and digital implementations.
Analog implementations can realize biological behaviors
of neurons in a very efficient manner, whereas digital
implementations can provide the re-configurability needed
for rapid prototyping of spiking neural networks. As a result,
mixed-signal implementations offer an attractive solution
for implementing neural networks and many designs have
been proposed for such systems (Goldberg et al, 2001; Gao
and Hammerstrom, 2007; Mirhassani et al., 2007; Vogelstein
et al., 2007; Harkin et al., 2008, 2009; Schemmel et al., 2008;
Saighi et al,, 2010; Yu and Cauwenberghs, 2010; Zaveri and
Hammerstrom, 2011; Minkovich et al., 2012).

Standardization

To enable multiplexing building blocks, such as neurons,
synapses, and axons, in a neuromorphic system, these circuits
must be designed as standardized building blocks with a
standard protocol for communication with programmable
devices. Specifically for use in time-multiplexed neural systems,
we have developed a synchronous Address Event Representation
(AER) protocol, which uses a collision-free serial processing
scheme with a single active signal and an address (Wang et al,,
2013b). This synchronous scheme eliminates the overhead of an
arbiter in the standard AER protocol.

For the maximum utilization of a fixed sized aVLSI chip, it
is best to reduce the on-chip routing as much as possible as the
routing can be carried out oft-chip by FPGAs or microprocessors
with more flexibility and extensibility. As the on-chip topology of

the aVLSI circuits is generally fixed after fabrication, it is better
to implement the whole system in an FPGA for prototyping and
optimization before fabricating the aVLSI chips.

Pulse width Modulation

For the systems that are sensitive to high communications
overheads, e.g., aVLSI chips with limited number of pads, we
adopted a pulse width modulation scheme, to minimize the
communication bandwidth. In this scheme the durations of the
spikes are modulated according to the synaptic weights, and the
synapses in the neuron array are sensitive to the durations of the
spikes (e.g., Wang et al., 2014b). It should be noted, however,
that we could easily reconfigure the system to send out synaptic
weights directly to the neurons in systems that are not sensitive
to high communications overheads, e.g., FPGA designs.

Versatility

To efficiently implement synaptic plasticity in large-scale spiking
neural networks with different learning rules, the building block
should be capable of being configured for multiple synaptic
plasticity rules, such as STDP and STDDP. When the synaptic
plasticity adaptor is configured as the STDP adaptor, it performs
STDP by receiving pre- and post-synaptic spikes from the pre-
and post-synaptic neuron respectively. Its output, a weighted pre-
synaptic spike generated using pulse width modulation, is sent to
the synapse of the post-synaptic neuron for generating a post-
synaptic current (PSC). When the synaptic plasticity adaptor is
configured as an STDDP adaptor, it receives the same signals, but
its output is a pre-synaptic spike that has been delayed according
to the stored delay value for this neuron-to-neuron connection.

Architecture
Figure 4 shows the topology of the proposed mixed-signal
synaptic plasticity adaptor array. It consists of an adaptor array
on an FPGA and a time window generator array, which could
be either a fully digital implementation on the same FPGA, or
an analog implementation on a custom designed aVLSI chip,
or both, as shown. All blocks use time multiplexing and are
dynamically assigned using an FPGA to control the assignment.
Based on the physiological metabolic cost of neural activity,
it has been concluded that fewer than 1% of neurons are active
in the brain at any moment (Lennie, 2003). The anatomical
studies of neocortex presented in Scannell et al. (1995) showed
that cortical neurons are not randomly wired together. Instead,
cortical neurons are typically organized into local clusters
called minicolumns, which are then grouped into modules
called hypercolumns (Hubel and Wiesel, 1974; Amirikian and
Georgopoulos, 2003). The connections of the minicolumns
are highly localized so that connectivity between two nearby
(less than 25-50 wm apart) pyramidal neurons is high and the
connectivity between two neurons drops sharply with distance
(Holmgren et al, 2003). Based on the experimental data in
Tsunoda et al. (2001) and Johansson and Lansner (2007)
concluded that at most a few percent of the hypercolumns and
hence only about 0.01% of the minicolumns and neurons are active
in a functional sense (integrating and firing) at any moment in
the cortex. They also concluded that only 0.01% of the synapses

Frontiers in Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

PRE PRE
FIFO aligner
POST POST
FIFO aligner

‘ Local
cache

- v N

Mixed-signal synaptic plasticity adaptor array

Dynamically-assigned adaptor array

Global
Counter

y Analogue TW generator array

TM STDP/STDDP

~. TW_generator{0]

FIGURE 4 | Topology of the mixed-signal synaptic plasticity
module array. The controller receives pre- and post-synaptic spikes
from the neuron array and assigns them to the corresponding T™M
adaptors according to their addresses. The global counter processes
each TM adaptor sequentially. We use the Master RAM to store all the

adaptor array
Global D / ~
Counter \
<. Master RAM
\ Controller Yy) ~. TW_generator[8191]
N

weight/delay values, while the TM STDP/STDDP adaptor array has a
Local cache that stores the values of the DA adaptors that are being
processed. The time window generator array generates the time
windows that will be used by the TM adaptors for performing the
learning rules.

in our brains are active (transmitting signals) on average at any
moment. Hence, in principle, one hardware synapse could be
dynamically reassigned to 10* virtual synapses on average. Such
a hardware synapse will be referred to as a physical synapse and
the synapse to be simulated will be referred to as a dynamically-
assigned (DA) synapse. If a DA synapse cannot be simulated in a
single time step, the physical synapse needs to be assigned to that
DA synapse for a longer time and the number of DA synapses a
single physical synapse can simulate will go down proportionally.

On an FPGA running at 200 MHz, we can time-multiplex a
single physical synapse to simulate 1 ms/5ns = 200,000 time-
multiplexed (TM) synapses, each one updated every millisecond.
Therefore, theoretically, a TM synapse array with 200,000 TM
synapses can be dynamically assigned for 200,000 x 10* = 2 x
10° DA synapses, if these synapses can be simulated in a single 5
ns clock cycle and if only 0.01% of the synapses are active at any
time step.

Since we chose to implement a synaptic plasticity adaptor
array that is separate from the neurons, we will apply these
two approaches to the adaptors. To be able to deal with higher
synaptic activity rates, and because powers of two are preferable
to optimize memory use for storing variables, such as weights
and delays, we chose to dynamically assign one TM adaptor for
8192 (8 k) DA adaptors. The maximum active rate of the synapses
that this system can support is therefore 1/8 k & 0.012%. The TM
adaptor array itself is configured to simulate 8 k TM adaptors,
allowing it to support 8k x 8k = 64 M synapses. Each TM

adaptor can use up to 25 clock cycles to complete its processing to
maintain an update rate of 1 kHz (the corresponding time step is
about 1 ms). The time window generator array is also configured
to have 8 k identical time window generators, each time window
being assigned to one TM adaptor.

The dynamically-assigned adaptor array consists of three sub-
blocks: a controller, a TM STDP/STDDP adaptor array and
a Master RAM. A single physically implemented dynamically-
assigned adaptor array is capable of representing up to 64M DA
adaptors, thus the hardware cost of the DA adaptors is negligible.
The physical constraint for this approach is data storage. On-
chip SRAM (on an FPGA) will be highly limited in size (generally
less than tens of MBs), while the use of oft-chip memory will be
limited by the communications bandwidth. It is difficult, but not
impossible, to use off-chip memory with the time-multiplexing
approach, as new values need to be available from memory every
time slot to provide real-time simulation.

Since we are aiming for the maximum network size, we need to
ensure that the system is able to utilize off-chip memory. Inspired
by the cache structure used in state-of-the-art CPUs, we use the
Master RAM to store all the weight/delay values, while the TM
adaptor array has a Local cache that stores the values of the
DA adaptors that are being processed. The accessing (read/write)
of the Master RAM will only be performed when needed. This
means that new values are no longer required to be available
from memory every time slot. Hence this cache structure greatly
reduces the bandwidth requirement to use external memory.

Frontiers in Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

We will present the details of this cache structure following a
presentation on the management the incoming spikes. It should
be noted, however, that using off-chip memory requires flow
control for the memory interface, which results in a more
complex system architecture. Thus, for the work reported here,
we use only on-chip memory, thus simplifying the system
architecture. We will discuss the usage of off-chip memory in
more detail in Section Discussion.

The controller receives pre- and post-synaptic spikes from
the neuron array (see Figure4) and assigns them to the
corresponding TM adaptors according to their addresses. In our
previous work (Wang et al., 2013b, 2014d) that also implemented
the dynamic-assignment algorithm, the controller needs to check
whether there is already a neuron assigned to the incoming spike
or not. This method has a high usage of slice LUTs, which is
the bottleneck for large-scale FPGA designs. This is because that
method requires an address register array and a timer array,
both of which are running in parallel and hence have to be
implemented with slice LUTs.

To avoid this problem, we chose instead to use a direct
mapping method that assigns one fixed TM adaptor as the target
adaptor for the incoming spike irrespective of whether the TM
adaptor has been assigned or not. The incoming spikes AER
address is a 26-bit address (along with a single active line). We
only store the most significant 13 bits out of 26 bits into a DA
address RAM (a dual port RAM with a size of 8k x 13 bits),
while the other 13 bits determine where, i.e., in which position
of the DA address RAM, the 13 bits will be stored.

To decouple writing new events (pre- and post-synaptic
spikes) from reading out from current events, we use a FIFO

and an aligner (a dual port RAM with a size of 8k x 1 bit that
corresponds to 8k TM adaptors). For pre- and post-synaptic
spikes, the size of the FIFO is 16 x 26 bit and 16 x 13 bit
respectively. The work presented in Cassidy et al. (2011) used two
banks of dual port RAM to implement a ping-pong buffer. This
requires much more RAM than our solution.

Figure 5 shows the timing diagram for the controller for one
time slot. Assuming the PRE_FIFO is empty at TO, when a new
pre-synaptic spike arrives (its active line is high) at T2, its 26-
bit AER address will be written into PRE_FIFO. The controller
will then read the PRE_FIFO by asserting fifo_rd at T3 (since the
PRE_FIFO is not empty anymore) and read data (fifo_rddata)
will be ready at T4 (one clock cycle latency). To indicate that a
spike has arrived (for that TM adaptor), at T4, the controller will
write 0 x 1 into the PRE_aligner to the position determined by
the least significant 13 bits of the fifo_rddata.

At T4, the controller will also use the least significant 13 bits
of fifo_rddata to retrieve the stored address (from the DA address
RAM), which will be ready at T6 (two clock cycles latency). If
this retrieved address does not match the most significant 13 bits
of the delayed fifo_rddata (the red one), this indicates that the
target DA adaptor is not the one that has been assigned before.
Hence the value (in the Local cache) of the TM adaptor needs to
be updated with the value of the target DA adaptor. Therefore, at
Té6, the controller will read the Master RAM by asserting a read
enable signal (M_rden) with a read address M_rdaddr, which is
the fifo_rddata signal delayed. For the same reason, at T6, the
controller will also update the DA address RAM with the address
of this newly arrived pre-synaptic spike: the most significant
13 bits of the delayed fifo_rddata (the least significant 13 bits

Clock index

4 s (e 7 [T8 19 TiofTufTief

T24

mXﬂXnXB
[

pre-synaptic spike

fifo_rd [

fifo_rddata

DA _addr

M_rden |

M_rdaddr

M _rddata

L_wren

L

Pre aligned

FIGURE 5 | The controller’s timing diagram of one time slot. A
pre-synaptic spike arrives at the controller at T2 and it will be written into the
PRE_FIFO. The controller will read the PRE_FIFO at T3 and the read data
(fifo_rddata) will be ready at T4. To indicate that a spike has arrived (for that
TM adaptor), at T4, controller will write O x 1 into the PRE_aligner to the
position determined by the least significant 13 bits of the fifo_rddata. The

controller will also use the least significant 13 bits of fifo_rddata to retrieve the
stored address (from the DA address RAM), which will be ready at T6. At T6,
the controller will read the Master RAM by asserting a read enable signal
(M_rden) with a read address M_rdaddr, which is the fifo_rddata signal
delayed (the red one). At T12, the output from the Master RAM M_rddata will
be ready and the Local cache will be updated by asserting L_wren.

Frontiers in Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

determines the position to write). The output from the Master
RAM M_rddata will be ready 6 clock cycles later (we will explain
why this latency is needed Section TM STDP Adaptor Array) and
the Local cache will be updated by asserting L_wren.

To read out the aligned pre-synaptic spike (Pre_aligned), at
each time slot, the controller will read out the TM adaptor of
that time slot, from the PRE_aligner at T1. The Pre_aligned
will be ready at T3 where the corresponding TM adaptor will
acknowledge it, after which it will be cleared. To avoid the
collision that can happen when the PRE_FIFO and the controller
both try to write the PRE_aligner (at the same location, although
this case will not happen frequently) at T3, we set it so that
the PRE_FIFO cannot be read (fifo_rd cannot be asserted) at
TO. This is indeed the reason to introduce the FIFO since in
this way all operations are fully pipelined and can be performed
on every clock. To keep consistent with this pipeline, in each
time slot, the controller will read out the DA_addr (no clear
operation needed) for the TM adaptor of that time slot from
the DA address RAM at T1. When the TM adaptor generates
a weighted/delayed pre-synaptic spike, the controller will send
this spike to the post-synaptic neuron with a 26-bit AER address,
which is a combination of the DA_addr and the value of the
global counter.

The timing for post-synaptic spike is aligned using a very
similar scheme to that described above for the pre-synaptic spike,
however, its address will not be stored in the DA address RAM.
This is due to the fact that only the weighted/delayed pre-synaptic
spike will be sent to the post-synaptic neuron (see Figure 1) and
hence only the address of the pre-synaptic spike needs be stored
and only the pre-synaptic spike will retrieve the weight/delay
value from the Master RAM.

This method significantly reduces the usage of the Slice LUTs
and hence makes it practical to apply the dynamic-assignment
approach to an adaptor array with 8k neurons. The hardware
cost of the FIFO and the aligner is very small and they are
both efficiently implemented with on-chip distributed SRAM. It
does need a DA address RAM, which needs to be implemented
with on-chip block SRAM, but storing only 13 bits significantly
reduces the size of the address memory. Another major advantage
of this method is its flexibility, e.g., with a 26-bit AER address,
input spikes can arrive at any time and be handled. This means
multiple different types of neuron arrays can be connected to one
adaptor array. Moreover, it suffers little from the large latencies
in the spikes, that can be of the order of hundreds microseconds,
due to routing. Excessive latency due to routing is quite common
in large-scale neural networks. Similarly, the communication
overhead between the neuron array and the adaptor array will
barely affect the performance of the system.

A collision will happen when multiple input spikes, that target
different DA adaptors, while at the same time need the same
TM adaptor, arrive within one time step. In this case, only the
last arriving spike will be sent to its target adaptor, and the
ones that arrived previously will be simply discarded. Another
collision will happen when the most significant 13 bits of the
address of an incoming post-synaptic spike do not match the
DA_addr of the target TM adaptor. In this case the 13 bits
of the address of the post-synaptic spike will still be sent to

that TM adaptor for performing adaptation and might cause
wrong weight/delay modifications. These two possible collision
scenarios are drawbacks of our approach, and do affect small and
densely interconnected neural networks with high activity rates.
These scenarios, however, are not serious problems for large-scale
neural networks, the connections of which are highly localized,
while the activity rate is low. For instance if we are modeling
hypercolumns in human cortex, the experimental data shows that
only a few hypercolumns in the human cortex are active for any
given task.

For practical applications, within a short period, the TM
adaptors should only be assigned for one certain task. When
that task ends, they will be released and can then be used by
other tasks. For example, one hypercolumn could use all the
8K TM plastic synapses for learning patterns, which might
last for hundreds of milliseconds. After the patterns have been
learned (stored in the Master RAM), another hypercolumn could
then use these 8 K TM adaptors for learning patterns. It is of
course possible that a synapse in another hypercolumn becomes
active more or less spontaneously. These spontaneously activated
synapses, however, would be uniformly distributed all over the
neural network and are thus unlikely to make up a large fraction
of the group of synapses in the hyper column that is currently
learning patterns. Hence, these spontaneously activated synapses
will not have a significant effect on the learning being performed.
We will validate the dynamic-assignment scheme in Section
Validation of the Dynamic-assignment Scheme. The maximum
memory update speed, which is indeed the maximum firing rate
of the neurons, that our system supports is 200 Mhz/25 = 8 MHz
(much higher than biological neurons).

Time Window Generator Array

The time window generator array has been successfully
implemented on a custom designed aVLSI chip, and
independently also on the same FPGA as the dynamically-
assigned adaptor array. The digital implementation used
time-multiplexing to achieve 8 k TM time window generators.
However, this fully digital implementation needs block SRAM,
as the internal state of each generator needs to be stored in
memory in between updates. This memory demand is the
real bottleneck of the time-multiplexing approach (Moore
et al, 2012). Nevertheless, this fully digital solution will be
quite suitable for the applications when aVLSI is not available.
On the other hand, an aVLSI circuit can implement a time
window generator very efficiently, as long as high precision is
not required. Using the aVLSI time window generator circuit
reduces memory usage and the memory saved can be used for
storing more synaptic weight and delay values, allowing for
larger networks. Furthermore, the analog time window generator
will add stochasticity to the weight and delay adaptation through
electronic noise and device mismatch, which will provide more
realistic simulations of biological neural networks.

Analog Time Window Generator Array

We provide a brief review of the analog time window generator,
which has been presented in depth in Wang et al. (2014a).
Figure 6A shows the schematic of the analog time window

Frontiers in Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

A

FIGURE 6 | aVLSI time window generator. (A) Schematic; (B) Layout; (C)
Layout of the array. It is placed in a two-dimensional array and when a time
window generator is selected, the voltage at node Vemp will pull the output
signal of this neuron Ve €ither up to Viyy (active, Vemp is low) or down to
ground (inactive, Vemp is high) via an inverter (1) and a serial switch (M4-M5).

generator, comprising a ramp generator circuit (blue) and an
AER hand-shaking circuit for our synchronous AER (red). It is
placed in a two-dimensional array and therefore requires row
and column select signals (Row_sel_n and Col_sel_n), which are
both low when the ramp generator has been selected. When
a time window generator is selected, the voltage at node Ve
will pull the output signal of this neuron Vv either up to
Vaa (active, Vipp is low) or down to ground (inactive, Ve is
high) via an inverter (I1) and a serial switch (M4-M5). When
this time window generator is not selected (M4 and M5 are
OFF), Victive will be driven by another other time window
generator in the array. Each time window generator is linked to
its corresponding TM adaptor and will be processed sequentially,

with each generator selected for one time slot. To use the
asynchronous aVLSI circuits with the FPGA, synchronization
with its clock domain is needed. Since the output signal Vigsive
is a 1-bit signal, we use the general method that uses two serially
connected flip-flops to sample the input (Weste and Harris,
2005).

This circuit was implemented in the IBM 130 nm technology.
For the maximum utilization of silicon area, one time window
generator should share as many resources as possible with
its neighboring ones. Based on this principle, all the pMOS
transistors are located in the right side and all the nMOS
transistors are located at the left side (see the dashed red rectangle
in Figure 6B) so that they can share their bulk connections with
each other. All the input/output signals and the bias currents are
placed vertically so that they can be merged to a bus across the
array without any extra wiring cost. The effective size of a time
window generator in the array is ~50 um? achieving a density of
20,000 cells/mm?. As a proof of concept, we have placed 180 of
the proposed aVLSI time window generators on the bottom right
corner of a test chip, as shown by the red rectangles in Figure 6C
(Wang et al., 2014b).

Digital Time Window Generator Array

The digital time window generator has the exact same function as
the aVLSI time window generator. The global counter processes
each TM time window generator sequentially. In each time
slot, the controller will read the value of the TM time window
generator from the Timer RAM. A counter will be incremented
by one at each clock cycle when the digital input spike from
the time-multiplexed adaptor is active (high), so that its count
increases proportional to the spike width. When there is no input
spike, the count will decrease by one each time slot, until it
reaches zero, indicating the end of the time window.

Slightly different to the aVLSI time window generator, the
output of the digital time window generator contains not only
an active line, to indicate whether the time window is finished or
not, but also the actual value of the counter. In aVLSI it would be
difficult to read out the actual value of the Vi (see Figure 6A)
in an efficient manner. In a digital implementation this value is
directly accessible to the DA adaptor array and could be used to
perform more complex plasticity rules.

TM Adaptor Array

TM STDP Adaptor Array

When implementing the TM adaptor array for STDP, a
significant reduction in memory usage was achieved by storing
a bistable weight in the Master RAM. This is based on the work
by Brader et al. (2007b), which shows that from a theoretical
perspective, having only two stable states for synaptic weights
does not degrade the performance of associative networks, if
the transitions between the stable states are stochastic. For
networks with large numbers of neurons, each with large
numbers of synapses, the assumptions that synaptic weights will
be discretized to two stable values on long time-scales is not
too severe, and is supported by biological evidence (Bliss and
Collingridge, 1993; Petersen et al., 1998).

Frontiers in Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

Local
cache

Polarity 4. Global
RAM " Counter

2

TM STDP adaptor array (8K TM STDP adaptors)

FIGURE 7 | Structure of the TM STDP adaptor array. The global counter
processes each TM STDP adaptor sequentially. The Local cache stores the
weight values of the TM STDP adaptor that are being processed. The learning
rules will be performed with the aligned pre- and post- synaptic spikes from
the controller and the active line from the time window generator.

Figure 7 shows the structure of the TM STDP adaptor array,
which consists of a physical STDP adaptor, a Local cache, a
polarity RAM and a global counter. The Local cache, which is
a dual port RAM with a size of 8k X 4 bit, stores the weights (4-
bit resolution) of the TM adaptors. The Master RAM will only
need to store one of the two stable values of the bistable weight,
and thus needs only 1 bit per weight. When a TM adaptor has
been assigned to a DA adaptor, its bistable weight will be read
out from the Master RAM. We then use this bistable weight to
generate one random 4-bit weight (stored in the Local cache) for
that TM adaptor. Only when there is a modification of the 4-bit
weight, which will generate a bistable weight simultaneously, will
we need to update the Master RAM with this bistable weight.

Since there is only one time window generator per TM
adaptor, it will have the wrong weight modifications when
multiple spikes (of the same type, e.g., pre-synaptic spikes) arrive
within the duration of one time window. For instance, one pre-
synaptic spike starts a time window while the pre-synaptic spikes
that follow and arrive within this time window will perform
weight decrement. To solve this problem, the polarity RAM,
which is a dual port RAM with a size of 8 k x 1 bit, was
introduced. The polarity RAM stores the polarity of the time
window for each TM adaptor. For the time window started by
pre- and post-synaptic spikes, the polarity value is 0 x 0 and
0 x 1 respectively. The time window is set such that it will be
restarted for each of the multiple spikes received within the time
window. In other words, each incoming spike will either start a
time window or perform weight modification.

The read out from the Master RAM and the update of
the Local cache was presented with the timing diagram of the
controller in Section Architecture. Since the retrieved bistable
weight from the Master RAM is 1-bit while the weight to be
written into the Local cache is 4-bits, this bistable weight will
be used as the most significant bit (MSB) of that 4-bit weight.
To keep the transitions between the stable states stochastic, the

remaining 3 bits are generated pseudo-randomly by a linear
feedback shift register (LESR).

Figure 8 shows the timing diagram for performing the STDP
algorithm by one TM STDP adaptor. Figure 8A shows how a
pre-synaptic spike starts a time window. Pre_aligned is ready
at T3 and TW_active will be ready at T8 (comprising 7 clock
cycles for latency and 2 clock cycles for synchronization). As the
time window is inactive, the delayed Pre_aligned (the red one)
will start the time generator at T8 by sending a pulse (TW_start,
starts at T9) that controls the duration of the window. Note
the duration of the time window is fixed during operation but
the parameter is configurable. The polarity of the time window,
which is 0 x 0, will be written to the polarity RAM by asserting
Pol_wr at T9. Since the time window is inactive, no weight
modification is needed and neither the Local cache nor the
Master RAM needs to be updated.

Since the incoming spike is a pre-synaptic spike, we need
to generate the weighted pre-synaptic spike, which will be sent
to the post-synaptic neuron. The local weight (L_rddata) is
read out at TO and ready at T2 (two clock cycles latency), the
delayed Pre_aligned will send out the Weighted_pre and assert its
active line (Pre_active_line) at T9. Simultaneously, the controller
will send this spike to the post-synaptic neuron with a 26-bit
AER address (Pre_addr), which is a combination of the delayed
DA_addr (the red one) and the value of the global counter.

Figure 8B shows the timing diagram for increasing the
synaptic weight. Assuming the time window has already been
started by a previous pre-synaptic spike. The polarity of the
time window (TW_polarity) and the local weight (L_rddata)
are both read out at TO and ready at T2 (two clock cycles
latency). Post_aligned is ready at T3 and TW_active will be
ready at T8. Since TW_active is active and TW_polarity is
low, which indicates that this time window was started by a
pre-synaptic spike, the delayed Post_aligned (the red one) will
increase L_rddata by one (when using the aVLSI time window
generator array) or by the value of the time window generator’s
counter (when using the digital time window generator array).

The updated weight (L_wrdata) will be written into the Local
cache by asserting L_wren at T9. In the controller, the latency
from fifo_rd, which cannot be asserted at T0, to L_wren is 10
clock cycles (see Figure 5). Hence a collision when the TM STDP
adaptor and the controller are updating the Local cache at the
same cycle will never happen. This is why the latency from
M_rden to M_rddata is set to 6 clock cycles. The idea behind this
setting is to achieve a fully pipelined design so that all operations
can be performed on every clock cycle and there are no stalls in
the pipeline. Note that if we were using only a digital time window
generator array, the time slot could be optimized to less clock
cycles by using tens of pipeline stages (Wang et al., 2013b, 2014c);
it is the serial scanning of the aVLSI time window generator array
that needs 25 cycles, as for any given time window generator,
it has to be selected during the whole time slot. To maintain
an architecture that is compatible with both the aVLSI and the
digital time window generator array, we chose to use the time
slot with 25 cycles for the work reported here.

Also at T9, the bistable weight will be updated to 1 if the
weight is larger than a threshold, a pseudo random 4-bit number

Frontiers in Neuroscience | www.frontiersin.org

10

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

* ook e :x 10 | TI x

T24

Pre aligned

T2 I T3 l T4] TS} T6 § T7 § T8 I 19 ITlO TllXTlZL__
[) ()

TW _start

TW_active
Pol_wr

L_rddata

Pre_active_line

Weighted pre

DA_addr
Pre_addr

B
Post_aligned ' \

TW _active

TW_polarity

L_rddata

L_wrdata

L_wren

M_wrdata

M_wren

FIGURE 8 | TM STDP adaptor’s timing diagram of one time slot. (A)
Starting a time window. Pre_aligned is ready at T3 and TW_active will be
ready at T8. As the time window is inactive, the delayed Pre_aligned (the red
one) will start the time generator at T8 by sending a pulse (TW_start, starts at

T9); (B) Increasing weight. The polarity of the time window (TW_polarity) and
the local weight (L_rddata) are both read out at TO and ready at T2.
Post_aligned is ready at T3 and TW_active will be ready at T8. The delayed
Post_aligned (the red one) will increase L_rddata.

between 4 and 11 that is updated every time slot. Otherwise,
the bistable weight will be updated to 0. The updated bistable
weight will be written into the Master RAM by asserting M_wren
at T9.

TM STDDP Adaptor Array

The TM STDDP adaptor array operates in the same scheme
(with the same pipeline stages) as the TM STDP adaptor array.
From the controller’s point of view, they are identical. This
means that they are interchangeable, which was a deliberate
design decision. Figure 9 shows the structure of the TM STDDP
adaptor array, which consists of a physical STDDP adaptor, a
Local cache, an active RAM and a global counter. The Local
cache, which is a dual port RAM with a size of 8k x 4 bit,
stores the 4-bit delay values of TM adaptors. The Master RAM
stores the 4-bit delay values too. When a TM adaptor has
been assigned to a DA adaptor, the delay of the latter will

be read out from the Master RAM and then stored in the
Local cache as the delay of that TM adaptor. When there is a
modification of the delay the Master RAM is updated with the
new delay.

Since the TM STDDP adaptor array pipeline is the same as the
one presented for STDP earlier, the timing diagram is exactly the
same as the ones presented in Figure 8 (replacing “weight” with
“delay”) with the following additional changes:

1. Only the pre-synaptic spike can start the time window
generator by sending it a spike with a duration proportional
to the retrieved axonal delay.

2. The delayed pre-synaptic spike should be generated at the
falling edge of the active line (from 0 x 1 to 0 x 0), which
indicates the end of the axonal delay. Since this is a time
multiplexing system, each TM adaptor will only know the
value of the active line in the current time slot. To solve this
problem, we introduced the active RAM, which is a dual port

Frontiers in Neuroscience | www.frontiersin.org

11

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

Local
cache

Global

Active
RAM C Counter

TM STDDP adaptor array (8k TM STDDP adaptors)

FIGURE 9 | Structure of the TM STDDP adaptor array. The global counter
processes each TM STDDP adaptor sequentially. The Local cache stores the
axonal delay values of the TM STDDP adaptor that are being processed. The
learning rules will be performed with the aligned pre- and post- synaptic spikes
from the controller and the active line from the time window generator.

RAM with a size of 8k x 1 bit, to store the value of the active
line in the current time slot. While the retrieved value from the
active RAM represents the previous value. The delayed pre-
synaptic spike will be generated if the active line is low and
the active line retrieved from the active RAM is high. For this
reason, the actual axonal delay will be from 1 to 16 ms while
the value of the delay stored is from 0 x 0 to 0 x F. The signals
of the polarity RAM (see Figure 8) are replaced by those of
the active RAM. The weight of this spike will be a fixed but
configurable value.

. Only the post-synaptic spike can change the delay. No
adaptation will be performed if the falling edge of the active
line has been detected at T8 since this means the delay has
been perfectly tuned and a delayed pre-synaptic spike will be
generated at T9.

Utilization

The digital parts of the proposed array were developed using
the standard ASIC design flow and therefore can be easily
implemented with state-of-the-art manufacturing technologies.
A bottom-up design flow was adopted in which we designed
and verified each module separately. Once the module level
verification was complete, all the modules were integrated
together for chip-level verification. As a proof of concept, we
implemented the proposed system on a Virtex6 XC6VLX240T
FPGA, which is hosted on the Xilinx ML605 board. Table 1 shows
the utilization of hardware resources on the FPGA. Note that
this is the utilization for the dynamically-assigned STDP/STDDP
adaptor array (without the Master RAM), the digital time window
generator array, and the interface circuit for the aVLSI time
window generator. As Table 1 shows, the proposed system uses
only a small fraction (<1%) of the hardware resources. Limited
by the size of the on-chip SRAM, for STDP and STDDP, we have
implemented 1800 x 8k = 14.4M and 450 x 8k = 3.6 M DA
adaptors respectively. This is a proof of concept and in the future
we will implement the Master RAM with off-chip memory, thus
leveraging the design of the cache structure introduced.

TABLE 1 | Device utilization Xilinx Virtex6é XC6VLX240T.

Resource STDP STDDP Total available
Occupied slices 558(1.4%) 545(1.4%) 37,680
Slice FF's 398(0.1%) 399(0.1%) 301,440
Slice LUTs 1430(0.9%) 1422(0.9%) 162,720
LUTs as logic 578(0.3%) 568(0.3%) 152,720
LUTs as RAM 827(1.4%) 827(1.4%) 58,400

36 k RAM 5(1.2%) 5(1.2%) 416
Results

For testing purposes, a PCB was developed as a daughter board
to contain the aVLSI chip and was connected to the FPGA.
The FPGA is controlled by a PC via a JTAG interface and the
analog bias inputs of the aVLSI chip are controlled by external
programmable bias voltages.

Performance of STDP

We have tested the performance of the dynamically-assigned
STDP adaptor array by performing a balanced excitation
experiment, based on the experiment run by Song et al. (2000).
Song et al. (2000) have shown that competitive Hebbian learning
(Hebb, 1949) can be performed through STDP. The competition
(induced by STDP) between the synapses can establish a bimodal
distribution of the synaptic weights: either toward zero (weak) or
the maximum (strong) values.

Using Digital Time Window Generator Array

In this experiment, a single post-synaptic neuron is driven by
1024 TM synaptic adaptors, the TM addresses of which are
from 0 x 0 to 0 x 3 FF. Their DA addresses are all the
same: 0 x 0. That post-synaptic neuron has a single post-
synaptic current generator that can generate both excitatory and
inhibitory post-synaptic currents (EPSC and IPSC) modulated
by the weights of the spikes arriving from different adaptors
(Wang et al, 2014c). As the post-synaptic currents sum
linearly in our model, only a PSC generator is needed in
each neuron. Each adaptor was driven by an independent
Poisson pre-synaptic spike train with the same average rate.
We have tested the system with two firing rates: 10 and 20 Hz,
whereas the firing rate of the post-synaptic neuron was 15 and
40 Hz respectively. The adaptors start with a uniform positive
weight distribution. The size of the time window was fixed at
16 ms.

After 1.25s of simulation, the distribution of synaptic weights
converges to a steady-state condition with bimodal distribution
of strong and weak weights (see Figure 10). Additionally,
although our learning rule is considerably simplified when
compared to that presented in Song et al. (2000), our system
is capable of producing the same result: for low input rates,
more synaptic adaptors approach the upper limit, and for
high input rates, more are pushed toward zero (Song et al.,
2000).

Frontiers in Neuroscience | www.frontiersin.org

12

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al. Neuromorphic implementation of synaptic-plasticity rules
A 05 A 05
0.4 04
£ 03 £ 03
= =
= =
£ 02 2 02
g g
= 01 I = 01 I
o - o — e — - — - — - - - - - 0 - —_ —_ _ —_ —_ —_
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
normalised weight normalised weight
B 0s
B 1
* * - * 0 * e *er . *e 0.‘
o * > ¢ * * «aese - * *
0.8 * w - *e o e v
- - > . e oo * e -E 0'3
E‘, ~” o+ * o » S B 4 20 » * * ﬁ
2 06 - e o * e @ o+ o % 02
.s - o+ * S0 S ad * o+ - = > > L d 11
2 . o *e So o0 @ “ =
| 0.4 » > R = ° - > o ;: 0.1
E = gl . a8 e "
z > ¢ 6 e e e 406 & 0 PR - P . .
0.2 [+ e e S e * > e o *oe o -
- % » e o ¢ @ * W S0 000 0 0.2 0.4 0.6 0.8 1
sse o s me s esse s se s e e e normalised weight
]
Y 256 Sympﬁflazd,pmr id s 1024 FIGURE 11 | Balanced excitation experiment with aVLSI time window
generator array. (A) Weight distribution after 1.25 s of STDP for an input rate
C 05 of 10Hz. The bimodal distribution of strong and weak weights is apparent; (B)
i Same as (A), but for an input rate of 20 Hz. Now more weights are weak than
0.4 strong.
g 03
n
¥ s with all the settings the same as with the digital time window
P ‘ generator. After 1.25s of simulation, despite the adaptor using
= 01 a fixed adaptation step (set to 1 here), the distribution of synaptic
o T T T T I weights converges to a steady-state condition with a bimodal
0 02 0.4 0.6 0.8 1 distribution of strong and weak weights (see Figure 11). It is also
normalised weight capable of producing the result: the higher the input rates, the
more the synaptic weight will be pushed toward zero.
D 1 PO SRR SIRE GHI-IINGutd SRD-D-HIBHII-G 000D W0 IR IR
o >0 * ¢ ¢+ 0 * e * *
¢ - Bev. 1w 9 G Validation of the Dynamic-assignment Scheme
0.8 *> LA & S 4 »- >4 >4 *— 0 . .
. Wes . ss ees wmese o e me o The previous two experiments have shown that the balanced
% i L N — PR i excitation experiment works for a system with 128 TM STDP
3 Perecnme s ser seeee oo soe adaptors. To validate the dynamic-assignment scheme, we
% ® DI e * S0 G & M0N0t ¢ “ S d td . tf 16 .th . t t f20H
T 04 pre e mes ot e s e s s conducted an experiment for 16 runs with an input rate o z
S P os oo . & e * e we # and 128 digital time window generators. For each run, these 128
z @ G W e B *e . o - e 200 . .
03 oo e deb agek e TM STDP adaptors were assigned a DA address in the range from
B BESE ¢ BWE 300 SW-REeEe: &8 0x 0000 to 0x 1 E00 with a step of 0x 200. After each run, we read
» e . * e Eaaad "e * * N0 " .
0 out the weights of these 128 adaptors (from the FPGA) and then
0 = 12 768 1024 started another run with the next DA address. In other words, we
ynaptic adaptor id .
kept using the same 128 TM STDP adaptors for all the 16 runs by
FIGURE 10 | Balanced excitation experiment with digital time window using the dynamic-assignment scheme. Note, this experiment is
generator array. (A) Weight distribution after 1.25s of STDP for an input rate only a proof-of-concept and we can dynamically assign the TM
of 10Hz. The bimodal distribution of strong and weak weights is apparent; (B) adaptors for all those 8 k DA addresses (0 x 0 to 0 x 1 FFF) as
Scatter plot of the final weight dlstlrlbutlon; (C,D) Same as (A,B), but for an long as the constraint of the active rate is not violated.
input rate of 20 Hz. Now more weights are weak than strong. L. . . .
For each run, the distribution of synaptic weights converges

Using aVLSI Time Window Generator Array

We ran the experiment with 128 aVLSI time window generators
(this is due to the fact that we have only 180 aVLSI time window
generators and powers of two are preferable in digital design)

to a steady-state condition with a bimodal distribution of strong
and weak weights. Figure 12 shows the average distribution
of synaptic weights across all 16 runs. We first obtained the
distribution of synaptic weights for each run and then averaged
them. Since the input rate is 20 Hz, more synaptic weights

Frontiers in Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

0.5 l
0.4
0.3

0.2

Fraction bin

0.1

OWII<I_IIII.II,IIILI.
0 0.2 0.4 0.6 0.8 1

normalised weight

FIGURE 12 | Balanced excitation experiments using the
dynamic-assignment scheme. One TM STDP adaptor array (with 128 TM
STDP adaptors) was dynamically assigned for 16 DA STDP adaptor arrays.
The averaged weight distribution after 1.25 s of STDP for an input rate of
20Hz. Note these data are averaged across all 16 runs. The bimodal
distribution of strong and weak weights is apparent and more weights are
weak than strong. Error bars are standard deviations of 16 runs.

were pushed toward zero, which matches the results presented
in Figures 10C, 11B. For each run, the dynamic-assignment
scheme has achieved a similar bimodal distribution of synaptic
weights as the standard deviation of the results indicates. The
dynamic-assignment scheme is therefore proved to be capable of
performing what was designed to do: reusing hardware resources.

Performance of STDDP

We have tested the performance of the dynamically-assigned
STDDP adaptor array by performing a polychronization
experiment. The term polychronization is used to indicate that
several neurons can fire asynchronously but after traveling
along axons with specific delays, their spikes will arrive at a
post-synaptic neuron simultaneously, causing it to fire in turn
(Izhikevich, 2006). Neural networks based on this principle are
referred to as “polychronous” neural networks and are capable
of storing and recalling quite complicated spatio-temporal
patterns. In Wang et al. (2014d), we have concluded that the
most important requirement of a hardware implementation of
a polychronous network is to provide a strong time-locked
relationship. This is indeed the motivation for us to develop the
STDDP learning rule, which will fine-tune the axonal delays to
the desired delay values.

Using Digital Time Window Generator Array

In this experiment, we used 128 adaptors and a paired-pulse
protocol: a single pair of pre- and post-synaptic spikes was
sent to each of the adaptors periodically (every 32 time steps).
During each period, each adaptor will receive one and only
one pre-synaptic spike, the arrival time of which is randomized
between time step 1 and 15. Additionally, during each period,
each adaptor will receive one and only one post-synaptic spike,
the arrival time is set to be time step 16. These spike pairs remain
the same in each period. All the axonal delays are initialized
to be zero. In each period, for each adaptor, a delay adaptation

A 02s
0.2
= 0.15
2
=
S
s 01
£
—
0.05
0 ™ . . H [‘ AN “ H
1 2 3 4 5 6 7 8 9 1011 1213 14 1516
Adapted delay (ms)
B 16
14 - - -
12 ¢
L
B .
= 10
K- | - <
3
< 8
T
Z 6
=
v
< 4
2
0
0 32 64 96 128
Synaptic adaptor id
FIGURE 13 | Polychronization experiment with digital time window
generator array. (A) Delay distribution after 15 times of STDDP; (B). Scatter
plot of the final delay distribution.

will be performed if the axonal delay has not been tuned to the
desired delay. Hence, theoretically, after 15 times of STDDP, all
the delayed pre-synaptic spikes from these 128 adaptors will fire
simultaneously (each at its own time slot) at time step 16.

This theoretical behavior was confirmed via measurements
on the FPGA. Since plotting 128 delayed pre-synaptic spike that
fire at the same time is meaningless, we chose instead to show
the delay distribution after 15 times of STDDP and the scatter
plot of the final delay distribution (see Figure 13). It might be
noticed that the final delays are not uniformly distributed, which
indicated that more pre-synaptic spikes arrive at the early part of
that period than the ones arrive at the later part. The system has
performed the polychronization experiment successfully since all
the axonal delays have been fine-tuned to the desired values,
which are the time differences between pre- and post-synaptic
spikes.

Using aVLSI Time Window Generator Array

The digital time window generator can generate any given desired
size of the time window (from 1 to 15 ms, in a time-step of 1 ms).
But due to process variation and device mismatch, it is impossible
to tune all the aVLSI time window generators with such accuracy.
To compare the performance with its digital counterpart, we
tested the system with all the settings the same as with the digital
time window generator conducting 10 test runs for statistical

Frontiers in Neuroscience | www.frontiersin.org

14

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

0.8 1
0.7
0.6
0.5
0.4

Fraction bin

0.3
0.2

0.1 I

= -
[romm—ry

5 4+ 3 2 1

Error = desired delay - achieved delay (ms)

e _
0

-1

FIGURE 14 | Errors between the achieved delays and the desired
values. Error bars are standard deviations of 10 runs.

purposes. Figure 14 shows the errors between the achieved delays
and the desired delays. Note these data are averaged across all
10 runs. As the results showed that 78% of the achieved delays
match the desired delays perfectly (within one time step). This
number will go up to ~91% when we counted in the achieved
delays with an error of + 1 ms, both of which will still contribute
to the process of the polychronization (Wang et al., 2013b). Thus,
only a small fraction of the achieved delays (less than 9%), will
be unable to contribute to the network. The standard deviation
of the results indicates that the aVLSI time window generator
array has achieved a fair variability (the averaged stand deviation
is 0.006).

Compared to our previous work that implemented the
same STDDP learning rule with fully aVLSI circuits (Wang
et al, 2014d), this mixed-signal solution achieved a much
better performance in terms of accuracy and density. More
importantly, this mixed-signal solution stores the axonal delays
in the digital memory, which is non-volatile and much more
compact. The work reported here was developed with the lessons
that we have learnt from our previous work that suffered a
lot from the intrinsic difficulties of the aVLSI circuits, e.g.,
coupling noises, leakage currents, process variations, and device
mismatch.

Discussion

Since our goal aims for the maximum network size, our future
work will focus on scaling up the network that we have presented
here. For a system running at 266 MHz, we can achieve 256 k
TM adaptors with one physical adaptor for a sub-millisecond
time resolution. Given that we can implement 8k DA STDP
adaptors with a single TM adaptor, we can achieve 256k x 8k
= 2G DA adaptors. With our bistable synaptic weight, which
can be stored with a single bit, the total memory needed for
this implementation is 2 Gb. It is clear that on-chip SRAM,
which provides usually less than tens of megabits of storage, will
not be able to meet this requirement. Among various external
memory solutions, dynamic random access memory (DRAM)

is the best candidate to provide the required storage because
of its large storage capacity. High-end FPGA boards, such as
Altera’s DE5 board and Xilinx’s VC709, usually contain two
DDR3 SDRAM memories, each of which can currently support
a maximum capacity of 64 Gb, and thus would allow us to
implement 64G DA adaptors using only 64 physical adaptors.
The corresponding TM adaptor arrays will need 64 x 8k x
4 bit = 2Mb for the weight memory, which can easily be
implemented using the on-chip SRAM. For the same system, the
digital time window generator array would also need 2 Mb of
storage.

In addition to the storage requirements, we also need to
analyze the communications bandwidth requirement, which is
generally the bottleneck for time-multiplexed implementations.
The theoretically required bandwidth for 64 physical adaptors is
64 x 1 bit = 64 bits/clock cycle for both reading and writing.
The DDR3 SDRAM is a single port device and the read/write
operations cannot happen simultaneously. Thus, the required
bandwidth of the SDRAM communication has to be doubled
to 128 bits/clock cycle. Fortunately, the maximum theoretical
bandwidth of one DDR3 SDRAM memory (when running at
1066 MHz) on an Altera DE5 board is 512 bits/clock cycle
and even when considering that DDR3 memory typically only
achieves 70% of that theoretical maximum bandwidth, there
should be ample bandwidth to achieve the desired 128 bits/clock
cycle. The reason for the reduced maximum bandwidth of the
SDRAM is due to the need for flow control, which needs
to take into consideration the bus turnaround time, memory
refresh, finite burst length, and random access latency. All these
will make the architecture of the system significantly more
complex.

The cache structure was introduced to solve these difficulties.
Firstly, it greatly reduces the bandwidth requirement to use
external memory since the accessing (read/write) of the Master
RAM will only be performed when needed and new values are
not required to be available from memory every time slot. The
reserved bandwidth can be used for other purposes, e.g., routing
the spikes with look up tables. Secondly, this cache structure plus
the fully-pipelined design style significantly ease the use of the
off-chip memory. The pipeline of accessing the Master RAM can
be simply reconfigured with different latency values to handle
different flow control requirements.

The number of physical adaptors, i.e. the ones that can be
activated simultaneously, will increase linearly with the number
of available Slice LUTs, which are usually the bottleneck for
high performance FPGA designs. But in our system, the design
of the physical adaptor costs only a few LUTs and plenty
of resources are left for additional physical adaptors or other
systems components.

Based on the above calculations, we can conclude that it
is practical to scale the proposed system up to a system with
64G DA adaptors on a commercial off-the-shelf high-end FPGA.
The key to achieving this is to balance the number of physical
adaptors (to achieve the best utilization of available hardware
resources on the FPGA), the time-multiplexing rate (for a sub-
millisecond time resolution), and the bandwidth and storage
capacity of the memory.

Frontiers in Neuroscience | www.frontiersin.org

15

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

Our aVLSI implementation is nowhere near as scalable as
the digital implementation, since it can only be scaled up
by implementing more physical copies of the aVLSI module.
However, the introduction of the dynamic-assigning approach
allows 8k DA analog time window generators to be achieved
with only a single physical time window generator. Above all, the
motivation to develop the aVLSI implementation in the proposed
system is for enhancement of the simulations.

References

Amirikian, B., and Georgopoulos, A. P. (2003). Modular organization of
directionally tuned cells in the motor cortex: is there a short-range order?
Proc. Natl. Acad. Sci. U.S.A. 100, 12474-12479. doi: 10.1073/pnas.20377
19100

Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type. J. Neurosci. 18, 10464-10472.

Bliss, T. V., and Collingridge, G. L. (1993). A synaptic model of memory: long-
term potentiation in the hippocampus. Nature 361, 31-39. doi: 10.1038/36
1031a0

Bofill-i-petit, A., and Murray, A. F. (2004). Synchrony detection and amplification
by silicon neurons with STDP synapses. IEEE Trans. Neural Netw. 15,
1296-1304. doi: 10.1109/TNN.2004.832842

Brader, J. M., Senn, W., and Fusi, S. (2007a). Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics. Neural Comput. 19, 2881-2912.
doi: 10.1162/neco0.2007.19.11.2881

Brader, . M., Senn, W, and Fusi, S. (2007b). Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics. Neural Comput. 19, 2881-2912.
doi: 10.1162/neco0.2007.19.11.2881

Brenner, S., and Sejnowski, T. J. (2011). Understanding the human brain. Science
334, 567. doi: 10.1126/science.1215674

Buskila, Y., Morley,]. W., Tapson, J., and van Schaik, A. (2013). The adaptation of
spike backpropagation delays in cortical neurons. Front. Cell. Neurosci. 7:192.
doi: 10.3389/fncel.2013.00192

Cassidy, A., and Andreou, A. G. (2008). “Dynamical digital silicon neurons,”
in 2008 IEEE Biomedical Circuits and Systems Conference, (Baltimore, MD),
289-292.

Cassidy, A., Andreou, A. G., and Georgiou, J. (2011). “Design of a one million
neuron single FPGA neuromorphic system for real-time multimodal scene
analysis,” in 2011 45th Annual Conference on Information Sciences and
Systems, (Baltimore, MD), 1-6.

Chicca, E., Badoni, D., Dante, V., D’Andreagiovanni, M., Salina, G., Carota, L.,
etal. (2003). A VLSI recurrent network of integrate-and-fire neurons connected
by plastic synapses with long-term memory. IEEE Trans. Neural Netw. 14,
1297-1307. doi: 10.1109/TNN.2003.816367

Galluppi, F., Davies, S., Furber, S., Stewart, T., and Eliasmith, C. (2012). “Real time
on-chip implementation of dynamical systems with spiking neurons,” in The
2012 International Joint Conference on Neural Networks (IJCNN) (Brisbane,
QLD: IEEE), 1-8.

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Luis, A., Furber, S., et al.
(2014). A framework for plasticity implementation on the SpiNNaker neural
architecture. Front. Neurosci. 8:429. doi: 10.3389/fnins.2014.00429

Gao, C., and Hammerstrom, D. (2007). Cortical models onto CMOL and CMOS—
architectures and performance/price. IEEE Trans. Circ. Syst. I 54, 2502-2515.
doi: 10.1109/TCSI.2007.907830

Gerstner, W., Kempter, R., Van Hemmen, J. L., and Wagner, H. (1996). A neuronal
learning rule for sub-millisecond temporal coding. Nature 383, 76-81. doi:
10.1038/383076a0

Giulioni, M., Camilleri, P., Dante, M. M., Braun, J., and Del Giudice, P. (2012).
Robust working memory in an asynchronously spiking neural network realized
with neuromorphic VLSI. Front. Neurosci. 5:149. doi: 10.3389/fnins.2012.
00149

Acknowledgments

This work has been supported by the Australian Research
Council Grant DP140103001. The support by the Xilinx and
Altera university program is gratefully acknowledged. This work
was inspired by the Capo Caccia Cognitive Neuromorphic
Engineering Workshop 2014 and Telluride Neuromorphic
workshop 2014.

Goldberg, D., Cauwenberghs, G., and Andreou, A. (2001). Probabilistic synaptic
weighting in a reconfigurable network of VLSI integrate-and-fire neurons.
Neural Netw. 14, 781-793. doi: 10.1016/S0893-6080(01)00057-0

Graupner, M., and Brunel, N. (2012). Calcium-based plasticity model explains
sensitivity of synaptic changes to spike pattern, rate, and dendritic location.
Proc. Natl. Acad. Sci 109, 3991-3996. doi: 10.1073/pnas.1109359109

Hafliger, P. (2007). Adaptive WTA with an analog VLSI neuromorphic learning
chip. IEEE Trans. Neural Netw. 18, 551-572. doi: 10.1109/TNN.2006.884676

Harkin, J., Morgan, F., Hall, S., Dudek, P., Dowrick, T., and McDaid, L. (2008).
“Reconfigurable platforms and the challenges for large-scale implementations
of spiking neural networks, in 2008 International Conference on Field
Programmable Logic and Applications (Heidelberg: IEEE), 483-486.

Harkin, J., Morgan, F., McDaid, L., Hall, S., McGinley, B., and Cawley, S. (2009).
A reconfigurable and biologically inspired paradigm for computation using
network-on-chip and spiking neural networks. Int. J. Reconf. Comp. 2009, 1-13.
doi: 10.1155/2009/908740

Hebb, D. (1949). The Organization of Behavior. Journal of Applied Behavior
Analysis. New York, NY: Wiley & Sons.

Holmgren, C., Harkany, T., Svennenfors, B., and Zilberter, Y. (2003). Pyramidal cell
communication within local networks in layer 2/3 of rat neocortex. J. Physiol.
(Lond). 551, 139-153. doi: 10.1113/jphysiol.2003.044784

Hubel, D. H., and Wiesel, T. N. (1974). Uniformity of monkey striate cortex:
a parallel relationship between field size, scatter, and magnification factor.
J. Comp. Neurol. 158, 295-305. doi: 10.1002/cne.901580305

Indiveri, G., Chicca, E., and Douglas, R. (2006). A VLSI array of low-power spiking
neurons and bistable synapses with spike-timing dependent plasticity. IEEE
Trans. Neural Netw. 17, 211-221. doi: 10.1109/TNN.2005.860850

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569-1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural
Comput. 18, 245-282. doi: 10.1162/089976606775093882

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian
thalamocortical systems. Proc. Natl. Acad. Sci. U.S.A. 105, 3593-3598. doi:
10.1073/pnas.0712231105

Johansson, C., and Lansner, A. (2007). Towards cortex sized artificial neural
systems. Neural Netw. 20, 48-61. doi: 10.1016/j.neunet.2006.05.029

Koickal, T. J., Hamilton, A., Tan, S. L., Covington, J. A., Gardner, J. W., and
Pearce, T. C. (2007). Analog VLSI circuit implementation of an adaptive
neuromorphic olfaction chip. IEEE Trans. Circ. Syst. I 54, 60-73. doi:
10.1109/TCSI1.2006.888677

Lennie, P. (2003). The cost of cortical computation. Curr. Biol. 13, 493-497. doi:
10.1016/S

Liu, S., Kramer, J., Indiveri, G., Delbriick, T., and Douglas, R. (2002). Analog VLSI:
Circuits and Principles. Cambridge, MA: MIT Press.

Magee, J. C. (1997). A synaptically controlled, associative signal for
hebbian plasticity in hippocampal neurons. Science 275, 209-213. doi:
10.1126/science.275.5297.209

Markram, H., Liibke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science (NY)
275, 213-215. doi: 10.1126/science.275.5297.213

Minkovich, K., Srinivasa, N., Cruz-Albrecht, J. M., Cho, Y., and Nogin, A. (2012).
Programming time-multiplexed reconfigurable hardware using a scalable
neuromorphic compiler. IEEE Trans. Neural Netw. Learn. Syst. 23, 889-901.
doi: 10.1109/TNNLS.2012.2191795

Frontiers in Neuroscience | www.frontiersin.org

16

May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Wang et al.

Neuromorphic implementation of synaptic-plasticity rules

Mirhassani, M., Ahmadi, M., and Miller, W. C. (2007). A feed-forward
time-multiplexed neural network with mixed-signal neuron-synapse arrays.
Microelectron. Eng. 84, 300-307. doi: 10.1016/j.mee.2006.02.014

Mitra, S., Fusi, S., and Indiveri, G. (2009). Real-time classification of complex
patterns using spike-based learning in neuromorphic VLSI. IEEE Trans.
Biomed. Circ. Syst. 3, 32-42. doi: 10.1109/TBCAS.2008.2005781

Moore, S. W., Fox, P. J., Marsh, S. J. T., Markettosa, T., and Mujumdar, A. (2012).
“Bluehive—a field-programable custom computing machine for extreme-scale
real-time neural network simulation,” in 20th IEEE International Symposium
on Field-Programmable Custom Computing Machines. (IEEE), 133-140. doi:
10.1109/FCCM.2012.32

Painkras, E., Plana, L. A., Garside, J., Temple, S., Galluppi, F., Patterson, C,,
et al. (2013). SpiNNaker: a 1-W 18-core system-on-chip for massively-parallel
neural network simulation. IEEE J. Solid State Circ. 48, 1943-1953. doi:
10.1109/]JSSC.2013.2259038

Petersen, C. C. H., Malenka, R. C., Nicoll, R. A., and Hopfield, J. J. (1998). All-or-
none potentiation at CA3-CA1 synapses. Proc. Natl. Acad. Sci. 95, 4732-4737.
doi: 10.1073/pnas.95.8.4732

Pfeil, T., Griibl, A., Jeltsch, S., Miiller, E., Miiller, P., Petrovici, M., et al. (2013). Six
networks on a universal neuromorphic computing substrate. Front. Neurosci.
7:11. doi: 10.3389/fnins.2013.00011

Pfeil, T., Potjans, T. C., Schrader, S., Potjans, W., Schemmel, J., Diesmann, M., et al.
(2012). Is a 4-bit synaptic weight resolution enough?—constraints on enabling
spike-timing dependent plasticity in neuromorphic hardware. Front. Neurosci.
6:90. doi: 10.3389/fnins.2012.00090

Saighi, S., Levi, T., Belhadj, B., Malot, O., and Tomas, J. (2010). “Hardware
system for biologically realistic, plastic, and real-time spiking neural network
simulations,” in The 2010 International Joint Conference on Neural Networks
(IJCNN), (Barcelona), 1-7.

Scannell, J. W., Blakemore, C., and Young, M. P. (1995). Analysis of connectivity
in the cat cerebral cortex. J. Neurosci. 15, 1463-1483.

Schemmel, J., Fieres, J., and Meier, K. (2008). “Wafer-scale integration of analog
neural networks,” in 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), (Hong Kong),
431-438.

Sejnowski, T. J. (2012). Are we merely the sum of our neurons? New Scientist 213,
46. doi: 10.1016/50262-4079(12)60317-0

Shi, Y., Veidenbaum, A. V., Nicolau, A., and Xu, X. (2015). Large-scale neural
circuit mapping data analysis accelerated with the graphical processing
unit (GPU). J. Neurosci. Methods 239, 1-10. doi: 10.1016/j.jneumeth.2014.
09.022

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919-926.
doi: 10.1038/78829

Stanford, L. R. (1987). Conduction velocity variations minimize conduction time
differences among retinal ganglion cell axons. Science (NY), 238, 358-360.

Tsunoda, K., Yamane, Y., Nishizaki, M., and Tanifuji, M. (2001). Complex objects
are represented in macaque inferotemporal cortex by the combination of
feature columns. Nat. Neurosci. 4, 832-838. doi: 10.1038/90547

Vogelstein, R.], Mallik, U, Vogelstein, J. T., and Cauwenberghs, G.
(2007). Dynamically reconfigurable silicon array of spiking neurons with
conductance-based synapses. IEEE Trans. Neural Netw. 18, 253-265. doi:
10.1109/TNN.2006.883007

Wang, R., Cohen, G., Hamilton, T. J., Tapson, J., and Schaik, A. V. (2013a). “An
improved aVLSI axon with programmable delay using spike timing dependent

delay plasticity,” in 2013 IEEE International Symposium of Circuits and Systems
(ISCAS) (Beijing: IEEE), 2-5.

Wang, R., Cohen, G., Stiefel, K. M., Hamilton, T. J., Tapson, J., and van Schaik,
A. (2013b). An FPGA implementation of a polychronous spiking neural
network with delay adaptation. Front. Neurosci. 7:14. doi: 10.3389/fnins.2013.
00014

Wang, R., Hamilton, T. J., Tapson, J., and van Schaik, A. (2014a). “A compact
reconfigurable mixed-signal implementation of synaptic plasticity in spiking
neurons,” in 2014 IEEE International Symposium on Circuits and Systems
(ISCAS) (Melbourne, VIC: IEEE), 862-865.

Wang, R., Hamilton, T. J., Tapson, J., and van Schaik, A. (2014b). “A generalised
conductance-based silicon neuron for large-scale spiking neural networks,” in
2014 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE),
1564-1567.

Wang, R., Hamilton, T. J., Tapson, J., and van Schaik, A. (2014c). “An FPGA
design framework for large-scale spiking neural networks” in 2014 IEEE
International Symposium on Circuits and Systems (ISCAS) (Melboune: IEEE),
457-460.

Wang, R,, Jin, C., McEwan, A., and van Schaik, A. (2011a). A programmable axonal
propagation delay circuit for time-delay spiking neural networks. 2011 IEEE
International Symposium of Circuits and Systems (ISCAS), (Rio de Janeiro),
869-872.

Wang, R. M., Hamilton, T. J., Tapson, J. C., and van Schaik, A. (2014d). A mixed-
signal implementation of a polychronous spiking neural network with delay
adaptation. Front. Neurosci. 8:51. doi: 10.3389/fnins.2014.00051

Wang, R., Tapson, J., Hamilton, T. J., and van Schaik, A. (2011b). “An analogue
VLSI implementation of polychronous spiking neural networks,” in 2011
Seventh International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (Adelaide, SA: IEEE), 97-102.

Wang, R., Tapson, J., Hamilton, T. J., and van Schaik, A. (2012). “An aVLSI
programmable axonal delay circuit with spike timing dependent delay
adaptation,” in 2012 IEEE International Symposium on Circuits and Systems
(Seoul: IEEE), 2413-2416.

Weste, N., and Harris, D. (2005). CMOS VLSI Design?: a Circuits and Systems
Perspective. Energy Policy, 3rd Edn., Vol. 24. Boston, MA: Addison-Wesley.
Wittie, L., Memelli, H. (2010). “Billion neuron memory models in slender Blue
Genes,” in Program 208.30/MMM21, 2010 Neuroscience Meeting Planner (San

Diego, CA: Society for Neuroscience), 1.

Yu, T., and Cauwenberghs, G. (2010). “Log-domain time-multiplexed realization
of dynamical conductance-based synapses,” in Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, (Paris), 2558-2561.

Zaveri, M. S., and Hammerstrom, D. (2011). Performance/price estimates for
cortex-scale hardware: a design space exploration. Neural Netw. 24, 291-304.
doi: 10.1016/j.neunet.2010.12.003

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Wang, Hamilton, Tapson and van Schaik. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org

17

May 2015 | Volume 9 | Article 180

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks
	Introduction
	Materials and Methods
	Learning Rules
	Spike Timing Dependent Plasticity
	Spike Timing Dependent Delay Plasticity

	Design Choice
	Time-multiplexing
	Dynamic-assignment
	Mixed-signal
	Standardization
	Pulse width Modulation
	Versatility

	Architecture
	Time Window Generator Array
	Analog Time Window Generator Array
	Digital Time Window Generator Array

	TM Adaptor Array
	TM STDP Adaptor Array
	TM STDDP Adaptor Array

	Utilization

	Results
	Performance of STDP
	Using Digital Time Window Generator Array
	Using aVLSI Time Window Generator Array
	Validation of the Dynamic-assignment Scheme

	Performance of STDDP
	Using Digital Time Window Generator Array
	Using aVLSI Time Window Generator Array

	Discussion
	Acknowledgments
	References

