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Clinical research employing functional magnetic resonance imaging (fMRI) is often

conducted within the connectionist paradigm, focusing on patterns of connectivity

between voxels, regions of interest (ROIs) or spatially distributed functional networks.

Connectivity-based analyses are concerned with pairwise correlations of the temporal

activation associated with restrictions of the whole-brain hemodynamic signal to

locations of a priori interest. There is a more abstract question however that such spatially

granular correlation-based approaches do not elucidate: Are the broad spatiotemporal

organizing principles of brains in certain populations distinguishable from those of others?

Global patterns (in space and time) of hemodynamic activation are rarely scrutinized

for features that might characterize complex psychiatric conditions, aging effects or

gender—among other variables of potential interest to researchers. We introduce a

canonical, transparent technique for characterizing the role in overall brain activation of

spatially scaled periodic patterns with given temporal recurrence rates. A core feature

of our technique is the spatiotemporal spectral profile (STSP), a readily interpretable 2D

reduction of the native four-dimensional brain × time frequency domain that is still “big

enough” to capture important group differences in globally patterned brain activation.

Its power to distinguish populations of interest is demonstrated on a large balanced

multi-site resting fMRI dataset with nearly equal numbers of schizophrenia patients

and healthy controls. Our analysis reveals striking differences in the spatiotemporal

organization of brain activity that correlate with the presence of diagnosed schizophrenia,
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as well as with gender and age. To the best of our knowledge, this is the firs

demonstration that a 4D frequency domain analysis of full volume fMRI data expose

clinically or demographically relevant differences in resting-state brain function.

Keywords: fMRI, spatiotemporal frequency domain, schizophrenia, multidimensional Fourier transform, brai

dynamics
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Introduction

Much fMRI research focuses onestimates offunctional
connectivity between fixed parcellations or weightings of
voxel space (van den Heuvel and Pol, 2010; Erhardt et al., 2011a;
Biswal, 2012; Calhoun and Adali, 2012; Smith, 2012). Moreover,
with some notable and interesting exceptions (Cordes et al.,
2001a; Chang and Glover, 2010; Su et al., 2013; Ciuciu et al., 2014;
Sasai et al., 2014), an overwhelming proportion of “connectomic”
studies remain focused primarily on the evidence of functional
connectivity provided by measurements of linear correlation
between network timecourses. While a correlation-driven
network connectivity framework is optimal for certain questions,
the brain is operating on many scales simultaneously and we can
miss useful information or even bypass interesting questions by
structuring so much analysis around the assumptions that:

(1) Temporal behavior is relevant primarily through its
correlative properties.

(2) Popular methods of collapsing space to a small number
signal-carrying nodes generally produce networks that
preserve temporal variability at the most salient spatial
scales.

(3) Spatiotemporal properties of information flow through
inter-node tissue, i.e., through the often substantial gray
matter spatial complement of the ROIs or networks under
explicit consideration, can be safely ignored.

Here we investigate the relative contributions of 3D spatial
intensity patterns of roughly homogeneous directional
periodlengths (from small to large) moving at different
temporal frequencies through the 4D fMRI signal. The Fourier
transform was chosen because it is canonical, powerful, and
transparently interpretable. In the present investigation it
also proves entirely sufficient to expose significant group
differences in spatiotemporal hemodynamic activation
patterns.

The present work demonstrates that, in the case of resting-
state fMRI data, treating the whole brain in time as a
single 4D signal exposes significant group-level distinctions in
general spatiotemporal patterning of hemodynamic activation
(Figure 1). While correlational network analysis is a large and
growing presence in fMRI research (Bullmore and Sporns, 2009;
Friston, 2011; Friston and Price, 2011; Shirer et al., 2012;
Smith, 2012; Sporns, 2012, 2013a; Fornito et al., 2013; Smith
et al., 2013a,b), it has not completely displaced classical signal
processing methods. Even studies that focus on the frequency
domain however concentrate almost exclusively on temporal
frequency content of predefined regions (Chang and Glover,
2010; Kalcher et al., 2014; Yuan et al., 2014), voxel weightings

(e.g., ICA components, Jafri et al., 2008; Erhardt et al., 2011b;
Beckmann, 2012) or individual voxels (Van Someren et al., 2011;
Ciuciu et al., 2012; Zalesky et al., 2012; Boubela et al., 2013;
Boyacioglu et al., 2013) with efforts to consider spatial structure
mostly in the realm of identifying voxel collections that have
similar temporal frequency domain properties (Muller et al.,
2007; Lohmann et al., 2010; Craddock et al., 2012; Thirion
et al., 2014). Existing results from the temporal domain point
to age and gender effects in lower temporal frequency bands
(0.00–0.20Hz. decreasing with age, 0.00–0.05Hz. favoringmales)
(Allen et al., 2011), and to low-frequency (<0.10Hz.) aberrations
in schizophrenia patients (Hoptman et al., 2010; Calhoun et al.,
2011; Turner et al., 2012; Yu et al., 2013). Some studies (Garrity
et al., 2007; Calhoun et al., 2008) have demonstrated that
functional network timecourses of schizophrenia patients have
less low frequency temporal power (0.00–0.10Hz.) and greater
higher frequency temporal power (0.10–0.30Hz.) than those of
healthy controls. Our findings are consistent with evidence from
the temporal domain, but elaborate these phenomena into the
realm of scaled spatial patterning, giving a richer picture of how
generic non-located spatiotemporal patterns of hemodynamic
activity can differ across populations of interest. For example, our
analysis indicates that while low-band temporal power decreases
with age and is higher for males than females, this effect is
concentrated in middle-band spatial frequencies for men while
pervading nearly all spatial frequencies for age, suggesting greater
impact of age than gender on the rapidity with which both broad
diffuse activity and highly spatially variable local patterns develop
and recur.

Methods and Materials

Participants
Eyes-closed resting state fMRI data (5.38min; n = 262) from
six Siemens 3T scanners was collected on 127 SZ patients
(mean age ± SD = 38.50 ± 11.83, 94 males) and 135 healthy
volunteers (mean age ± SD = 37.54 ± 11.27, 96 males)
matched as much as possible for age, sex, handedness, and
race distributions, recruited from six sites, who participated
in the study (Table 1). Inclusion criteria for the patients were
an SZ diagnosis based on the Structured Clinical Interview
for DSM-IV-TR Axis I Disorders (SCID-I/P) (First et al.,
2002). All patients were clinically stable on antipsychotic
medication for at least 2 months, and had an illness duration
of minimally 1 year. Written informed consent was obtained
from all study participants, and included permission to share de-
identified data between the centers and with the wider research
community.
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FIGURE 1 | (Top): Simulated brain slice dynamics with random assignment

of frequencies and phases to larger (left) and smaller (right) subregions of the

slice. The active regions have similar behavior in both cases, but this

behavior plays out on differently scaled spatial patterns in each. (Bottom):

Four consecutive timeframes of one subject’s medial slice data filtered at

indicated combinations of spatial and temporal frequencies.

TABLE 1 | Demographic Information.

Subject demographic information

Schizophrenia

patient (SZ)

127 Healthy control

(HC)

135

Male 190 (SZ = 94) Female 72 (SZ = 33)

Ages 18–30 86 (SZ = 42) Ages 31–60 176 (SZ = 85)

Imaging Parameters
Imaging data for the six sites used in this study was collected
on a 3T Siemens Tim Trio System scanner. Resting state fMRI
scans were acquired using a standard gradient-echo echo planar
imaging paradigm: FOV of 220×220mm (64×64 matrix), TR=

2 s, TE= 30ms, FA= 770, 162 volumes, 32 sequential ascending
axial slices of 4mm thickness and 1mm skip. Subjects had their
eyes closed during the resting state scan.

Data Preprocessing
The three translation and three rotational head movement
parameters for each subject were checked for maximal overall
movement relative to the first image. Subjects who moved more
than 4mm. were excluded from the analysis. Further data-
driven processing steps (Friedman et al., 2008; Turner et al.,
2013) allowed removal of additional subjects whose scans were
likely to contain significant motion contamination. The images

were preprocessed using the MRN automated analysis pipeline
(Bockholt et al., 2009), whose steps are conducted in SPM 5
(http://www.fil.ion.ucl.ac.uk/spm) as follows: Motion correction
to the first image using INRIalign; slice timing corrected to
the middle slice; and normalization to MNI space, including
reslicing to 3 × 3× 3mm. voxels; despiking (as implemented in
AFNI). Although a spatial smoothing step is typically applied to
normalized despiked data, we do not implement this step as it
imposes properties on the spatial frequency domain which in our
case is a primary object of the present study.

Spatiotemporal Spectral Profiles (STSPs)
We use Matlab’s implementation of the n-dimensional fast
Fourier transform to transform each subject’s 63× 53× 46× 162
masked, preprocessed data into the frequency domain and take
squared magnitudes of the Fourier coefficients. The result is a
32 × 27 × 23 × 81 array. The raw coefficient magnitudes fi,j,k,l
are normalized with respect to the overall distribution of each
subject’s spatiotemporal power:

f̃i,j,k,l =

{
#
(
i
′
, j

′
, k

′
, l

′
)

:fi,j,k,l ≤ fi′ ,j′ ,k′ ,l′
}

32× 27× 23× 81

This particular normalization was chosen because we are
primarily interested in the importance of certain frequency
quadruples relative to the way power is distributed across a
subject’s entire 4D spectrum. The full 4-dimensional array of
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normalized magnitudes, does not provide a significant reduction
of input data and is too high-dimensional to visualize. We
therefore concentrate on spatial periods of roughly homogeneous
extent in x, y, and z, essentially using a 1-parameter snapshot
to convey the presence of spatial patterning at various scales.
We attempt to capture this information in a 32 × 81 matrix
6 that we call the spatiotemporal spectral profile (STSP) of the

subject’s 4D scan (Figures 2–4). The (r, t)th element of 6 is the
average, in a radius-2 window about the tth temporal frequency,
of the normalized spatial power along the weighted radius-

2 cubical hypertubes through f̃r,1,1,t, f̃1,r,1,t and f̃1,1,r,t . These
three coefficients, when equal in magnitude, represent the power
in radially symmetric 3D sinusoids of spatial frequency s. The
three radially symmetric coefficients at each spatial frequency
are weighted maximally, at 1; weights on coefficients along the
radius-2 cubical hypertube through each decay as a Gaussian
of standard deviation r longtitudinally and as a Gaussian of
standard deviation 2 transversally (Figure 5). The longtitudinal
decay continues until the hypertubes intersect at the spatial

frequency diagonal f̃r,r,r,t , beyond which the weights are set to be
zero. In equation form, the (r,t)th entry of the STSP is given by:

6r,t = mean
(
Ŵ
x,y,z
r ·

{
F

x
r ∪ F

y
r ∪ F

z
r

})

where Ŵ
x,y,z
r is the 3D Gaussian weighting function centered

at spatial frequency index r and the union of Fx
r , F

y
r , and Fz

r

contains all elements f̃i,j,k,t of the normalized 4D spectrum
(including those in the temporal frequency window t ± ǫ) on
the 3D radius-ǫ “partial cross” through spatial frequency r.

Specifically, the 3D Gaussian weighting function Ŵ
x,y,z
r (i, j, k, t)

has the form:

Ŵ
x,y,z
r (i, j, k, t) = max

(
G
x
r ,G

y
r ,G

z
r

)

where

G
x
r

(
i, j, k, t

)
= e

(i−µr )
2

2σ2t
+

(j−µℓ)
2 + (k−µℓ)

2

2σ2r

G
y
r

(
i, j, k, t

)
= e

(j−µr )
2

2σ2t
+

(i−µℓ)
2 + (k−µℓ)

2

2σ2r

G
z
r

(
i, j, k, t

)
= e

(k−µr )
2

2σ2t
+

(i−µℓ)
2 + (j−µℓ)

2

2σ2r

and µℓ = 1, µr = r, σt = 2, σr = r. The directional weighting
functions G∗

r

(
i, j, k, t

)
are products of two Gaussians, one that

decays with distance from r in the superscripted dimension and
one that decays with distance from the lowest spatial frequency
index in the other two dimensions. Gx

r

(
i, j, k, t

)
, for example, is

the product of the standard deviation 2 Gaussian transverse to
the plane x = r, and the 2D standard deviation r Gaussian that
decays with distance from both (y,1) and (1, z) defined within
any (y,z)-plane (including that determined by x = r). At each
r and t (and for ǫ ∈ {0, 1, 2}) the weighting function Ŵ

x,y,z
r

is applied to the normalized 4D Fourier magnitudes f̃i,j,k,t in

each of Fx
r =

{
f̃i,r± ǫ,r± ǫ,t± ǫ

}r
i= 1

,F
y
r =

{
f̃r± ǫ,j,r± ǫ,t± ǫ

}r
j= 1

and Fz
r =

{
f̃r± ǫ,r± ǫ,k,t± ǫ

}r
k= 1

, and 6r,t is the mean of

the union of these weighted elements of the normalized 4D
spectrum. Averages involving higher spatial frequencies are taken
in neighborhoods of the fastest available frequency in each spatial

FIGURE 2 | Left: Examples of individual spatiotemporal spectral profiles (STSPs); Right: Means for entire sample (top) and standard deviations (bottom).
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dimension less than or equal to r (shrinking the cubical radius
to accommodate edges as necessary). While the idea of this
1-parameter spatial frequency sampling scheme is to capture
periodic patterns of roughly homogeneous extent in x, y, and
z, it should be noted that the differing maximal span of gray
matter in each direction distorts this objective somewhat: the rth

indexed spatial frequency in each Euclidean direction references
a different frequency in terms of cycles/voxel or cycles/mm. For
example, the 23rd frequency has voxel-periodlength 2 in the z-
direction and voxel-periodlength approximately 2.78 ≈ 2 32

23 in

the x-direction. Elements of the rth row of 6 all summarize
power in different temporal frequency bins of spatial frequency

triples that are simultaneously approximately 1
2

k
32 cycles/voxel,

or 1
6

k
32 cycles/mm (voxels are 3mm3), in the x, y, and z

directions.

Spatial Spectral Profiles (SSPs)
Although STSPs are the main focus of our analysis, we employ
a purely spatial version of this construction to characterize
functional network 3D spatial maps (SMs), obtained from a
group independent component analysis (GICA) applied to our
data (Damaraju et al., 2012). The spatial spectral profile (SSP)
of the 63 × 53× 46 network SMs is the length 32 =

⌈
63
2

⌉

vector whose rth element is the average value in the weighted

radius-2 hypertubes through the (r, 1, 1) , (1, r, 1) and (1, 1, r)th

element of the normalized spectrum F̃ =
{
f̃i,j,k

}32
i,j,k= 1

of the 3D

network maps. The procedure is exactly as described in Section
Spatiotemporal Spectral Profiles (STSPs) above, except there is
not an additional time dimension.

Model Selection and Univariate Tests
Starting with a full model consisting of 49 explanatory variables:
age, gender, diagnosis, mean frame displacement (motion), site
indicators for each of the six sites and all pairwise interactions
we implement multivariate backward model selection utilizing
thethe Matlab-based MANCOVAN toolbox (http://mialab.mrn.
org/software/mancovan/) (Allen et al., 2011). The site indicators
were treated as a group: if one survived model selection then
all would be retained. This procedure yielded a reduced model
involving only first-order main effects (age, gender, diagnosis)
plus the six site indicators. Having selected a parsimonious
model based on overall multivariate explanatory power, we then
estimate parameters separately for each of the spatiotemporal
frequency combinations σr,t ∈ 6. So for each (r, t) ∈

{1, 2, . . . , 32} × {1, 2, . . . , 81} we estimate 2692 = 32 × 81
univariate models:

σr,t = β
(r,t)
0 +

∑

k∈{age, gender, diagnosis}

β
(r,t)
k

Xk +
∑

site∈{1,2,..,6}

β
(r,t)
site Xsite

Spatially-Filtered FNCs
The fMRI dataset utilized in this study recently underwent
a thorough group ICA-based functional network connectivity
(FNC) analysis (Damaraju et al., 2012), yielding 47 meaningful
functional network SMs and associated timecourses (TCs). One

way to incorporate spatial frequency domain information into
an FNC framework is to evaluate correlative properties of
network timecourses on SMs that have been filtered for frequency
content in restricted spatial frequency bands. We call this a
spatially-filtered FNC (SFFNC) analysis. There is a body of
work (Cordes et al., 2001a,b; Sasai et al., 2014; Tenney et al.,
2014) in which correlations are measured on timecourses whose
temporal frequency content is band-filtered. SFFNCs are the
spatial frequency domain analog, in which network SMs are
spatially band-filtered, yielding a distinct collection of network
timecourses associated with each spatial frequency band. The
SFFNCs used here are the result of filtering all 100 network SMs
(the 47 functional networks and the remaining 53 determined
to be artifactual) obtained from the GICA reported in Damaraju
et al. (2012) for their content in each of the following overlapping
spatial frequency bands:

Band # Cycles/mm

1 [0.0000, 0.0239]

2 [0.0119, 0.0358]

3 [0.0239, 0.0477]

4 [0.0358, 0.0716]

5 [0.0477, 0.0835]

6 [0.0596, 0.0835]

7 [0.0716, 0.0954]

8 [0.0835, 0.1074]

9 [0.0964, 0.1193]

10 [0.1074, 0.1312]

11 [0.1193, 0.1431]

12 [0.1312, 0.1551]

13 [0.1431, 0.1670]

To retain the important spatial structure that makes network
SMs identifiable as objects with functional roles, the one-
parameter spatial filtering applied here is more inclusive
than the analogous process used to produce STSPs from
subject spatial data. The filter for spatial frequency band
[r1, r2] cycles/mm consists of unweighted frequencies with
either x-direction restricted to [r1, r2] or y-direction restricted
to [r1, r2]or z-direction restricted to [r1, r2]. Spatially-filtered
network timecourses (SFTCs) for each spatial frequency band
are produced by regressing subject data on the 100 filtered
SMs The SFFNC at each spatial frequency band is the
correlation matrix for the 47 functional network SFTCs
produced by regression on SMs filtered for content in
that band.

Results

Our approach (Figure 4) differs meaningfully from the cross-
network correlational analysis typically applied to fMRI data
(Jafri et al., 2008; Rubinov and Sporns, 2010; Erhardt et al.,
2011b; Kaiser, 2011; Power et al., 2011; Beckmann, 2012; Smith
et al., 2013a). Its starting point is a 2D spatiotemporal frequency
profile 6 of the full 4D image volume, in toto (Figures 2, 3).
This profile summarizes the characteristic temporal rates at
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FIGURE 3 | Schematic breakdown of spatiotemporal spectral profile (STSP) with arrows to examples of subject data filtered for content in indicated

spatiotemporal frequency bands.

FIGURE 4 | Schematic outline of methods.

which different scales of generic, non-located spatial activation
fluctuate and recur through the 3D brain volume. It is quantifying
the relative contributions of 3D spatial intensity patterns

of roughly homogeneous directional periodlengths moving at
different temporal frequencies through the 4D fMRI signal. The
coefficients from a 4D Fourier decomposition inherently capture
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FIGURE 5 | Sampling scheme in exhibited in 2D setting. Top Row: The

Gaussian weighting scheme centered at (x,y) spatial frequencies with indices

ρ = 1, 2, 4, 7, 10, 20, and 30; Bottom Row: Corresponding 2D spatial

signals generated by inverse Fourier transforming a random set of

unit-magnitude complex coefficients, weighting according to the sampling

scheme displayed immediately above.

spatial and temporal frequencies simultaneously: the magnitude

of the (i, j, k, t)th coefficient is the amount of power in the 4D
signal living jointly in the ith x-direction spatial frequency and
the jth y-direction spatial frequency and the kth z-direction spatial
frequency and the tth temporal frequency (refer to Methods
Section for details).

Age, Gender, and Schizophrenia Diagnosis as
Predictors of Spatiotemporal Spectrum
The results of this analysis (Figures 6–8) indicate striking
differences in spatiotemporal organization of brain activity that
correlate with presence of diagnosed schizophrenia, as well
as with gender and age. Comparing schizophrenia patients
with controls, we see a sharp distinction across almost
all spatial frequencies developing at approximately 0.10Hz
(Figure 6: top left, top right). This finding is consistent in
spirit with growing evidence of greater power in higher
temporal frequencies for patients compared with controls at
the voxel and network levels (Garrity et al., 2007; Calhoun
et al., 2008, 2011; Skudlarski et al., 2010). It should be
remembered that the temporal frequencies reported here
represent rates of change and recurrence of spatial patterns of
various scales. Generic dynamics of this type obviously underlie
network-level behavior, but the time-identified dimension of
a signal’s four dimensional spatiotemporal spectrum cannot
be directly translated into knowledge of one dimensional
temporal spectra at either the indexed voxel or network levels.
The stark dividing line at temporal frequencies near 0.10Hz.,
spanning most spatial frequencies, observed for diagnostic
status also characterizes the contribution of increasing age
to spatiotemporal spectral power (Figure 7). The pattern for
gender is more complicated: males dominate mid-range spatial
frequencies over a wide range of temporal frequencies; females
have more power in high spatial frequencies through most
temporal frequencies, and more power in all but the mid-range
spatial frequencies at temporal frequencies greater than 0.10Hz
(Figure 8).

Integration with Network and Correlation-Based
Approaches
The present work captures fundamentally different information
about brain activation than is typically analyzed in fMRI studies
(van den Heuvel and Pol, 2010; Power et al., 2011; Tomasi
and Volkow, 2012; Smith et al., 2013b; Sporns, 2013b). Our
analysis deals with properties of the ambient spatiotemporal
activation environment within which networks and regions of
interest perform their understood functional roles. Since the
data treated here recently underwent a thorough FNC analysis
(Damaraju et al., 2012), we happen to have a set of meaningful
functional network SMs and associated timecourses (TCs) with
which to probe the indirect connections between the two
approaches.

There are two dimensions along which it is tempting to
make comparisons. Since our work takes place in the frequency
domain, we first consider the network timecourse spectra
(Figure 9). The effect of diagnosis on STSP breaks more
cleanly along the temporal frequency axis than either age or
gender (Figure 9(I.A)) shows just the sign of the effect, i.e.,
whether the effect favors healthy controls (blue) or schizophrenia
patients (maroon), regardless of statistical significance and
group differences in average power taken over all networks
at different temporal frequencies (Figure 9(I.C)) show nearly
perfect alignment with the effect of diagnosis on STSP in
the temporal frequency dimension. Even along this temporal
frequency dimension however, the effect of diagnosis on STSP
displays much greater statistical significance than (Figure 9(I.B))
than does the diagnosis effect on individual network timecourse
spectra (Figure 9(I.D)) indicating that patterns of temporal
recurrence localized to specific spatial frequency bands is a form
of information to which certain explanatory variables (all of those
included in this study) “tune” their effects.

The directional effect of age (blue is negative; maroon is
positive) on STSP (Figure 9(II.A)) actually extends into higher
temporal frequencies than is evident in the group average power
difference taken over functional networks at different temporal
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FIGURE 6 | Results of Univariate Regression of STSP elements on

Main Effects. Top Left: Coefficients (red shades are SZ > HC; blue

shades are HC > SZ) for diagnosis, where schizophrenia patients are

coded as ones and healthy controls as zeros; Top Right: –log10 (p) of

univariate p-values that survive FDR correction at the α = 0.05

significance level. Bottom: Figure displaying prior results from the

temporal frequency domain. Significant differences between healthy

controls (positive direction) and schizophrenia patients (negative direction)

in given temporal frequency bin for various functional networks (from

Calhoun et al., 2008).

frequencies (Figure 9(II.C)). The extended directional effect in
temporal frequency is restricted to lower spatial frequency bands
in which the network SMs carry most of their power (Figure 10).
The inability of network timecourse spectra to reflect temporal
activation localized within specific spatial frequency bands seems
both to dilute the power of the age effect (Figures 9(II.B,D))
and to obscure the range of the directional effect in the temporal
frequency domain.

The directional effect of gender on STSP (Figure 9(III.A))
patterns heavily along the spatial frequency axis, making
comparison with results drawn exclusively from the temporal
frequency domain (Figure 9(III.C)) less straightforward. The
picture with gender and the spatial frequency domain is complex,
and will be explored more thoroughly in forthcoming work. We
see, for example, that the effects favoring males (blue) are evident
in the network timecourse spectra even when they occur in
restricted spatial frequency bands. However, effects on STSPs that
favor females (maroon) are reflected in the temporal frequency
domain primarily when they are nearly uniform over spatial
frequencies. As was true with age and diagnosis, we also observe
that gender effects on patterns of temporal recurrence localized to
specific spatial frequency bands (Figure 9(III.B)) are much more

statistically powerful than gender effects on network timecourse
spectra (Figure 9(III.D)).

Comparisons between the spatiotemporal spectral analysis
(STSPs) presented here and those based correlative network
timecourse behavior (FNCs) can be accomplished only indirectly.
The temporal phase information that underpins correlative FNC
analysis is not explicitly accounted for in STSPs. Moreover,
network timecourses contain neither explicit information about
distributive patterns in space nor about phase-blind matching of
signal frequency or amplitude (Figures 11, 12). To investigate
implicit connections between STSPs and FNCs, we employ the
SFFNCs detailed in Methods. Continuing with the predictive
model used for the STSP analysis, we regress each network-pair
correlation in an SFFNC on age, gender, diagnosis. The results
do not have a straightforward interpretation, but do indicate that
the cross-network correlative properties of functional network
timecourses are strongly affected by the spatial frequency content
of estimated brain networks.

Diagnosis was the explanatory variable whose effect on STSPs
was most temporally determined (Figure 9(I.A)). In such a case
it would seem that space is nearly irrelevant, at least with respect
to effect directionality. We see however that subtle differences
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FIGURE 7 | Results of Univariate Regression of STSP elements on

Main Effects. Top Left: Coefficients (red shades indicate positive

correlation with age; blue shades indicate negative correlation with age) for

age, Top Right: −log10(p) of univariate p-values that survive FDR correction

at the α = 0.05 significance level. Bottom: Figure shows −sign(t)log10(p) for

temporal frequency bins with power declining statistically significantly with

age in functional networks indexed along the y-direction and clustered

according to their functional role (from Allen et al., 2011).

in effect strength across spatial frequencies can be reflected in
SFFNCs (Figure 13), even in the case of an explanatory variable
such as diagnosis whose directionality is nearly uniform in space.
Further exploration of the relationship between SFFNCs and
spatial frequency content of functional networks can be found in
the Ancillary Results subsection below.

Ancillary Result: Simulations Illustrating
Strengths and Limitations of FNC and STSP
Analyses
Connectivity-based methods and spatiotemporal spectral
techniques such as the one we introduce here are sensitive to
different features of fMRI data. We present a set of stylized (i.e.,
highly simplified, non-biologically realistic) simulations to clarify
and illustrate certain features of spatiotemporal signals that are
detected or overlooked by FNC and STSP analyses. The temporal
behavior of networks can differ in signal amplitude, frequency or
phase. Moreover, the voxel intensities that define networks can
distribute differentially in space, presenting in sparse spider-like
patterns or broad regions of homogeneous intensities. For each
example we start with two parcellations of a medial axial slice
into distributed networks. One such parcellation is dominated
by lower spatial frequencies (Figure 11A), the other by higher
spatial frequencies (Figure 11C). Every voxel of a given network

is assumed to behave identically–a simplification that is intended
to clarify methodological strengths and weaknesses, not to mimic
biological realities. Signals varying along some parameter of
interest, say amplitude (Figure 11B), are then assigned randomly
to a set of networks in the parcellation.

In the first scenario we investigate, a brain1 is assumed to
consist of distributed networks whose activation, and degree
of co-activation, are expressed entirely in signal amplitude.
The whole brain operates at a common set of temporal
frequencies/phases. Networks here activate and co-activate based
only on their relative timecourse amplitudes. FNC provides
no information about which networks are co-activating in
this simplified situation, nor about how the co-activating
networks occupy space (Figures 12A,B). STSPs show that
networks are co-activating (with respect to signal amplitude) at
temporal frequencies around 0.01Hz (Figures 12AA, BB), and
also indicate that in one case (Figure 12AA) the co-activating
networks are, spatially, dominated by lower spatial frequencies,
while in the other (Figure 12BB), the co-activating networks
exhibit noticeably less low spatial frequency power, and more
high spatial frequency power in the relevant temporal frequency
interval.

1A “brain” here is taken to be the hemodynamic signal associated to that brain via

a resting state fMRI recording.
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FIGURE 8 | Results of Univariate Regression of STSP elements on

Main Effects. Top Left: Coefficients (red shades are F > M; blue

shades are M > F) for gender, Top Right: −log10(p) of univariate

p-values that survive FDR correction at the α = 0.05 significance level.

Bottom: Figure shows −sign(t)log10(p) for temporal frequency bins with

greater power in males than females in functional networks indexed

along the y-direction, and clustered according to their functional role

(from Allen et al., 2011).

FIGURE 9 | (IA) Sign of diagnosis effects Figure 6 (top left); (IB) Diagnosis

effects on STSP that are significant at the α = 0.05 level after FDR correction;

(IC) Average power of all 47 functional network timecourses from Allen et al.

(2011): healthy controls minus schizophrenia patients; (ID) Diagnosis effects

on functional network timecouse spectra that are significant at the α = 0.05

level after FDR correction; (IIA) Sign of age effects Figure 8 (top left); (IIB)

Age effects on STSP that are significant at the α = 0.05 level after FDR

correction; (IIC) Average power of all 47 functional network timecourses from

Allen et al. (2011): younger subjects (18–34 year olds) minus older subjects

(35–60 year olds); (IID) Age effects on functional network timecouse spectra

that are significant at the α = 0.05 level after FDR correction; (IIIA) Sign of

gender effects Figure 7 (top left); (IIIB) Gender effects on STSP that are

significant at the α = 0.05 level after FDR correction; (IIIC) Average power of

all 47 functional network timecourses from Allen et al. (2011): males minus

females; (IIID) Gender effects on functional network timecouse spectra that

are significant at the α = 0.05 level after FDR correction.

In our second scenario, the “brain” consists of distributed
networks whose activation, and degree of co-activation, are
expressed entirely through temporal signal frequency. The

whole brain operates at a common set of amplitudes and
phases. Networks here co-activate based only on similarity
of timecourse frequency. FNC provides no information about
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FIGURE 10 | Spatial Spectral Profiles (SSPs) of the 47 functional

networks identified in our sample using Group Independent

Component Analysis (GICA) (Allen et al., 2011). Left : Spatial power

distribution: medians, quantiles, and outliers for all 47 networks. Middle:

SSPs of each of the 47 networks in labeled columns. Functional clusters

indicated along bottom horizontal. Rough spatial frequency bands indicated

along the left vertical axis. Right: Standard deviations of SSP spatial power

over all 47 networks.

how the co-activating networks occupy space in this situation
(Figures 12C–F) and no real sense that in one sub-case
(Figures 12C,D) the frequencies are very slow, indicating a
kind of dormant coactivation while in the other sub-case
(Figures 12E,F) co-activating networks are authentically active,
producing signals with some frequency content in the 0.1Hz
range. STSPs clearly show that co-activating networks in one
case (Figures 12CC,EE) are characterized by lower spatial
frequencies, and in the other case (Figures 12DD,FF) by higher
spatial frequencies. Moreover, the STSPs clearly separate the
dormant (very low temporal frequency) and active (higher
temporal frequency) coactivation sub-cases (Figures 12CC,DD

vs. Figures 12EE,FF).
The “brain” of the last scenario consists of distributed

networks whose activation and degree of co-activation, are
expressed entirely through temporal phase. The whole brain
operates at a common set of amplitudes and frequencies.
Networks here co-activate based only on similarity of timecourse
phase. As we might expect, since correlation is a rough
measure of phase-locking, FNC is fairly informative here.
It does not, of course, give much information about how
co-activating networks occupy space information about how
the co-activating networks occupy space (Figures 12G,I vs.
Figures 12H,J), but the sub-case in which relative phase lags are
small shows many more networks co-activating than does the
sub-case in which larger phase lags are included (Figures 12G,H
vs. Figures 12I,J). For the small relative phase-lag sub-case,
STSPs are unable to detect much about co-activation patterns
or spatial frequency properties of the co-activating networks

(Figures 12GG,HH). Larger temporal phase lags enable STSPs
to more clearly pick up spatial frequency differences networks
(Figures 12II,JJ).

Ancillary Results: Spatially Filtered FNCs and
Network Spatial Spectra
The relationship between spatiotemporal frequency domain
properties and nodal network timecourse correlations (FNCs)
is complex. More than one set of properties can obtain in
a collection of network SMs and timecourses associated to
data that produces a given STSP. Similarly, the timecourse
correlation structure for a given set of network SMs does
not strongly constrain STSP. Most obviously, the correlation
between two timecourses says nothing about their frequency
decompositions. SFFNCs are hybrid objects that straddle the
two approaches, offering opportunities for insight into how
they interact.

SFFNC Diagnosis Effects as a Function of Spatial

Frequency Band of the Filter
We introduce the functionϕ:(0, 1) → R

+ (Figure 13A), which is
intended to capture the relative importance of spatial frequencies
around r

6 Cycles/mm in the overall 4D signal diagnosis effect.
For r ∈ (0, 1), ϕ(r) is the sum of the magnitudes of the FDR-
surviving STSP diagnosis effects (Figure 13B) at r

6 Cycles/mm
rescaled by the average proportion of functional network SSP
spatial power at that spatial frequency. The idea here is to
give more “credit” for diagnosis effects in spatial frequency
bands that contribute heavily to the SMs we are filtering in
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FIGURE 11 | (A) Slower spatial frequency slice parcellation; (B) Slower

temporal frequency signals randomly assigned to regions of (A), line

thickness scales with region size; (C) Faster spatial frequency slice

parcellation; (D) Example of slower spatial frequency activation pattern

based only on differential timecourse amplitudes; (E) Example of faster

spatial frequency activation pattern based only on variation in the timecourse

phases; (F) Example of slower spatial frequency activation pattern based

only on differing timecourse frequencies.

order to perform the SFFNC analysis. The maximum, ϕmax,
of ϕ should occur at a spatial frequency r̂ exhibiting both
strong STSP diagnosis effects and significant contribution to
network SMs. Thus, we might expect SFFNC diagnosis effects
to bear some relationship to values assumed by ϕ. This is in
fact what happens. The diagnosis effects on SFFNCs taken on
spatial frequency bands [r1, r2], r1 < r2 ≤ r̂ (Figure 13C)
are pervasive. We display one example but the others are
visually indistinguishable from this case. There is a bifurcation
at r̂ = 0.05 Cycles/mm where ϕmax is achieved. The SFFNC
diagnosis effects on the first spatial frequency band including
frequencies greater than r̂ (Figure 13D) differs starkly from
the SFFNCs both for lower spatial frequencies. (Figure 13C)
and for higher spatial frequencies (Figure 13E). This indicates
an important role for spatial frequency content even for
explanatory variables whose directional effects are temporally
determined.

SFFNC Diagnosis Effects and Spatial Frequency

Content of Functional Network Spatial Maps
The variance of network-pair SFTC correlations (Figure 14A)
in SFFNCs evaluated over sliding windows through the spatial
frequency domain (see Methods Section, subsection concerning
Spatially Filtered FNCs) is a measure of the sensitivity of FNC
correlation data to scaled properties of network spatial structure.
We might expect that the variance of the SSP (Figure 14D) of
a network would have some bearing on the sensitivity of the
network’s timecourses to spatial filtering of the network SMs
(Figure 14B). This is not completely straightforward because
each network’s SFTC in a given spatial frequency band depends
on how all the other spatial networks are affected by the spatial
filtering. The sensitivity of a network’s SFTC correlations to
spatial map filtering should depend on a combination of the
spectral variability of its own spatial map and the degree to which
its spectral properties are similar to those of other networks.
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FIGURE 12 | FNCs (A,B) and STSPs (AA,BB) of simulated slow

(A,AA) and fast (B,BB) spatial frequency data in which region

timecourses vary only in amplitude; FNCs (C,D,E,F) and STSPs

(CC,DD,EE,FF) of simulated slow (C,E,CC,EE) and fast

(D,F,DD,FF) spatial frequency data in which region timecourses

vary only in frequency[slow frequency regime (C,D,CC,DD)];

mixed frequency regime (E,F,EE,FF); FNCs (G,H,I,J) and STSPs

(GG,HH,II,JJ) of simulated slow (G,I,GG,II) and fast (H,J,HH,JJ)

spatial frequency data in which region timecourses vary only

in phase (small phase lag regime G,H,GG,HH; large phase lag

regime I,J,II,JJ). Parcellations and simulated data is identical for

each letter/double-letter combination. Otherwise, the parcellations and

signals have properties indicated, but represent a distinct runs of

the simulation.

This latter aspect affects the likelihood that a network’s role
relative to other networks changes under spatial filtering, which
in turn impacts the likelihood that the network SFTCs will
correlate differentially with other network SFTCs according to
the frequency band of the spatial filter applied to network SMs.

Figure 14G shows the a significant (convex) parabolic
relationship distinctness of network SSP (as measured by the
average distance of a given SSP from all the others) and SSP
variance, i.e. network SMs with the highest and lowest spectral
variability are most spectrally distinct from other networks in

the L1 sense and those with average spectral variability are least
distinct.

A combined role for SSP distinctness and variability in
predicting SFFNC variances is supported by the significant
(concave) parabolic relationship between network SFFNC
variance with respect to spatial frequency band and full-
spectrum network SSP variance (Figure 14E). This indicates
that the highest and lowest variance SSPs, which are also the
most distinct, belong to networks with relatively low SFFNC
sensitivity to spatial frequency band, while those SSPs with more
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FIGURE 13 | (A) Bar plot of ϕ(r), a weighted sum of the magnitudes

of FDR-surviving diagnosis effects at spatial frequency r Cycles/mm

(the maximum ϕmax of this function occurs at approximately r̂ =

0.05 Cycles/mm); (B) Diagnosis effects on STSP that are significant

at the α = 0.05 level after FDR correction; (C) Representative

FDR-significant diagnosis effects on spatially-filtered FNC for spatial

frequency bands [r1,r2 ] with r1 < r2 ≤ r̂; (D) FDR-significant diagnosis

effects on spatially-filtered FNC for spatial frequency band r̂ ± 0.01

Cycles/mm; (E) Representative FDR-significant diagnosis effects for

spatial frequency bands [r1,r2 ], r̂ < r1 < r2; network order along axes

of displayed SFFNCs is identical to that in prior and subsequent

figures.

average variance, which also happen to be less distinct, belong
to networks with high SFFNC sensitivity to spatial frequency
band.

Discussion

Our results show that broad organizing principles influencing
the rate at which scaled spatial activation patterns recur in time
differ across populations of interest, suggesting more complex
interplay than is typically investigated between nodal network
timecourses and the ambient multi-scaled hemodynamic activity
from which they are distilled (Breakspear et al., 2006). We
trade off resolution on correlation and nodal identity for an
“aerial view” of scaled spatial activation patterns throughout the
brain developing in time. While (temporal) phase synchrony,
i.e., timecourse correlation, is not captured explicitly in this
analysis, phase-locking between distributed spatial regions of
various scales will appear as power at relevant spatiotemporal
frequencies–where the set of relevant frequencies is modulated
by phases and frequencies of the signals from complementary
regions.

Correlational behavior per se is less directly identifiable
in 4D spectral data. The STSPs we report here however
does succeed in highlighting important features of brain
activation that are obscured in conventional FNC analyses.
For example (Figures 11, 12), the presence or absence of
broad spatial frequency bands is detectable in this setting for
spatial activation patterns resulting from variations in signal
amplitude, frequency or phase. Standard FNC approaches cannot

distinguish between the temporally correlated behavior of near-
dormant regions and that of highly active regions. Different rates
of temporal activation are very clearly exposed however in STSPs.
Furthermore, while temporal phase differences are certainly
captured explicitly in FNC analyses, the ways that phase-
synchronized regions distribute in space (possibly differentially
across populations) cannot be extracted from nodal timecourse
correlations.

We find that previously reported temporal frequency domain
results from schizophrenia patients (with respect to nodal
network timecourses) (Garrity et al., 2007; Calhoun et al., 2008,
2011; Skudlarski et al., 2010) persist under the addition of
a spatial dimension and actually pervade all scales of spatial
organization, not merely those in which functional networks
carry significant spatial power.

The effect of schizophrenia diagnosis on STSP breaks cleanly
along the temporal frequency axis, but this need not be the
case. For example, the two genders affect STSP in frequency
bands defined along different axes (see Figures 8, 15). Here
we see higher temporal frequencies dominated by women
while it is a middle band of spatial frequencies that is most
associated withmales. There are only a small number of networks
and temporal frequencies for which male subjects showed
significantlymore network timecourse power than females (Allen
et al., 2011). The networks involved are auditory, sensorimotor,
and attentional, which–like all identified functional networks–
have significant power in lower spatial frequencies, but also
have non-negligible power in many mid-range and several high
spatial frequencies. The temporal behavior of the components
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FIGURE 14 | (A) Mean z-scored (within-subject) variances over spatial

frequency bands of cross-network SFTC correlations; (B) Network-wise

sums of the SFFNC variances from (A); (C) Network spatial map SSPs;

(D) Z-scored network SSP variances; (E) Scatterplot of summed z-scored

network cross-frequency SFFNC variances against z-scored network

spatial map SSP variances, indicating a roughly parabolic (y = 4.44

−5.14x− 4.54x2, quadratic term p = 0.04 relationship between the two

quantities.

with non-negligible mid-range spatial power shows up in STSPs
as favoring males at temporal frequencies including, but not
limited to, those under 0.075Hz. where males had more power
in the network timecourse spectral analysis (Allen et al., 2011)
(Figure 15). There are spatiotemporal frequency combinations
that significantly favor females in the STSP regression analysis,
although the network timecourse spectra have no frequencies
in which females carry significantly more power. Moreover, the
temporal dimension of the STSP alone does not separate males
from females; there are spatial frequencies in which men have
more power than women, and vice versa at most temporal
frequencies in [0.00, 0.13] ∪ [0.22, 0.25]Hz.

The connections between STSPs of full-volume fMRI data
and network connectivity analysis are indirect but intriguing.

There are echoes in each analysis of results obtained by the
other. In the case of an explanatory variable such as diagnosis,
whose effects on STSPs are nearly uniform (directionally) over all
spatial frequencies, the 0.10Hz. temporal-frequency breakpoint
in effect directionality is respected by network timecourse spectra
(Figures 9(I.A,D)). Even in this rather pure example of temporal
domain dominance of effect directionality, some additional
observations apply:

(1) It is only a small subset of networks and temporal
frequencies for which the diagnosis effect on network
timecourse spectra is statistically significant (Figure 9(I.D)),
whereas the diagnosis effect is pervasive and significant
across spatial frequencies and through most temporal
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FIGURE 15 | Spatial Spectral Profiles (SSPs) of the 47 functional

networks identified in our sample using Group Independent

Component Analysis (GICA) (Allen et al., 2011). (Top Left,

Bottom Left): Spatial power distribution: medians, quantiles,

and outliers for all 47 networks (Top Middle): SSPs of each of the 47

(Continued)
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FIGURE 15 | Continued

networks in labeled columns. Functional clusters indicated along bottom

horizontal. Rough spatial frequency bands indicated along the left

vertical axis. (Top Right, Bottom Right): Standard deviations of SSP

spatial power over all 47 networks. (Middle): Figure

shows –sign(t)log10(p) for temporal frequency bins with greater power in

males than females in functional networks indexed along the y-direction,

and clustered according to their functional role (Damaraju et al., 2012)

(Bottom Middle): Results of univariate Regression of STSP elements

on main effects.

frequencies on either side of the 0.10Hz. breakpoint
(Figure 9(I.B)).

(2) The overwhelming significance and stark temporal
frequency domain demarcation of diagnosis effect
directionality obscures some variation over spatial
frequencies in both effect magnitude and reach through
the temporal frequency domain. This variation is indirectly
evident, however, in the number of significant effects on
SFFNCs performed in different spatial frequency bands
(Figures 14C–E).

The present approach is one of many possible routes into more
direct reckoning with structured (Euclidean) spatial patterns of
brain activation evolving in time. It is our initial foray into this
area, and our focus here was on transparency at each stage:
the decomposition is into canonical familiar waveforms, leading
to a 2D reduction whose heuristic underpinnings are relatively
easy to visualize and interpret. There are many limitations
to the current approach. It assumes for example that the
fMRI signal is temporally and spatially stationary, a simplifying
assumption that shows no evidence of being true in the case
of resting state data (Hutchison et al., 2013; Calhoun et al.,
2014; Leonardi et al., 2014; Tagliazucchi et al., 2014; Zalesky
et al., 2014). Very simple progress on this front has already
been reported (Calhoun et al., 2014; Miller and Calhoun, 2014)
with a time-windowed version of the analysis presented here.
There is also the matter of physiological confounds (heart-
rate, respiration) whose role in higher temporal frequencies is
actively debated. A spectral domain study such as ours allows
one to focus on whichever frequency bands are of interest; results
pertaining to lower temporal frequencies are not contaminated
by the reported results from higher temporal frequencies. Also,
although averaging effects in a study this size can overcome
subject level spectral leakage, adding a windowing step (as in
Welch’s method) to our pipeline would further mitigate the
potential for subject-level estimator bias to impact group results.
Investigations of spatiotemporal scaling properties in fMRI data
are one way of working directly with both spatial and temporal
features of the data (Ribeiro et al., 2010; Expert et al., 2011; Ciuciu
et al., 2012; Tagliazucchi et al., 2012). The 4D wavelet transform
is one particularly promising vehicle for extending the current
frequency domain approach toward a more comprehensive
characterization of the 4D signal, one that is free of both spatial
and temporal stationarity assumptions. Exploring the full fMRI
signal as a dynamically evolving composition of structuredmetric
3D spatial patterns is the ultimate goal. Here we have introduced

a simple first step which, despite averaging out many effects
that would appear in a time and space-varying (non-stationary)
version of the analysis has revealed some interesting features
of the global signal. Moreover, the fact that even this relatively
“blurred” characterization of the spatiotemporal organization
of whole-brain resting-state brain activation captures highly
significant effects of both gender and mental illness indicates that
the 4D frequency domain is a powerful source of information
about normative and group-specific brain function.

Conclusions

The approach we propose is intended to capture information
that speaks to the full range of neurophysiological mechanisms
governing how information distributes over the brain in
space and in time. The salient underlying neurophysiology
is happening at molecular, cellular and network scales
simultaneously, and we would not expect the same scales to be
equally implicated in different neurological disorders. Rather
we would hope that knowledge of the relevant neurophysiology
in a given condition would generate hypotheses to explain
observed high-level spatiotemporal spectral differences, possibly
leading to a deeper understanding of how different scales of
neurophysiological mechanism interact to produce productive
and counterproductive patterns of brain activation. Our analysis
shows that abstract (non-located) spatiotemporal organizing
principles of brain activation differ across populations of interest,
a finding that has implications for the interpretation of FNC
results and that we hope will provide a jumping off point for
more sophisticated investigations of the ambient spatiotemporal
activation dynamics that simultaneously constrain and influence
functional networks.
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