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Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs)

are the focus of current machine learning research and achieve state-of-the-art

results in different domains. However, both training and execution of large-scale Deep

Networks require vast computing resources, leading to high power requirements

and communication overheads. The on-going work on design and construction of

spike-based hardware platforms offers an alternative for running deep neural networks

with significantly lower power consumption, but has to overcome hardware limitations

in terms of noise and limited weight precision, as well as noise inherent in the sensor

signal. This article investigates how such hardware constraints impact the performance of

spiking neural network implementations of DBNs. In particular, the influence of limited bit

precision during execution and training, and the impact of siliconmismatch in the synaptic

weight parameters of custom hybrid VLSI implementations is studied. Furthermore, the

network performance of spiking DBNs is characterized with regard to noise in the spiking

input signal. Our results demonstrate that spiking DBNs can tolerate very low levels of

hardware bit precision down to almost two bits, and show that their performance can

be improved by at least 30% through an adapted training mechanism that takes the bit

precision of the target platform into account. Spiking DBNs thus present an important

use-case for large-scale hybrid analog-digital or digital neuromorphic platforms such as

SpiNNaker, which can execute large but precision-constrained deep networks in real

time.

Keywords: Deep Belief Networks, spiking neural networks, SpiNNaker, noise robustness, neuro-inspired hardware

1. Introduction

Deep neural networks represent the state-of-the-art solution for virtually all relevant machine
learning, computer vision, and speech recognition benchmarks (Schmidhuber, 2015). Their
advantage over shallow architectures lies in their ability to extract hierarchies of increasingly
abstract relevant features, which give rise to a data representation that lends itself for task-specific
optimization. Whereas convolutional networks (LeCun et al., 1998; Sermanet et al., 2014) currently
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outperform other architectures on many vision tasks, the
alternative architecture of Deep Belief Networks (DBNs) (Hinton
and Salakhutdinov, 2006) remains very popular due to its ability
to learn from large unlabeled datasets (Le et al., 2012), and
because of its dual role as classifier and generative model of the
data. In addition, DBNs have been shown to improve theoretical
performance bounds by adding additional layers of neurons
(Hinton and Salakhutdinov, 2006). Although training larger
and larger networks is currently the focus of academic and
industrial research, this has led to growing demands on hardware
platforms for deep learning. While training remains the biggest
bottleneck, and some of the biggest networks trained to date
have required days or weeks on high-performance computing
infrastructure (Dean et al., 2012; Le et al., 2012), the sheer size of
the resulting network calls for special purpose or GPU hardware
acceleration to make the system run close to real-time (Farabet
et al., 2011). However, low latency and real-time execution
are key demands for mobile and robotic systems, which have
limited computing resources and power but require quick system
responses.

A recently proposed solution to overcome the energy
demands, communication overhead, and high response latencies
of DBNs is to transform them into spiking neural networks,
thereby exploiting the energy efficiency of event-based updates
and communication (O’Connor et al., 2013). Furthermore, the
proposed framework, which has shown the desired low latency
and high efficiency is targeted for implementation on event-
based neuromorphic hardware platforms. Event-driven networks
can have higher energy efficiency because a clock is not used
in the network simulation, and not every neuron updates in
every time step. The efficiency of the event-driven platform
TrueNorth (Merolla et al., 2014b) is around 46 GSops/W, where
Sops stands for synaptic operations per second.

A first hardware implementation of a spiking DBN was
achieved on an event-driven Field-Programmable Gate Array
(FPGA), yielding an implementation of spiking DBNs called
Minitaur (Neil and Liu, 2014). The energy efficiency of
Minitaur measured on the digit classification task using the
MNIST database is around 12.48–18.73 MSops/W while the
CPU efficiency for a Core 2 Duo running the same DBN
network is 1.68 MSops/W. Based on Minitaur, we have
recently presented an even more efficient implementation
of deep neural networks on SpiNNaker (Stromatias et al.,
2015a,b), a hardware platform optimized for scalable event-
based simulations (Furber et al., 2014). This platform has a
biologically-inspired architecture designed to enable low-power
and low-latency massively parallel large-scale simulations of
heterogeneous models of spiking neurons in real-time. A single
SpiNNaker board with 48 Application-Specific Integrated Circuit
chips (SpiNN-5), which is the building block for creating larger
SpiNNaker machines, delivers up to 54.27 MSops/W in real-time
(Stromatias et al., 2013). Because of this massive parallelism and
SpiNNaker’s optimized communication infrastructure, spiking
network implementations on SpiNNaker have beneficial scaling
properties, allowing to overcome the latency, communication,
and energy issues of conventional computing systems for real-
time applications.

However, gains in energy efficiency should not be outweighed
by losses in classification performance due to computation
with spikes instead of real numbers, or due to limitations of
the hardware compared to conventional computers. The hope
is that in networks of such large size, numerical imprecision
would rather cancel out than accumulate. In the conversion
of O’Connor et al. (2013) from digital to spiking DBNs in
software only small performance losses and overall very good
performance was reached. These results also hold for Minitaur
(Neil and Liu, 2014). In the present article we present a full
characterization of software implementations of spiking DBNs,
developing a set of case studies to determine the impact of
the hardware bit precision, the input noise, weight variance,
and combinations on the classification performance of a deep
network for handwritten digit recognition. These studies provide
important guidelines for informing current and future efforts
to develop custom large-scale digital and mixed-signal spiking
network platforms such as SpiNNaker, TrueNorth, Neurogrid,
Bluehive, and BrainScales (Moore et al., 2012; Pfeil et al.,
2012, 2013; Benjamin et al., 2014; Merolla et al., 2014a,b).
Although the present study addresses only the scenario of off-
chip learning, it also provides guidelines for the design of
hardware learning circuits that can train synaptic weights in
DBNs (Mitra et al., 2009; Neftci et al., 2014). In particular,
our results show that the performance of DBNs on low-
precision platforms can be dramatically improved by an adapted
training scheme that directly targets learning of low bit precision
representations, rather than rounding the weights obtained from
full-precision software simulations. Hence, our results suggest
that spiking DBNs can be realized on limited precision hardware
platforms without drastic performance loss, and thus offer an
excellent compromise between accuracy and low-power, low-
latency execution.

The investigation of the impact of weight variance and
precision on performance is particularly relevant for future
hybrid analog-digital spiking network implementations and
for new memristive technologies that are being proposed to
implement synaptic states and corresponding spike-timing based
learning rules (Alibart et al., 2012; Kuzum et al., 2012; Cruz-
Albrecht et al., 2013; Serrano-Gotarredona et al., 2013). Our
results are in good agreement with a recent study of the
impact of weight precision for bistable memristive synapses in a
probabilistic learning task, which has revealed a surprisingly low
level of precision required for reliable learning of handwritten
digit patterns (Bill and Legenstein, 2014).

This paper is structured as follows: Section 2 describes the
theory of spike-based DBNs, training methods, and methods
to reduce bit precision and introduce parameter noise. Section
3 presents investigations on the impact of bit precision of
the hardware platform and input noise on the classification
performance of a spike-based DBN using the MNIST digit
database. These investigations include the impact of silicon
mismatch on the coding of the weight parameters, and present
novel off-line training methods to overcome reduced hardware
precision. Lastly, Section 4 concludes with discussions regarding
the results of this study and the impact on future hardware
implementations.
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2. Materials and Methods

2.1. Spiking Deep Belief Networks
We use the formalism for training and executing spiking DBNs
developed by O’Connor et al. (2013). DBNs are multi-layered
neural networks, in which each layer pair is formed by a
Restricted Boltzmann Machine (RBM). The two layers of visible
and hidden units of a RBM are fully and recurrently connected,
but there are no connections between neurons of the same layer
(Figure 1). In a conventional RBM, each unit is a stochastic
binary neuron, and the probability to turn on is given by a
sigmoid function applied to the weighted sum of its inputs. Layers
are trained one after another with an unsupervised rule called
Contrastive Divergence (CD) (Hinton and Salakhutdinov, 2006).
When training of one layer is finished, the output of the hidden
units of one layer serves as the input to visible units of the
subsequent layer. Supervised learning is used at the top level,
where a label is jointly trained with the input, and this serves as
the output of the network.

Spiking DBNs use a training procedure that is very similar
to conventional DBN training, discussed in Section 2.2, to yield
suitable connection weights for a network of spiking neurons to
solve the intended task. Once these weights Ew of each RBM have
been fixed, the Leaky Integrate-and-Fire (LIF) neurons follow the
standard dynamics for the membrane potential V , described as

τm
dV

dt
= EL − V + RmI, (1)

where τm is the membrane time constant, EL the resting
potential, and Rm the membrane resistance. The input current
I is computed as

I =
n
∑

i= 1

wi

mi
∑

j= 1

δ(t − tij), (2)

where n is the number of incoming synapses, wi is the weight of
synapse i,mi is the number of spikes arriving at that synapse, and
δ(t) is a Dirac delta function which is zero except for the firing
times tij of the ith input neuron. Once the membrane potential
V crosses the threshold voltage Vthresh a spike is generated, the
membrane potential is reset to Vreset and the neuron is not

FIGURE 1 | Architecture of RBMs and DBNs. (A) Architecture of a single

Restricted Boltzmann Machine with full connectivity between visible units

(bottom) and hidden units (top), but no connections within the same layer. (B)

Topology of a DBN for MNIST classification consisting of one input layer with

784 neurons, two hidden layers with 500 neurons each, and a 10 neuron

output layer. This is abbreviated as 784-500-500-10 architecture.

allowed to fire during the refractory period Tref. Default values
of the parameters used in simulations are defined in Table 1.

2.2. Training Spiking Deep Belief Networks
Training of DBNs targeting a spiking network implementation
is described in detail in O’Connor et al. (2013). The following
section provides a brief summary of the most important
differences to conventional CD training. The key idea is to
use an accurate rate-based approximation of the firing rates
of LIF neurons, and translate this into activation probabilities,
which can be used in the CD updates. We use the so-called
Siegert approximation (Jug et al., 2012), which approximates
the output firing rate of a LIF neuron receiving both inhibitory
and excitatory inputs. Let Eρi and Eρe be the vectors of inhibitory
and excitatory input rates, and ( Ewi, Ewe) be the corresponding
weights. In order to compute the expected output rate of the
LIF neuron, a number of auxiliary variables first needs to be
computed. For completeness, we provide the full equations, but
refer to previous work for the derivation and interpretation of
each variable (Siegert, 1951; Jug et al., 2012):

µQ = τ
∑

( Ewe Eρe + Ewi Eρi) σ 2
Q = τ

2

∑

( Ew2
e Eρe + Ew2

i Eρi)
ϒ = Vreset + µQ Ŵ = σQ

k =
√

τsyn/τ γ = |ζ (1/2)|

Here, τsyn denotes the synaptic time constant (for our purposes
considered to be zero), and ζ is the Riemann zeta function. Then
the average firing rate ρout of the neuron with reset potential
Vreset, threshold voltage Vthresh, and refractory period Tref can be
computed as (Jug et al., 2012)

ρout =
(

Tref +
τ

Ŵ

√

π

2
·
∫ Vthresh+kγŴ

Vreset+kγŴ

exp

[

(u− ϒ)2

2Ŵ2

]

·

·
[

1+ erf

(

u− ϒ

Ŵ
√
2

)]

du

)−1

. (3)

Using this approximation of firing rates allows a direct translation
between the analog activation probabilities required for CD
training and the resulting firing rates of a spiking neuron with
those weights. During training of the spiking DBN, the Siegert
approximation is used as the nonlinearity of the neuron instead
of a sigmoidal function. The predicted rate ρout in Equation
(3) can be converted into a probability by normalizing with the
maximum firing rate 1/Tref. This allows sampling the activation
probabilities, as is done in standard contrastive divergence

TABLE 1 | Default parameters of the Leaky Integrate-and-Fire Model used

in simulations.

Parameters Values Units

τm 5.0 s

Tref 2.0 ms

Vreset 0.0 mV

Vthresh 1.0 mV
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learning with with continuous-valued units. Specifically, the
weight update in contrastive divergence for spiking networks
computes the data- and model-driven activities of the visible and
hidden layer using the Siegert approximation, and then computes
the weight update as usual in RBM training. Let Vdata be the
activity of the visible units driven by the input data (or activity
of the hidden layer below). Then the data-driven activity of the
hidden layer, given the full weight matrix W connecting the
visible and hidden layer, is

Hdata = ρout(Vdata,W) · Tref

The model-driven activity of the visible and hidden layers,
obtained via Gibbs sampling, is then given as

Vmodel = ρout(Hdata,W
T) · Tref,

Hmodel = ρout(Vmodel,W
T) · Tref

and the weight update 1w is

1w(W) = α · (HT
dataVdata −HT

modelVmodel), (4)

where α is the learning rate. We parameterize 1w by the weight
matrix W, because later different weight matrices with different
bit precisions will be used to calculate the activities of hidden and
visible layers. After training, the parameters and weights are kept
unchanged, but instead of sampling every time step, the units
generate Poisson spike trains with rates computed by the Siegert
formula (Equation 3). In O’Connor et al. (2013) we have shown
that this results in equivalent spiking implementations of RBMs
and DBNs, which perform similarly to conventional networks
with the same architecture.

2.3. Database, Image Conversion to Spikes, and
Input Noise Generation
Training and testing of spiking DBNs was carried out on the
well-known MNIST database of handwritten digits (LeCun et al.,
1998), which consists of 70,000 28 × 28 gray-scale pixel images,
of which 10,000 are used as a test set. In order to convert the static
images to spike trains, each pixel of anMNIST image is converted
to a Poisson spike-train with a rate proportional to its intensity,
while all firing rates are scaled such that the total firing rate of
the population is constant (O’Connor et al., 2013). In order to
determine the impact of input noise on the performance of DBNs,
noise is introduced into the spike-train representation of each
image by redistributing a percentage of spikes randomly across
the whole input population (Neil and Liu, 2014). The resulting
digits with different noise levels are shown in Figure 2, where
each column represents different levels of noise starting from 0%
redistribution in the first column, to 100% in the last column.

2.4. Conversion From Double to Lower Precision
Representations
In order to simulate spiking DBNs implemented on digital
architectures with limited hardware resources (Moore et al., 2012;
Furber et al., 2014; Merolla et al., 2014b; Neil and Liu, 2014),
the weights learned with double floating-point precision during
training are converted to lower bit-precision representations.

Throughout this paper we use the notation Qm.f to indicate a
fixed-point format where m is the number of bits in the integer
part, including the sign bit, followed by a notional binary point,
and f is the number of bits in the fractional part. This format is a
bit-level format for storing a numeric value.

Contrary to the fixed-point format, the double-precision
floating-point numbers according to the IEEE 754 standard have
a 64-bit word length of which 52 bits are used to store for
the fraction, 11 bits for the exponent and one bit for the sign.
Moreover a floating-point unit (FPU) is needed for computations
with floating-point numbers, which results in increased area of
the hardware design and higher energy costs.

The bit precision of the synaptic weights was set by keeping
the number of the integer bits constant to a value that is capable
of holding the maximum and minimum weight value of a
particular DBN, while the number of bits in the fractional part
is varied from eight bits down to one bit. The double precision
floating-point weights WH are converted to lower-precision
representationWL using the conversion

WL = round(2f ·WH) · 2−f (5)

whereWH are the original double floating-point weight values of
the trained DBN, and 2−f is the resolution of the lower precision
representation.

2.5. Introducing Weight Variability
In order to investigate the effect of mismatch when mapping the
spiking DBN to mixed-mode analog/digital multi-neuron
transistor circuits, we considered a particular synaptic
circuit known as the digital-to-analog converter (DAC)
synapse (Serrano-Gotarredona et al., 2008; Wang and Liu, 2013).
In this circuit, the synaptic weight is represented as a current.
This synapse has a maximum current and the number of bits
in the DAC sets the resolution of the synaptic current (weight).
In considering the effect of mismatch due to silicon fabrication,
we assume that the maximum current of each DAC synapse
is sampled from a Gaussian distribution. The variability is
controlled by defining the coefficient of variation (CV) of the
distribution from which weights are sampled, ranging from 10
to 40%. In this analysis, we do not include calibration using the
DAC to account for the mismatch in the maximum current.
Calibrating the DAC synapse to reduce the transistor mismatch
even over the network of the size used in this work would require
a long testing time.

2.6. Event-Based Platforms
Spiking DBNs were recently implemented on portable digital
hardware platforms and neurally inspired hardware, which
dissipate much less power than conventional processors. In
particular, this has been shown by an FPGA implementation,
dubbed Minitaur (Neil and Liu, 2014), and on the SpiNNaker
spiking neural platform (Stromatias et al., 2015a,b). The software
simulation results in this work are validated by comparing to
spiking DBNs running on the SpiNNaker platform.

The SpiNNaker platform (Furber and Temple, 2008;
Furber et al., 2014) is a biologically inspired Application
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FIGURE 2 | Conversion of static images to spike-trains and introduction of noise. Each row represents different input rates ranging from 100 to 1500Hz,

while the columns show different percentages of input noise, from 0 up to 100%.

Specific Integrated Circuit (ASIC) designed to enable real-
time simulations of heterogeneous models of spiking neurons
and synapses. The fundamental component of the system is the
SpiNNaker Chip. It contains 18 identical and fully programmable
ARM9 cores, each of which has access to a local 96KBs tightly-
coupled memory (TCM), executing the runtime neural kernels
and storing the neural parameters. All the cores on a chip have
access to a shared 128 MBs off-die SDRAM memory, where all
relevant synaptic information is stored and retrieved upon the
arrival of an event. The SpiNNaker platform has no hardware
floating-point support, thus the neuron states and synapses
are computed using fixed-point arithmetic (Furber et al., 2013,
2014). This was part of the design specification in order to
further improve the energy efficiency of the platform. The key
innovation of the machine is in its bespoken communication
infrastructure inspired by spike communication. The design
allows delivery of large volumes of very small packets to be
communicated across the machine, which makes it different
from conventional super-computers which tend to transfer data
in large lumps.

The building block of SpiNNaker machines is a single PCB
comprising 48 SpiNNaker chips. This has proven to be capable of
simulating a quarter million neurons with more than 80 million
synapses. In terms of activity, the tested system is able to generate
a dynamic activity of 1.76 billion synaptic events (SE) per second
while dissipating <1W per chip (<40W for the whole board,
Stromatias et al., 2013). Interconnecting more of these boards
together will form the final SpiNNakermachine, which will utilize
≈ 60, 0000 chips, for a total of more than a million ARM cores,
and it aims at simulating 1% of the human brain in real-time
(Furber et al., 2013).

The networks simulated using the Brian software package
can easily be mapped on to the SpiNNaker platform through
an interface with a high-level simulator independent neural
specification language called PyNN (Davidson et al., 2009)
by utilizing a tool named Partitioning And Configuration
MANagement (PACMAN) (Galluppi et al., 2012).

3. Results

The performance of spiking DBNs with reduced precision
or weight variability is assessed on a common benchmark
task, the classification of handwritten digits from the MNIST
dataset (LeCun et al., 1998). The MNIST dataset is divided
into a 60,000 digit training set, and a 10,000 digit test set. The
conversion of the 28×28 gray-scale pixel images into spike trains
and training of DBNs are described in Section 2.3. Simulation
results of the spike-based DBN were obtained using the Brian
spiking neural network simulator (Goodman and Brette, 2008).

In the following we characterize the impact of reduced bit
precision and noise on the classification performance of spiking
DBNs. In Section 3.1 the impact of lower precision or higher
input noise levels on fully trained networks during testing is
demonstrated, along with an investigation of the possible reasons
for the resulting performance curves in Section 3.2. Section 3.3
shows how variance on the weight parameters due to transistor
mismatch affects the network performance for a particular analog
synaptic circuit. The results in Section 3.1 are verified by a
comparison between the performance of a software simulation
in Brian vs. that of the corresponding implementation on the
digital hardware SpiNNaker platform (Section 3.4). Finally,
Section 3.5 presents a new method to avoid performance loss
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on lower-precision platforms by introducing a training algorithm
that takes into account the lower bit precision of the hardware
and produces weights which increase the overall performance of
the network using the lower bit precision weights.

3.1. Robustness to Reduced Bit Precision of
Fixed-Point Synapses
Reduction in bit precision will reduce the resources needed on
a digital chip (Underwood, 2004). If the performance of the
network is maintained even when the bit precision drops, then
a larger network can be implemented for the same amount of
resources. The impact of the bit precision on the trained double
precision floating-point weights can be seen in Figure 3A. Shown
in the figure are the receptive fields of six of the neurons in the
first hidden layer (Layer 1) for different fixed-point precisions of
the synapses, ranging from double precision in the first column,
to weights down to one bit for the fractional part in the last
column. The figure shows that a lot of the structure in the
receptive fields is still retained even with a bit precision of down
to f = 4 bits. Figure 3B shows the percentage of synapses that
were set to zero due to the bit reduction in the fractional part.
Most compelling is that even at Q3.4, almost 50% of the weights
are zero, which means these synapses are obsolete and can be
pruned, thereby reducing the memory resources even further.

Figure 4A shows the classification accuracy (CA) of the
network for different percentages of noise in the input spikes
and over different input rates. The different curves within the
two sets of plots in Figure 4A show the CA as a function of the
percentage of input noise spikes. The two panels show results
for two different input rates, 100 and 1500Hz, which represent
the total number of input spikes summed over all input neurons
in the stimulus duration of 1 s. For both firing rates, the CA
curves drop as the percentage of input noise spikes increases,
but for 1500Hz input the performance stays almost constant
until input noise levels of 50% are reached. The different curves

show the behavior for different bit precisions of the weights. The
peak performance (without noise), as well as the CA for higher
input noise levels stays remarkably constant for bit precisions
as low as f = 3. In general, reduced precision does affect the
CA performance, but the peak CA value obtained for double
bit precision weights decreases only by around 5% (from 95 to
90%), even when the bit precision drops to f = 2. In order
to summarize the noise robustness for different precisions and
firing rates, the area under the curve in Figure 4A is computed,
since larger area indicates both high peak performance and a
slow drop-off in performance. Figure 4B shows the area under
the curves in Figure 4A as a function of the input firing rate and
across five different bit precision values. The results show similar
trends for different bit precision levels, and a similar increase in
performance and noise tolerance for higher input firing rates.
This is also illustrated in Figure 4C, where it can be seen how
the CA for different bit precisions changes as the input rates are
increased from 100 up to 1500Hz, and for two different input
noise levels. A drop-off in CA of around 5% to 10% for the same
input rate can be observed for 60% noise spikes. The 2D plots
in Figure 4D finally illustrate that there is a large range of input
noise levels and bit precisions at which high performance for two
different input rates can be reached. In particular, the results show
that surprisingly the performance and noise robustness curves
are almost identical for bit precisions down to f = 3 bits in all
subplots. Even a synaptic weight in Q3.2 representation, which
requires <10% of the memory resources for double precision
weights gives a reasonable peak CA of 91% for low noise levels. In
all subplots (Figures 4A–D), only the Q3.1 representation shows
a dramatic drop in performance.

3.2. Distribution of Reduced Bit Precision
Weights
In order to understand better the surprising tolerance of spiking
DBNs to reduced weight precision and high input noise levels,

FIGURE 3 | Impact of weight bit precision on the representations

within a DBN. (A) The receptive fields of the first six neurons (rows) in the first

hidden layer. The first column shows the weights for double precision, while

the remaining columns show the weights for different fixed-point schemes,

using the format Qm.f , where m is the number of bits representing the integer

part and f the number of bits representing the fractional part. The effect of

truncation of the synapses is visible to the eye for the case of f = 4 bits and

less. (B) Percentage of synapses from all layers that are set to zero due to

the reduction in bit precision for the fractional part. For lower precisions, the

majority of the synapses is set to zero and thus becomes obsolete.
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FIGURE 4 | Effect of reduced weight bit precision and input noise on

the classification accuracy (CA). (A) CA as a function of input noise and

bit precision of synaptic weights for two specific input spike rates of 100 and

1500Hz. Results over four trials. (B) Normalized area under curve in (A) for

different percentages of input noise, input firing rates and weight bit

precision. Higher values mean higher accuracy and better robustness to

noise. (C) CA as a function of the weight bit resolution for different input firing

rates and for two different noise levels, 0 and 60%. (D) CA as a 2D function

of the bit resolution of the weights and the percentage of input noise for 100

and 1500Hz input rate. The results confirm that spiking DBNs with low

precision weights down to f = 3 bits can still reach high performance levels

and tolerate high levels of input noise.

the impact of the reduction of precision on the distribution of
weights, firing rates, and neuron activations in the network is
investigated.

There are a few tools that can be employed to investigate
how the distribution of the reduced bit precision weights
nonetheless manages to maintain a substantial amount of
the network’s classification performance. Firstly, the initial
question is to investigate whether this reduction in bit precision
qualitatively maintains the same weight distribution as the
original. Figure 5 shows that the quasi-continuous distribution
of weights obtained for double-precision becomes increasingly
discretized as the precision f decreases. In the extreme case of a
Q3.1 representation, the weight values are quantized to±0.5,±1,
and 0, but nonetheless seem to reflect the shape of the original
distribution.

However, even with these similar shaped weight distributions,
neurons’ output firing rates may become dramatically altered by
the subtle coercion of weights to become more similar to each

other. For this, refer to Figure 6Awhich shows that for even high
levels of quantization, the mean output spike rate per neuron for
each of the three layers remains quite constant down to Q3.3,
before a clear drop in the mean firing rate is observed. This trend
is seen for all three layers, but is stronger in higher layers.

Finally, since these firing rates are approximately the same,
we investigated whether the net activations of the neurons for
the same inputs remain similar despite the quantized weight
structure. Since the net activations are sums over large numbers
of synapses, any rounding effects could just average out, which
would help to explain the maintenance of performance with
lower precision weights observed in Figure 4. To investigate this
proposal, Figure 6B plots the distribution of mean differences in
the net activation between neurons with double precision weights
and lower precision weights for neurons in different layers. Note
how in all layers the net difference in activation is much smaller
than the full range of firing rates (−1 to 1), and though the width
of the distribution increases as the accuracy drops, most of the
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FIGURE 5 | Weight distributions for different bit precision levels and

DBN layers. Each row represents different fixed-point weight precisions, while

each column represents a layer of the DBN, starting from Layer 1 (left), Layer 2

(middle) to the Output Layer (right). Despite the different discretization levels,

the overall shape of the weight distribution is conserved.

weight of this histogram is concentrated around zero difference
in activation. This does imply that most neurons end up with
approximately the same input activation under the quantized
weights, and suggest that indeed the rounding differences tend
to cancel out their effects.

3.3. Robustness to Variance of Synaptic Weights
If spiking DBNs are to be implemented in analog circuits, they
have to be robust to mismatch due to the fabrication process
of transistors. This process causes random variations of physical
quantities (for e.g., currents) of equally sized devices and comes
from sources such as the random variations in the threshold,
width and length of the transistor during fabrication (Pelgrom
et al., 1989; Pavasovic et al., 1994; Kinget, 2005). Measurements
of these random variations is a standard practice for all silicon
process technologies and is indicated by the measured standard
deviation assuming a Gaussian distribution of transistor currents.
Mismatch can become a factor that makes the performance of
a hardware network very different from a digital simulation,
and needs to be taken into account when designing mixed-
mode neuron and synaptic circuits in analog/digital multi-
neuron chips (Serrano-Gotarredona et al., 2008; Brink et al.,
2013; Wang and Liu, 2013; Moradi and Indiveri, 2014). The
influence of fabrication variance is also a concern for circuits
that use memristive technology (Alibart et al., 2012), where the

coefficient of variation (CV) of the devices can exceed 40% in
resistive values for academic technologies. The dependence of
the mismatch transistor current variance on the transistor area
and the current magnitude has been quantified in a CMOS
0.35µm process (Serrano-Gotarredona and Linares-Barranco,
1999). In order to implement the maximal number of neurons
and synapses possible per chip area means that a circuit
with as few transistors as possible is needed to implement
their functionalities, and transistors should be small-sized.
Unfortunately, the latter can lead to very large CV (>100%).

In order to understand the effect of parameter variance
in analog circuits on the performance of spiking DBNs,
simulations were performed where synaptic weights were
randomly perturbed according to the mismatch model for a
particular analog synaptic circuit. In this analysis, we chose
the digital-to-analog converter (DAC) synapse used on various
neural chip implementations (Wang and Liu, 2006; Vogelstein
et al., 2007; Schemmel et al., 2010; Linares-Barranco et al., 2011;
Wang and Liu, 2011; Moradi and Indiveri, 2014). The number
of bits in the DAC synapse is equivalent to the f value in the
Qm.f format used for the bit precision. In this case, the quantized
weight levels available are Iref /2

−f where Iref is the maximum
current that is equivalent to the maximum synaptic weight.

Mismatch measurements from 50 copies of a particular five-
bit current DAC circuit in Linares-Barranco et al. (2011) show a
standard deviation around 7.77%.While the Iref can be calibrated
to minimize the effect of the mismatch, we assume that there is
no calibration because it would be too expensive to calibrate the
many weights of a DBN network. In the case where a single DAC
is used for positive and negative weights, then one bit is used as
the sign bit.

We ran simulations on a network where each synapse has a
five-bit DAC. The maximum current Iref = 1 nA and one bit is
used as the sign bit. The circuit noise sources such as flicker noise
and thermal noise are ignored in these simulations both because
of the extensive time for such simulations and the dependence
on the actual device sizes of the synapse. The mismatch of the
transistor that supplies the maximum current for the DAC of a
synapse is assumed to have a CV of 10 or 40%. The effect of
applying a CV of 40% to the weights of the receptive fields of
six representative neurons in the first layer of the DBN is shown
in Figure 7A. Despite this high CV, the receptive fields look very
similar.

The robustness of a network with this DAC precision to
Gaussian variance on Iref is illustrated in Figure 7B. The plots
show again the performance as a function of input noise, and for
two different input rates. The effect of increased Gaussian weight
variance is minimal as can be seen from the different curves. As
the CV increases to 40%, the classification accuracy in both the
cases of 100 and 1500Hz input rates, decreases by <1% from the
noiseless Q3.4 bit precision case.

3.4. Comparison of Hardware Performance to
Simulations
In order to validate the simulation results presented in Section
3.1 on actual hardware platforms, we ran simulations of
spiking DBNs on the fixed-point, event-based digital platform
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FIGURE 6 | Effect of reduced bit precision on firing rates in the

DBN and neuron activations. (A) Mean firing rate of each layer of the

network for weights with different bit precisions, using an input rate of

1500Hz. Lower precision levels, which lead to more weights at zero,

cause lower firing rates within the network. (B) Distribution of the mean

difference between the activation of a neuron with double precision

weights and neurons using weights with different bit precision levels.

Shown are distributions over all test samples. The difference, although

peaked near zero, increases for higher layers, and shows a trend toward

reduced activations.

FIGURE 7 | Effect of Gaussian weight variance on the performance of

spiking DBNs. (A) Receptive fields of 6 representative neurons in the first

hidden layer after perturbation with Gaussian weight variance of different CVs.

(B) Impact of Gaussian weight variance on classification accuracy. The

performance is plotted as a function of input noise levels for two different input

rates and different weight distribution CVs. Despite the high weight variance,

the performance stays high and remains robust to input noise. All weights are

set by 5 bit DAC synapses (one bit is the sign bit). Results over 4 trials.

SpiNNaker. For the DBN with two hidden layers, Figure 1B,
the double floating-point weights were truncated to a Q3.8
fixed-point representation, and the input rates used to encode
the MNIST images into spike trains were set to 1500Hz. The
classification accuracy achieved by the SpiNNaker platform on
the MNIST testing set, is 94.94% when the input noise is set
to 0 and 88.66% when the input noise is set to 60%. This is in

good accordance with the noise-free simulation results obtained
by O’Connor et al. (2013), and classification accuracies for
simulations on Brian (Goodman and Brette, 2008), which reach
94.95 and 88.66%, respectively, for the same weight precision
and input noise (Figure 4). This spiking DBN ran on a single
SpiNNaker chip and generated an activity of <1 million synaptic
events (SE) per second, which is well below the 36.8 million
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TABLE 2 | Classification accuracies for hardware and software

simulations with limited bit precision, two different input noise levels, and

input rates of 1500Hz.

Input noise (%) Brian (%) SpiNNaker (%)

0 94.955 94.94

60 88.665 88.66

The first column shows results for a software simulation in Brian with Q3.8 precision,

the second column shows results for SpiNNaker, which uses the same fixed point

representation of weights. Differences in performance are almost negligible.

SE a SpiNNaker chip can process (Stromatias et al., 2013). The
comparison of results is summarized in Table 2.

Our results indicate that the difference in the classification
accuracy between SpiNNaker and Brian for the same bit
resolution, input rates, and input noise levels is almost negligible
and in the order of 0.01%. Moreover, the difference between the
software simulation that utilizes double floating-point weights
and SpiNNaker with Q3.8 fixed-point weights is 0.06%, which is
in agreement with a previous study (Stromatias et al., 2015b).

3.5. Training of Spiking DBN Using Different Bit
Precision
Beyond the method of rounding the weights of a DBN after
training has been completed, this work introduces two additional
approaches to create the lower-precision weights, and optimize
the performance for low-precision simulations. Intuitively, the
motivation for these novel methods arises from the idea that
networks that incorporate knowledge about the eventual low-
precision representation during training may be able to perform
better under those low-precision conditions than networks that
have been optimized under the assumption of higher precision.

The first proposed method, called iterative rounding, is similar
to the fixed-point method mentioned in Courbariaux et al.
(2015), in which the result of a computation is rounded whenever
it is stored. This method, however, refers to the case when the
forward pass of computing activities of neurons in all layers, and
the computation of gradients for learning are performed with full
precision, and only the weight is kept in reduced precision. For
iterative rounding, the full-precision weight update is calculated
from the contrastive divergence algorithm (see Section 2.2), and
applied directly to the low-precision weights. After the full-
precision weight update has been applied, the value is then
rounded to the closest low-precision representation of that
weight and stored.

However, one challenge with this approach is that the gradient
update may be too small to change the values of low-precision
weights. To address this potential difficulty, this paper introduces
a key, novel method called dual-copy rounding, which stores
both a low-precision and a high-precision representation of
weights. This method incorporates knowledge about the eventual
low-precision representation of the tested network as well as
supporting the small, but highly important accumulation of
error gradients over multiple iterations. For this method, two
copies of the weight matrix W are maintained during training:
a high-precision weight matrix (WH) and a low-precision weight

matrix (WL), which is stored in Qm.f numerical format. Learning
proceeds as in (O’Connor et al., 2013), but the activities of the
hidden layer and the visible layer after sampling are obtained
using the low-precision weights WL. The contrastive divergence
update forWH in Equation (4) is thus parameterized as1w(WL),
and after the update both weight matrices are processed as

WH =











−2m whereWH ≤ −2m

WH where − 2m < WH < 2m

2m whereWH ≥ 2m
(6)

WL = round(2f ·WH) · 2−f (7)

where 2m represents the largest possible value that can be
stored in the Qm.f format. Importantly, note that the low-
precision weight matrixWL is used to sample from the network,
while the weight update is applied to the higher-precision
representation WH , and WL is obtained via rounding. As in
standard contrastive divergence, the weight update is calculated
from the difference of pairwise correlations of the data-driven
layers and the model-driven sample layers. Here, although the
activations are calculated from the low-precision weights, the
updates are accumulated in the high-precision weights. Then,
the weights are checked to be within the maximum bounds
of the given resolution (Equation 6) for the given fixed-point
precision. Finally, the weights are copied over into the low-
precision matrix (Equation 7). The learning can then proceed for
another iteration, using the new updated low-precision weight
matrixWL. The additional cost of dual-copy rounding is to store
a second weight matrix in memory, which is typically not a
limiting factor for off-chip learning.

For qualitative differences, observe the weights shown in
Figure 8. In order to show representative samples, the learned
weights in the first layer from the dual-copy rounding method
were clustered into 16 categories, and the post-learning rounding
method weights with the closest Euclidean distance to these
cluster exemplars were identified and plotted on the right. The
dual-copy rounding method preserves significantly more fine-
grained structure, which would be lost with other rounding
methods.

For a quantitative analysis of the differences in performance,
the classification accuracy in the MNIST task using different
bit precisions and different rounding methods was measured.
For performance reasons, the classification performance for this
section unlike the other sections in this paper occurred in rate-
based (non-spiking) conditions, but using the same training
procedure for spiking neurons.

As there was no performance loss in the Q3.12 representation
compared to full double-precision, this was taken as the full-
precision reference point. Figure 9 shows the effect of the three
investigated training methods on the classification accuracy,
when testing the weight matrix at different levels of bit precision.
Rounding a high-precision weight matrix does work effectively,
but can fail for lower-precision weights. Unfortunately, the
iterative rounding method of training works extremely poorly for
low-precision cases; the weight update size is simply less than the
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FIGURE 8 | Impact of different rounding methods during learning

on learned weight representations. Comparison of first-layer weights

in networks trained with the dual-copy rounding method (left) and the

post-learning rounding method (right). The weights shown here are

representative samples from 16 clusters of weight vectors in the

learned dual-copy rounding weight matrix. On the right, the weights

from the post-learning rounding weight matrix that are most similar to

these chosen weights are displayed. The dual-copy rounding method

is able to preserve much more fine structure, compared to simply

rounding the network weights after training, and is thus more suitable

for training networks that will be executed with lower bit precision

weights.

precision of the weight, so learning halts entirely after the error
gradient falls below a certain threshold.

Impressively, however, Figure 9A shows the clear
advantage of the dual-copy training. Across all precision
levels, incorporating information about the lower-precision
weight matrix into the training yields noticeable and consistent
improvements. This improvement increases as precision
decreases, so that at the Q3.1 representation level, where there is
only a single sign bit and three bits of representation per weight,
the network is able to achieve an impressive 91.35% accuracy
in the highest-performing case. Under spiking conditions, the
performance of this network drops to 82%, Figure 9B. While this
is substantially lower than the rate-based performance, it is still
twice the accuracy of the default post-learning rounding method
(see Figure 4), and future work will determine improved ways to
maintain the rate-based performance under spiking conditions.

4. Discussion

After outperforming other machine learning approaches on
typical benchmark tasks in vision and audition, transferring Deep
Learning techniques into marketable applications has become
the next big target, and is supported by large ongoing industrial
efforts. One of the biggest challenges is making the classification
results of deep networks available in real time, which is necessary
to improve user experience for relevant applications such as
speech recognition or visual object recognition. It has become
clear that apart from cloud computing solutions, which require
additional communication overheads, the development of special
purpose hardware to support deep networks is one of the
most promising routes, in particular for mobile platforms with
limited resources. Spiking deep networks have demonstrated very
favorable properties in terms of latency and scaling (O’Connor
et al., 2013; Stromatias et al., 2015a,b), and are a good match for
ongoing efforts to advance the design of both digital and mixed-
signal neuro-inspired hardware platforms (Pham et al., 2011;

Pfeil et al., 2013; Furber et al., 2014;Merolla et al., 2014b; Liu et al.,
2015). Such implementations range from custom mixed-signal
multi-neuron platforms to more general digital platforms such
as FPGAs and SpiNNaker. Thus, the present investigation of the
impact of digital bit precision, input rates, and analog transistor
mismatch on the performance of the hardware implementation
of a spike-based DBN is of high relevance to justify the
development of larger neuromorphic platforms that support
larger networks. This is particularly relevant since theory tells
us that the performance of DBNs increases with the numbers of
layers (Hinton and Salakhutdinov, 2006), although this does not
necessarily generalize to multi-layered networks with reduced
weight precision. Note that here we are focusing on mapping
networks that have been trained off-chip to neuromorphic
hardware, rather than training networks on chip. This is because
current training methods for deep networks from large datasets
are optimized for exploiting conventional computing technology
such as GPUs, but the execution on event-based platforms yields
efficiency advantages as discussed previously.

Our results show indeed that spike-based DBNs exhibit the
desired robustness to input noise and numerical precision. The
classification performance of the spike-basedDBNon theMNIST
digit database holds up even for bit precisions down to Q3.3,
which requires significantly fewer bits to represent the large
parameter space of DBNs than in typical CPU systems. For
example, the two-layer DBN has 642,510 synapses, which would
require 4.9 MBytes if they were stored in double floating-point
precision (64 bits per weight). This reduces to only 0.46 MByte,
or <10% if weights are stored in Q3.3, i.e., six bit per weight
precision. Even more, one of the effects of the reduced precision
is that many of the weights, which typically are distributed
around zero, actually become zero. For low precisions, this
means that the performance can be maintained, although more
than 50% of the weights become zero. Thus, these synapses are
ineffective, and more than half of the weights can be ignored.
This not only saves time during execution, because of the
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FIGURE 9 | Impact of different rounding methods during training on

network performance with reduced weight bit precision. (A)

Effectiveness of the dual-copy rounding weight training paradigm. Training at

full precision and later rounding performs consistently worse than the

dual-copy rounding method introduced in this paper. Rounding the weights

during training can prevent learning entirely at low-precision regimes. The

results show averages of five independent runs with different random seeds.

(B) Increase in classification accuracy of a spiking DBN with Q3.1 precision

weights due to the dual-copy rounding method for input rates of 100 and

1500Hz. Results over four trials.

savings in the memory lookup time for the synaptic weights in
the case of a digital platform implementation, but also means
that larger networks can be realized on the same hardware,
because only a smaller percentage of the weights actually
need to be represented. A validation was achieved by running
the DBN for MNIST classification on the biologically-inspired
massively-parallel fixed-point SpiNNaker platform, which uses
less precise weights than standard software implementations.
We have shown that the resulting performance of the network
implemented on SpiNNaker is very close to the results from the
software simulation with only a 0.06% difference, despite the fact
the SpiNNaker uses fixed-point arithmetic.

For implementations on custom mixed-signal hardware
systems one has to deal with the constraint that they can
only offer reduced numerical precision in the synaptic weights
(Neftci et al., 2011; Liu et al., 2015). The level of mismatch
in the individual synapses can be taken into account during
design and reduced by methods such as clever layout strategies
and increasing the transistor area. Reduction of mismatch
through increasing transistor area is effective (Kinget, 2005)
but it increases the overall area of the synapse. Mismatch
calibration methods through for example, a global Digital-to-
Analog Converter block (Oster et al., 2008) can be introduced
to combat this mismatch after fabrication but the calibration
itself can take a long time. The mismatch influence is also
greater in low-power dissipation systems, where the transistors
are usually operated in the subthreshold domain for reduced
transistor current (Kinget, 2005; Linares-Barranco et al., 2011).
Our results show that up to 40% of the CV for a normal
distribution of mismatch can be tolerated for the network to
produce approximately the same level of performance. Thus, the
effects of hardware-induced imperfections seem to rather cancel
out than accumulate in spiking DBNs. This study adds to current
on-going studies into computational spiking network models
that are robust to some level of device mismatch including that
of networks with memristive devices and smaller-scale multi-
neuron networks with additional spatio-temporal dynamics (Liu
and Douglas, 2004; Arthur and Boahen, 2007; Vogelstein et al.,
2007; Pfeil et al., 2012; Basu et al., 2013; Brink et al., 2013;

Querlioz et al., 2013; Wang and Liu, 2013; Moradi and Indiveri,
2014).

All our results show that the networks tolerate high levels
of noise in the input spike trains. In almost all cases, and for
different bit precisions, input noise of up to 60% can be tolerated
before the performance deteriorates. The performance also shows
some tolerance to the input spike rate. This is important because
we intend that the hardware implementations will be interfaced
to spike-based hardware visual and auditory sensors (Liu and
Delbruck, 2010; Brändli et al., 2014; Liu et al., 2014; Posch et al.,
2014). What can be observed is a tradeoff between higher spike
rates, which require more computation but lead to better CA and
lower latency; and lower spike rates which yield a more energy-
efficient system. With higher spike rates, the network is a closer
approximation to the analog DBN, and thus its performance is
better matched. The inherent tradeoff between input spike rates,
latency, and classification accuracy has also been validated on the
SpiNNaker platform (Stromatias et al., 2015b).

Although spiking DBNs are remarkably tolerant to porting
their parameters to low-precision platforms, we have shown that
their performance can even be improved if the constraints of the
hardware are taken into account already during training. The
novel dual-copy offline learning rule introduced in the present
article increases the performance of the network for lower bit
precisions. In the case of very low Q3.1 precision, the network
performance was shown to double compared to other common
methods (post-learning rounding and iterative rounding), thus
allowing a very fast and cheap hardware implementation of a
DBN with reasonable performance levels. Because the dual-copy
rounding method focuses on acceptable performance using very
efficient and low-precision networks, it operates in regimes such
as Q3.1 where methods such as iterative rounding entirely fail
to train the network effectively. The method requires storage
of a second weight matrix, and uses the two sets of weights
in two different contexts—computing activations and learning.
This is typically not a problem in the off-chip learning scenario
that is the focus of this paper, but might be challenging for
on-chip learning, in particular on hardware where synapses
are physically emulated in silicon. Once trained, the single bit
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precision analog network can potentially be implemented on
a digital neuron platform such as TrueNorth (Merolla et al.,
2014b), using the Gibbs sampling methods recently described
in Das et al. (2015).

Future work will investigate the scaling behavior of deeper
DBN architectures and other types of deep architectures
on custom analog/digital multi-neuron systems or digital
platforms with limited precision. Since training remains the
most computationally expensive task with DBNs, it will
be interesting to study how event-based learning rules on
neuromorphic platforms can contribute to speeding up this
process. Online learning rules such as the recently proposed
event-based Contrastive Divergence learning rule (Neftci et al.,
2014) for training a spike-based DBN can in principle utilize
neuromorphic platforms for DBN training, and will have to deal
with similar hardware constraints as addressed in the present
article. Current neuromorphic plasticity implementations are
often limited to various forms of STDP, but more general
plasticity frameworks such as the one recently proposed in
Galluppi et al. (2014) would provide the necessary flexibility to
also test variations of contrastive divergence or related learning
rules for DBNs on massively parallel brain-inspired hardware
platforms.
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