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Alzheimer’s disease (AD) is a progressive brain disease. Accurate detection of AD and

its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing

interest in identifying brain imaging biomarkers that help to automatically differentiate

stages of Alzheimer’s disease. Here, we focused on brain structural networks computed

from diffusion MRI and proposed a new feature extraction and classification framework

based on higher order singular value decomposition and sparse logistic regression. In

tests on publicly available data from the Alzheimer’s Disease Neuroimaging Initiative, our

proposed framework showed promise in detecting brain network differences that help in

classifying different stages of Alzheimer’s disease.
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Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that involves the accumulation
of amyloid plaques and neurofibrillary tangles in the brain. The most common early symptom is
difficulty remembering recent events (short-termmemory loss). As the disease advances, symptoms
often include problems with language, altered affect, disorientation, lack of motivation, problems
with self-care, and behavioral abnormalities (Burns, 2009; Burns and Iliffe, 2009). As a patient’s
condition declines, they may withdraw from family and society. Gradually, more and more bodily
functions are lost, ultimately leading to death. Although the speed of progression varies, the average
life expectancy following diagnosis is 3–9 years (Querfurth and LaFerla, 2010; Todd et al., 2013).
AD has a typical pattern of progression, with anatomical changes that correspond to the types
and severity of symptoms. The symptoms, the order in which they appear, and the duration of
each clinical stage vary from person to person. Disease progression can be divided into three main
stages: normal controls (NC), mild cognitive impairment (MCI) and AD. All of these classifications
are defined clinically based on behavioral and cognitive assessments, and although a person with
MCI has elevated risk of developing AD,many people withMCI remain stable for some time ormay
develop other degenerative conditions pathologically distinct from AD, such vascular dementia or
fronto-temporal dementia.
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NC represents the subset of the population who are aging
normally, and do not have sufficiently severe symptoms to
be considered cognitively impaired. MCI involves cognitive
impairments, but at a level that is not significant enough to
interfere with a person’s daily activities (Petersen et al., 1999).
MCI is often a transitional stage between normal aging and
dementia: every year, around 10–15% of people with MCI
progress to probable AD (Grundman et al., 2004). However,
not all people with MCI deteriorate cognitively and some
even improve. Effective and accurate diagnosis of Alzheimer’s
disease and its prodromal stage, MCI, are crucial for drug trials,
given the urgent need for treatments to resist or slow disease
progression.

Many neuroimaging studies have used anatomical measures
derived from T1-weighted brain MRI, such as cortical thickness,
and volumetric or shape measures of subregions of the brain, to
differentiate AD or MCI from NC (Fan et al., 2008; Hua et al.,
2008a,b; Gerardin et al., 2009; Magnin et al., 2009; Hua et al.,
2010; Cuingnet et al., 2011;Westman et al., 2011; Hua et al., 2013;
Gutman et al., 2015).

Moreover, measures derived from functional imaging or
cerebrospinal fluid (CSF) assays have also been used to help
classify individuals with cognitive impairment vs. healthy
controls (De Santi et al., 2001; Morris et al., 2001; Bouwman et al.,
2007; Mattsson et al., 2009; Shaw et al., 2009; Fjell et al., 2010).
Diffusion weightedMRI is a non-invasive imaging technique that
can provide clinical information on white matter integrity in a
variety of diseases, such as schizophrenia (Zalesky et al., 2011),
autism (Lewis et al., 2014), traumatic brain injury (Dennis et al.,
2015b), and even in genetics (Jin et al., 2011, 2013) and sex
difference (Jahanshad et al., 2011). The white matter integrity can
be analyzed with both the tract-based analysis such as tract-based
spatial statistics (Smith et al., 2006), fiber clustering (Jin et al.,
2012, 2014), and the parcellation-based connectome analysis
(Toga et al., 2012).

In particular, many studies have used diffusion-weighted
MRI (DWI) to study AD and MCI. Demirhan et al. (2015)
studied the added value of diffusion tensor derived measures,
over and above structural MRI, and showed they provided
added diagnostic accuracy for classification of disease stages
(Demirhan et al., 2015). Nir et al. (2013) found that standard
diffusion tensor derived measures were strongly correlated with
several clinical ratings that are widely-used in AD research
(MMSE, CDR-sob, and ADAS-cog) (Nir et al., 2013).When effect
sizes were ranked, mean diffusivity (MD) measures tended to
outperform fractional anisotropy (FA) measures for detecting
group differences in tracts that pass through the temporal
lobes and the left hippocampal component of the Cingulum.
Diffusivity measures tended to detect the more subtle differences
in MCI, even when comparisons of FA measures did not. Jin
et al. (2015) also used various diffusion-derivedmeasures to relate
fornix degeneration with cognitive decline. MD was also shown
to be more sensitive to group differences among AD, MCI, and
normal controls than FA (Jin et al., 2015).

Several studies used the ADNI DWI scans to compute
structural connectivity measures, including measures of the
brain’s network properties. Li et al. (2013) proposed a spectral

diffusional connectivity framework to explore the connectivity
deficit in AD. Li et al. (2013) The framework was based on
studying the eigenvalues of the Laplacian matrix of the diffusion
tensor field at the voxel level. The peaks of the diffusional
connectivity spectra were shifted in the AD group versus the
normal controls. Prasad et al. (2015) ranked several connectivity
measures, to see which ones best distinguished AD from normal
aging (Prasad et al., 2015). Graph-based network measures—
such as small-world properties, clustering, and modularity—
helped in differentiating diagnostic subgroups relative to just
using the raw connectivity matrices; there was also additional
predictive value in computing a very dense connectivity matrix to
represent the structural connectivity between all adjacent voxels
in the image. This approach, known as “flow-based connectivity
analysis” complemented themore standard analysis of large-scale
tracts interconnecting cortical and subcortical regions of interest.
Even so, brain networks and their features depend to some
extent on the choice of field strength (Zhan et al., 2013c; Dennis
et al., 2014), scanners (Zhan et al., 2014a), feature space (Zhan
et al., 2014b), imaging acquisition parameters (Zhan et al., 2012),
fiber tracking parameters (Dennis et al., 2015a), fiber tracking
algorithms used to infer the trajectories of pathways in the brain
(Zhan et al., 2013b, 2015a,b). Dozens of tractography algorithms
are now available (Conturo et al., 1999; Mori et al., 1999; Basser
et al., 2000; Lazar et al., 2003; Parker et al., 2003; Behrens et al.,
2007; Aganj et al., 2011) yielding visually very different brain
networks.

For this study, we adopted the tensor-based fiber assignment
by continuous tracking (FACT) algorithm (Mori et al., 1999) to
compute structural brain networks in a cohort of elderly patients
with various levels of cognitive impairment (none, mild, severe).
Tensor-based FACT can yield false positive fibers that may add
noise to the computed network properties, but it is still one of the
most widely used tractography algorithms due to it being simple
and flexible. Here we propose a novel framework for network
classification, with the goal of improving diagnostic classification
by combining diffusion and structural MRI. We also set out to
show how this new framework could be applied to networks that
might contain false positive fibers (such as those derived from
FACT) and used for differentiating different stages of cognition
in the stages of Alzheimer’s disease.

Methods

Figure 1 summarizes our proposed framework for brain network
classification using higher order singular value decomposition
(HO-SVD) and sparse logistic regression (Sparse LG). Its two
component techniques are explained below.

HO-SVD
Singular value decomposition (SVD) is a powerful tool for
dimension reduction that is widely used in machine learning
and data mining. The SVD of a matrix X ∈ R

n×m is given by
X = U6VT, where U ∈ R

n×n and V ∈ R
m×m are orthogonal

matrices and 6 ∈ R
n×m is a rectangular diagonal matrix. The

diagonal entries of6, known as singular values, are non-negative
and assumed to be in descending order.
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FIGURE 1 | Here we show the workflow used in this paper

to classify patients based on their brain structural networks.

We model brain networks as connectivity matrices, and then stack

them up, across subjects, as a 3D tensor. We then perform

feature reduction and use sparse methods for diagnostic

classification.

The higher order SVD (HO-SVD) is one common
generalization of SVD from matrices to tensors (De Lathauwer
et al., 2000). In HO-SVD, a tensor X ∈ R

I1×I2×···×IN is
decomposed as

X = S×1U
(1)×2U

(2) . . .×NU
(N)

in which

(1) U(k) ∈ R
Ik×Ik , k = 1, . . . ,N are orthogonal matrices where

the ith column of U(k) is the ith k-mode singular vector.
(2) S ∈ R

I1×I2×···×IN is the core tensor which is of the same size
as X, and has the following properties:

• For any 1 ≤ k ≤ N, let Sik and Sjk be the subtensors
obtained by fixing the kth index to ik and jk, 1 ≤ ik, jk ≤

Ik, then < Sik ,Sjk >= 0 for ik 6= jk;
• For 1 ≤ k ≤ N,

‖ Sik = 1 ‖≥‖ Sik = 2 ‖≥ · · · ≥‖ Sik = Ik ‖≥ 0

The Frobenius-norms ‖ Sik = i ‖, 1 ≤ i ≤ Ik are the
k-mode singular values.

The kth mode singular matrix U(k) can be obtained as the left
singular matrix of the kth mode unfolding matrix of tensor X .
After obtaining all N singular matrices U(1) . . .U(N), the core
tensor S is given by

S = X×1U
(1)T×2U

(2)T . . .×NU
(N)T

Inspired by the dimension reduction via SVD in the 2D case, we
propose to reduce the dimensions of diffusion MRI derived brain
networks, using higher order SVD (HO-SVD).

Similar to the matrix case, the ordering assumption for tensor
singular values suggests that most of the information contained
in a tensor may be expressed by the first few “components.” Let

the first mode of data tensor X correspond to the sample size
n (i.e., I1 = n) and the remaining modes correspond to feature
dimensions. Then, by keeping the largest R1, . . . ,RN singular
values for each mode, a reduced tensor with size n × R2 × R3 ×
· · · × RN can be obtained by

X̃ = S̃×1Ũ
(1)

where S̃ = X×1Ũ
(1)T×2Ũ

(2)T . . .×NŨ
(N)T is the core tensor

with the first R1,R2, . . . ,RN singular values kept for each mode,
and Ũ(k) ∈ R

Ik×Rk , 1 ≤ k ≤ N. The proposed dimension
reduction of the tensor is also analogous to principal components
analysis (Mocks and Verleger, 1986) for a matrix input. Instead
of the original tensor, we propose to use the reduced tensor X̃ as
the new input data for classification. Figure 2 illustrates the basic
idea of HO-SVD and feature reduction.

Sparse Logistic Regression
Let x ∈ R

m be a sample vector and y ∈ {−1,+1} be a binary
outcome. The logistic regression model is given by:

Prob(y|x) =
1

1+ exp
(
− y

(
xTw+c

) )

where w ∈ R
m and c ∈ R are coefficients, and Prob(y|x) is

the posterior probability. Given n samples {x1, x2, . . . , xn}, the
empirical logistic loss is measured by the negative log-likelihood
and the average logistic loss is given by

L (w, c) = −
1

n
log

n∏

i= 1

Prob
(
yi

∣∣ xi
)

=
1

n

n∑

i= 1

log
(
1+ exp

(
− yi(x

T
i w+ c)

))
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FIGURE 2 | Illustration of HO-SVD and corresponding feature reduction

process. Please refer to Section HO-SVD for the meaning of all the letters.

The unknown coefficients w and c can be computed by
minimizing the logistic loss, which involves a smooth convex
optimization problem. However, when dimension m is far larger
than the sample size n, solving the logistic regression problem is
ill-posed, and the learned model may suffer from the over-fitting
problem.

Sparse logistic regression embeds the feature selection into
classification using the Lasso penalty (Tibshirani, 1996, 2011)
which results in a sparse solution for w. The sparse logistic
regression problem is formulated as:

min
w,c

L (w, c)+λ ‖ w‖1

where the l1 norm of w, i.e., ‖ w‖1, is the Lasso penalty and λ>0
is the regularization parameter that controls the sparsity of the
solution.

Experiments

Subject Demographics and Image Acquisition
We analyzed brain imaging data from 202 participants in
ADNI2, the second stage of the North American Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.
edu). Participant information including performance on the
mini-mental state exam (MMSE) and the clinical dementia
rating (CDR) are summarized in Table 1. Subjects are divided
into three broad diagnostic categories based on the standard
criteria outlined on the ADNI website (http://www.adni-info.
org/scientists/ADNIGrant/ProtocolSummary.aspx).

• Normal Control (NC) subjects: MMSE scores between 24–30
(inclusive), CDR of 0, and non-depressed.

• MCI participants:MMSE scores between 24 and 30 (inclusive),
a memory complaint, have objective memory loss measured by
education adjusted scores on Wechsler Memory Scale Logical

TABLE 1 | Summary of ADNI data used in this study.

AD MCI NC Total

Number 39 112 51 202

Age (y) 75.56 ± 9.11 71.68 ± 9.89 69.69 ± 15.43 71.92 ± 11.54

Sex 25M 71M 22M 118M

Memory II, a CDR of 0.5, absence of significant levels of
impairment in other cognitive domains, essentially preserved
activities of daily living, and an absence of dementia.

• AD subjects: MMSE scores between 20 and 26 (inclusive),
CDR of 0.5 or 1.0, and meeting NINCDS/ADRDA criteria for
probable AD.

T1-weighted and diffusion MRI were acquired from each
participant using 3-tesla GE Medical Systems scanners. 3D
T1-weighted images were collected using spoiled gradient echo
(SPGR) sequences with the following parameters: 256 × 256
acquisition matrix; voxel size = 1.2 × 1.0 × 1.0mm3; TI =

400ms; TR = 6.98ms; TE = 2.85ms; flip angle = 11◦. 5 T2-
weighted volumes with no diffusion sensitization (b0 images)
and 41 diffusion-weighted volumes (b = 1000 s/mm2), were
collected with the following parameters: 128 × 128 matrix;
TR = 9050ms, isotropic voxels, of size 2.7mm; number of
slices = 59; scan time = 9min. Additional details of the
protocols are available at http://adni.loni.usc.edu/wp-content/
uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf. The diffusion
MRI protocol for ADNI was chosen after a detailed evaluation
of different protocols that could be performed in a reasonable
amount of time; we reported these comparisons previously
(Jahanshad et al., 2010; Zhan et al., 2013a). All T1-weighted MR
and DWI images were visually checked for quality assurance
to exclude scans with excessive motion and/or artifacts, and all
scans were included.

Network Computation
Each subject’s brain network was computed with the method
described in Zhan et al. (2013c). In brief, each subject’s DWI was
preprocessed (corrected for eddy current distortion and motion
as well as removal of non-brain tissue) using the FSL toolbox
(http://fsl.fmrib.ox.ac.uk/). Then, whole brain tractography was
computed using tensor-based fiber assignment by continuous
tracking (FACT) algorithm (Mori et al., 1999) implemented
in diffusion toolkit (http://trackvis.org/dtk/). 113 cortical and
subcortical regions-of-interest (ROIs) were defined using the
Harvard Oxford Cortical and Subcortical probabilistic atlas
(Desikan et al., 2006). For each pair of ROIs, the number of
detected fibers connecting them was determined from the FACT
tractography. A fiber was considered to connect two ROIs if
it intersected both of them. This process was repeated for all
ROI pairs, to compute a whole brain fiber connectivity matrix.
This matrix is symmetric, by definition, and has a zero diagonal,
i.e., we did not consider self-connections. Figure 3 illustrates the
overall process to compute the brain networks.

To avoid bias in subsequent analyses, we normalized each
subject’s matrix by dividing each entry by its maximum value,
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FIGURE 3 | Flowchart to compute structural brain networks. (A)

Diffusion MRI: the MR signal was sampled after applying gradients in a set

of directions uniformly distributed on a spherical surface; (B) Modeling: the

diffusion process was modeled using a tensor model, or by fitting

orientation distribution functions, and then the dominant direction was

identified; (C) Fiber tracking: a fiber streamline was generated, connecting

as far as possible the dominant directions of neighboring voxels under

some constraints (e.g., a threshold on the maximum turning angle); (D)

whole brain tractography, tracking fibers from a set of seeds across the

whole brain; here, the color indicates the fiber directions, red for left and

right, blue for superior and inferior, green for anterior and posterior; (E)

T1-weighted brain MRI; (F) brain parcellation: here we defined 113 ROIs

using the Harvard Oxford Cortical and Subcortical probabilistic atlas; (G)

aligning the whole brain tractography and 113 ROIs; (H) the resulting

un-normalized brain network, counting the number of detected fibers

connecting each pair of ROIs.

as matrices derived from different subjects have different scales
and ranges. This normalized network served as the input for the
following analyses.

Network Analysis and Confounds Removing
For each of the 202 subjects’ 113 × 113 normalized networks,
we calculated standard network metrics. Five common global
networkmeasures, includingmodularity (MOD),mean clustering
coefficient (MCC), characteristic path length (CPL), global
efficiency (GLOB), and small-worldness (SW), were computed
using the Brain Connectivity Toolbox (BCT) (Rubinov and
Sporns, 2010). We used the weighted version of these measures.
Definitions and mathematical equations for all of these metrics
may be found at the BCT website (https://sites.google.com/site/
bctnet/).

We used the generalized linear model (GLM) to remove
confounds related to age and sex, across all subjects. Element-
wise residual 113×113 networks were used as well as the residuals
from the global network measures. From now on, we will refer to

these networks as the “GLM-adjusted” networks and the residuals
from the global network measures as GLM-adjusted network
measures.

Feature Extraction
Using the 113×113GLM-adjusted networks computed in Section
Network Analysis and Confounds Removing, we compared three
feature extraction methods:

(1) Raw features: for each subject, the feature vector was
constructed by stacking all the entries of the upper triangular
portion of the matrix (as the brain matrix is symmetric). So
each subject has 6328 (= 113 × 112/2) features. Thus, we
obtained a matrix with 202 (subjects) by 6328 (features) as
the input to Sparse LG.

(2) SVD: We first built the raw feature matrix and then center
this matrix by subtracting the means for each column. We
use the top k principal components as the input for Sparse
LG. The SVD method is essentially equivalent to PCA. Let
us assume that the rows of a data matrix represent samples
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and the columns of data matrix represent different features.
One can always use SVD to decompose an arbitrarymatrix to
reduce the dimensionality, by using its top k singular values
and left singular vectors. When the feature columns of the
data matrix are all centered, it can be easily verified that SVD
is exactly the same as PCA. In our paper, we center the data
matrices first, so we are essentially comparing HO-SVD with
PCA.

(3) HO-SVD: We reduced the dimension of data tensor to 202×
15 × 15 by keeping the largest k singular values for each
mode. Then, we constructed the feature vector for each
subject by stacking the entries of the reduced data matrix.
This constructed feature vector then serves as the input for
Sparse LG.

Our empirical tests showed that the performances of SVD and
HO-SVD are stable when k is set between 10 and 30. In this paper,
we report the performances obtained after setting k = 15.

Experiment Design
Three comparisons, including (1) AD vs. MCI, (2) AD vs. NC,
and (3) MCI vs. NC, were evaluated on the extracted features
using three types of assessments:

(1) Assessment of element-wise brain connectivity matrices: Each
GLM-adjusted network cell value is compared across the
different groups (AD, MCI, and NC).

(2) Assessment of global network measures: Each of the five GLM
adjusted network measures was compared across the AD,
MCI, and NC groups.

(3) Assessment of feature extraction methods: We will use
the three feature extraction methods described in Section
Feature Extraction to extract features from GLM-adjusted
networks and conduct sparse logistic regression to evaluate
the classification performance when classifying the different
groups. The rows in the extracted data matrix correspond
to samples, and the columns represent features. We first
normalize each feature column of the input data matrix
by subtracting the mean and dividing it by the standard
deviation. As the outcome has an imbalanced distribution,
we used undersampling techniques to mitigate the bias.
Undersampling used in this paper is a special case of
subsampling, and our method is essentially the bagging
procedure where a bunch of models built on subsampled
dataset are averaged. Different from a general subsampling
strategy, undersampling requires the numbers of positive
and negative samples to be the same. Thus, undersampling
does not introduce any additional prior knowledge of the
data distribution, so it is less likely to create classifiers that
favor the majority class. For each evaluation procedure,
we first randomly split data into two parts: first, 85% of
the samples were used for training, and the remaining
15% of the samples were used for testing. We next ran a
5-fold cross-validation on the training data alone to select
a model parameter (the LASSO parameter) and we then
re-trained a model on the whole training data with the
selected parameter to produce the final prediction model.
We then made predictions on the test data using the

final model and evaluate the performance. We repeated
the training/test procedure 20 times. We report the mean
and standard deviations of the classification performances
including measures of accuracy, sensitivity, specificity, and
the area under the curve (AUC). The Sparse LG model
was implemented using the Sparse Learning with Efficient
Projections package (Liu et al., 2009).

Results and Discussions

Assessment of Element-Wise Brain Connectivity
Matrices
After removing age and sex effects, the GLM-adjusted brain
network are used to estimate differences among the different
diagnostic groups. To quantify these differences, we conducted
Student’s t-tests on each cell of the GLM-adjusted network for
the three different tests (AD vs. NC, AD vs. MCI and MCI
vs. NC). Since there are 6328 (= 113 × 112/2) cells in each
GLM-adjusted network, a Bonferroni correction was adopted to
account for multiple comparisons and the threshold for statistical
significance was set to 0.05/6328 ≈ 7.9 × 10−6. Figure 4 shows
the highlighted Pmap from a Student’s t-test. Red elements in the
matrices represent the connections with uncorrected P < 0.001.
White elements in the matrices indicate connections that differ
significantly between groups after Bonferroni correction. It is
interesting that in the comparison between MCI and NC, there
are four connections with significant uncorrected P-values. These
connections involve brain stem, left thalamus, left putamen, left
superior temporal gyrus posterior division and left hippocampus.
There are considerable literatures reporting the involvement of
several of these regions in degenerative neurological disorders
such as Alzherimer’s Disease. For example, in 2009, Simic and his
colleagues reported early changes in Alzheimer’s disease in the
serotonergic nuclei of the brain stem, even though the brain stem
would not normally appear in the set of regions with preferential
atrophy in AD Simic et al. (2009) Also, the reduced volume
of putamen and thalamus have been reported in Alzheimer’s
Disease. de Jong et al. (2008) Even so, the hippocampus is
more typically one of the first brain regions to be affected by
Alzheimer’s Disease. Our results indicate the connection patterns
among these regions may also be affected by the disease. Thus,
this result deserves further investigation.

However, no significant differences were detected on an
element-wise level between MCI and NC, after correction,
still suggesting that it is challenging differentiate these groups
based on the GLM-adjusted networks. In contrast, there
were 21 significant connections for the classification task of
discriminating AD vs. NC and 7 significant connections for the
task AD vs. MCI. These results are consistent with our previous
studies (Zhan et al., 2015b), where we found that there is an
approximate order of difficulty in these differentiating tasks, with
the hardest task being: MCI vs. NC > AD vs. MCI > AD vs.
NC. Furthermore, comparing the P map between AD vs. NC
and AD vs. MCI in Figure 4, we did not find any points are
repeated in both P maps, which suggests the raw brain network
cell valuesmay not be ideal for studying of the progressive process
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FIGURE 4 | Highlighted matrices showing Student t-test P maps for

three diagnostic comparisons: left: AD vs. NC, middle: AD vs. MCI

and right: MCI vs. NC are displayed. Each matrix is 113× 113,

corresponding to 113 ROI connectivity pattern. The ROIs are indexed from 1

to 113. Please refer to Zhan et al. (2013c) for corresponding numbers. Each

cell of the GLM-adjusted network represents the connectivity, after removing

the effects of age and sex at each element. The red points in these matrices

highlight the location of uncorrected P < 0.001. Multiple comparisons were

adjusted for by Bonferroni correction and the significance threshold was set

to 7.9× 10−6. The white points in these matrices highlight the location of the

significant differences (after Bonferroni correction) in the network cell

between the groups. The greatest number of connections were different

when comparing controls and AD, but no connections survive Bonferroni

correction when testing differences between controls and MCI.

FIGURE 5 | −log10(P) values from our three inter-group

comparisons using Student’s t-test for each of five standard global

network measures. From left to right, the five network measures are:

MOD, modularity; MCC, mean clustering coefficient; CPL, characteristic

path length; GLOB, global efficiency; and SW, small worldness,

respectively. The colors indicate which groups are being compared: blue

for AD vs. MCI, green for AD vs. NC, and yellow for MCI vs. NC.

Bonferroni correction was used to account for multiple comparisons, so

the adjusted threshold is 2, indicated by the red line in the figure. Only

values above the line are statistically significant given this threshold. Our

results show that only MCC can differentiate AD from MCI and only SW

can differentiate AD from NC.

of Alzheimer’s disease. Thus, we went on to investigate network
measures, in the next section.

Assessment of Global Network Measures
Here we compared the five GLM-adjusted global network
measures (MOD, MCC, CPL, GLOB, and SW) between
the diagnostic groups. Figure 5 shows the −log10(P) values
computed from the t-test between groups for these network
measures, in each of the three diagnostic tasks. We again adopted
a Bonferroni correction to account for the 5 comparisons in

each task, so the adjusted significance threshold at the alpha =

0.05 level is 0.01 (=0.05/5). We marked this adjusted threshold
with a red horizontal line [2=−log10(0.01)] Our results showed
that SW can be used to differentiate AD from NC while MCC
can differentiate AD from MCI. As in Section Assessment of
Element-wise Brain Connectivity Matrices, no measure was
able to statistically distinguish between MCI and NC, which
again indicates that more sensitive brain imaging features are
needed to distinguish MCI from NC, at least in samples of
this size.
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Assessment of Feature Extraction Methods
Here we conducted more advanced feature extraction methods
and classification techniques as described in Sections Feature
Extraction and Experiment Design to better distinguish
diagnostic classes. We firstly applied McNemar’s test
(McNemar, 1947) to confirm there are significant differences
between different feature extraction methods. (Please refer to
Supplementary Table for the results of the McNemar’s test). Then
we started to rank these feature extraction methods. Table 2
summarizes the classification performance, and Table 3 lists the
Student’s t-test P-values. The column SVD > Raw in Table 3

indicates statistical differences in classification performance of
the SVD and Raw feature sets; there was no detectable difference
in classification performance between these feature sets for all
three diagnostic tasks. Therefore, for this particular set of tasks
and this dataset, performing SVD does not improve classification
performance. SVD can reduce the dimension of the data, perhaps
also reducing the noise, it may still discard useful information
that may be vital for classification.

A similar result is seen when using HO-SVD in the
classification task AD vs. NC. For task AD vs. NC in Table 3,
both SVD and HO-SVD feature sets performed similarly to the
raw feature set. One possible explanation for this could be that
the AD and NC groups are the most biologically different, so
they are easier to differentiate than the other two, as is evident
in Table 2. The classification performance is already quite good
for raw features and there is little room for improvement.

On the other hand, our proposed HO-SVD had a significant
advantage in accuracy for the other two differentiation tasks.
As listed in Table 3, HO-SVD performed significantly better
than raw features for accuracy and specificity for AD vs.
MCI; and in accuracy and sensitivity for the task, MCI
vs. NC.

Brain networks derived from FACT-based tractography often
include a substantial number of false positive fibers generated.
Our experimental results suggest that HO-SVD is quite effective
in handling feature reduction for these noisy networks, especially

TABLE 2 | Classification Performance for our three feature extraction

methods.

Raw SVD HO-SVD

AD vs.

NC

Accuracy 0.7104 ± 0.0816 0.7000 ± 0.1008 0.7125 ± 0.1020

Sensitivity 0.6750 ± 0.1910 0.6750 ± 0.1985 0.7167 ± 0.1881

Specificity 0.7222 ± 0.0845 0.7083 ± 0.1080 0.7111 ± 0.1134

AUC 0.7611 ± 0.1162 0.7694 ± 0.1140 0.7806 ± 0.1117

AD vs.

MCI

Accuracy 0.6288 ± 0.0454 0.6259 ± 0.0456 0.6894 ± 0.0612

Sensitivity 0.5750 ± 0.1750 0.5417 ± 0.1418 0.6083 ± 0.1816

Specificity 0.6329 ± 0.0484 0.6323 ± 0.0476 0.6956 ± 0.0691

AUC 0.6195 ± 0.0997 0.6359 ± 0.0807 0.6520 ± 0.1086

MCI vs.

NC

Accuracy 0.5311 ± 0.0529 0.5383 ± 0.0610 0.5734 ± 0.0533

Sensitivity 0.5304 ± 0.0649 0.5384 ± 0.0707 0.5754 ± 0.0568

Specificity 0.5375 ± 0.1677 0.5375 ± 0.1411 0.5563 ± 0.1489

AUC 0.5585 ± 0.0892 0.5653 ± 0.0884 0.6104 ± 0.0777

in the more challenging task of differentiating cognitively healthy
controls from MCI.

Alzheimer’s disease involves structural atrophy detectable on
MRI, as well as pathological amyloid depositions and metabolic
alterations in the brain. In this study, we compared the brain
network properties in different stages of Alzheimer’s disease
using different analysis methods. In our first two assessments
using element-wise brain connectivity matrices and global
network measures, respectively, we were unable to differentiate
the diagnostic classes MCI and NC. But while within our HO-
SVD framework, the classification performance was significantly
improved compared to using raw features. The choice of
tractography algorithms can also affect the generated brain
network, but in our previous studies (Zhan et al., 2015b), we
presented a very detailed paper that was not able to detect
any significant difference in classification accuracy, using brain
networks generated from different tractography methods. This
was extremely surprising to us, as some tractography methods
lead to a much sparser representation of brain connectivity than
others. But it seemed like they were all somewhat sensitive to
disease effects and their accuracy was hard to distinguish even
in a DTI sample of a reasonable size. In the meantime, we
also conducted similar studies using different network derived
from different tractography algorithms, the accuracy was also
boosted by HO-SVD in compared to SVD or raw. Because of
these, we only presented the result from the most common
tractography algorithm, FACT, and focused our analysis on
the features from the networks and classification algorithms
best suited for distinguishing between the various stages of
neurodegeneration. Taken together, it seems like using HO-
SVD makes more difference than the tract tracing method,
at least among the ones we analyzed, which were all quite
well validated and widely used. Of course the possibility

TABLE 3 | Student’s t test P-values are shown for comparing the SVD and

the HO-SVD feature sets to the Raw feature set for each of the diagnostic

classification tasks.

SVD > Raw HO-SVD > Raw HO-SVD > SVD

AD vs.

NC

Accuracy 0.6393 0.4718 0.3494

Sensitivity 0.5000 0.2456 0.2499

Specificity 0.6734 0.6363 0.4686

AUC 0.4101 0.2963 0.3786

AD vs.

MCI

Accuracy 0.5805 0.0005 0.0003

Sensitivity 0.7440 0.2790 0.1017

Specificity 0.5165 0.0010 0.0009

AUC 0.2860 0.0267 0.0554

MCI vs.

NC

Accuracy 0.3473 0.0082 0.0102

Sensitivity 0.3562 0.0125 0.0382

Specificity 0.5000 0.3553 0.3425

AUC 0.4051 0.0286 0.0474

ABonferroni correction was adopted here, to account for multiple testing. As there are four

measures including Accuracy, Sensitivity, Specificity, and AUC, the corrected P threshold

in each column is 0.05/4 = 0.0125. P < 0.0125 are marked in red.
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remains that someone will develop a better algorithm in the
future.

Conclusion

In this study, we proposed a novel framework to differentiate
different stages of cognitive impairment—from no impairment
in healthy controls to mild cognitive impairment and ultimately
Alzheimer’s disease, using diffusion MRI derived structural
networks in conjunction with a sparse machine learning
method. Experimental results indicate that our proposed
framework performed better than more traditional methods
(direct comparisons of matrix elements or singular value
decomposition; SVD) in our network classification tests. Future
studies will extend this framework to multi-task classification
to better detect earlier stages of Alzheimer’s disease, as well as
including data from othermodalities (anatomicalMRI, PIB-PET)
that may further improve classification.
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