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The unfolded protein response (UPR) occurs in response to endoplasmic reticulum (ER)

stress caused by the accumulation of unfolded or misfolded proteins in the ER. The

UPR is comprised of three signaling pathways that promote cytoprotective functions to

correct ER stress; however, if ER stress cannot be resolved the UPR results in apoptosis

of affected cells. The UPR is an important feature of various human diseases, including

multiple sclerosis (MS). Recent studies have shown several components of the UPR are

upregulated in the multiple cell types in MS lesions, including oligodendrocytes, T cells,

microglia/macrophages, and astrocytes. Data from animal model studies, particularly

studies of experimental autoimmune encephalomyelitis (EAE) and the cuprizone model,

imply an important role of the UPR activation in oligodendrocytes in the development of

MS. In this review we will cover current literature on the UPR and the evidence for its role

in the development of MS.
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ER Stress and UPR

The endoplasmic reticulum (ER) is one of the largest cellular organelles in eukaryotic cells, and
consists of two types, rough ER and smooth ER (Kaufman, 1999; Csala et al., 2006; Schröder,
2008). Secretory and membrane proteins that are synthesized by ribosomes on the cytosolic surface
of the rough ER are properly modified and folded inside the ER lumen. The cytoplasmic side
of the smooth ER membrane is the site of biosynthesis of steroids, cholesterol, and other lipids.
Additionally, the ER lumen is the major storage site for cellular calcium. Perturbations in ER
homeostasis, such as elevated rates of secretory or membrane protein biosynthesis, elevated rates
of lipid biosynthesis, and decreased calcium concentration, can disrupt protein modification and
folding, resulting in the accumulation of unfolded or misfolded proteins in the ER lumen. This
build up of unfolded or misfolded proteins is known as ER stress and results in the activation
of the unfolded protein response (UPR, Figure 1) (Marciniak and Ron, 2006; Walter and Ron,
2011; Wang and Kaufman, 2012). Three ER-transmembrane proteins have been identified as
the transducers of the UPR, pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring
enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). The primary function of the UPR
is to restore ER homeostasis and to adapt cells to ER-stressed condition; however, if the adaptive
measures fail to restore ER homeostasis, the UPR triggers apoptosis programs to eliminate stressed
cells.

The PERK protein contains an ER transmembrane domain, a cytosolic kinase domain, and
a regulatory luminal domain (Harding et al., 1999, 2002). The regulatory luminal domain
senses ER stress and induces PERK activation via oligomerization and autophosphorylation.
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FIGURE 1 | The unfolded protein response. (A) The PERK pathway.

Under conditions of ER stress the PERK protein becomes activated by

homodimerization and autophosphorylation. p-PERK phosphorylates eIF2α

which represses eIF2B, resulting in reduced ER load through inhibition of

global protein synthesis and inducation of cytoprotective genes by

preferentially stimulating translation of ATF4. ATF4 also enhances the

expression of CHOP, which negatively regulates p-eIF2α levels through the

production of GADD34 that binds PP1 and dephosphorylates eIF2α. (B) The

IRE1 pathway. IRE1 is activated by homodimerization and

autophosphorylation in conditions of ER stress. p-IRE1 splices XBP1 mRNA

to produce the sXBP1, which induces cytoprotective genes and ER

expansion. IRE1 also induces mRNA degradation via RIDD to help reduce

ER load. (C) The ATF6 pathway. ER stress results in the translocation of

ATF6 to the Golgi complex where it is activated by proteolytic cleavage by

the proteases S1P and S2P resulting in the 50 kDa cleaved ATF6 fragment,

which stimulates the expression of chaperones.

Phosphorylated PERK (p-PERK) then phosphorylates the α

subunit of eukaryotic translation initiation factor 2 (eIF2α).
Phosphorylation of eIF2α inhibits global protein biosynthesis by
suppressing the activity of eIF2B, with the two proteins forming a
non-productive phosphorylated eIF2α (p-eIF2α)-eIF2B complex;
the outcome of this pathway is a reduction in ER load through
inhibition of nascent peptide production, preventing further
ER stress (Pavitt and Proud, 2009). Despite inhibiting global
protein synthesis, p-eIF2α preferentially stimulates translation
of the transcription factor ATF4. Induction of ATF4 increases
the expression of certain cytoprotective genes (Harding et al.,
2001, 2003). In addition, ATF4 also induces CAATT enhancer
binding protein homologous protein (CHOP) expression, which
in turn induces growth arrest and DNA damage 34 (GADD34)
expression (Marciniak et al., 2004). GADD34 functions as a
regulatory subunit of a phosphatase complex that also contains
protein phosphatase 1 (PP1), which specifically dephosphorylates
p-eIF2α (Novoa et al., 2001). This forms a tight negative feedback
loop to down-regulate the PERK-eIF2α pathway, resulting in the
restoration of protein synthesis. PERK activation adapts cells to
ER-stressed conditions through moderate inhibition of global
protein biosynthesis and induction of cytoprotective genes.

Nevertheless, PERK activation can also trigger cell apoptosis
through strong inhibition of global protein biosynthesis and
induction of CHOP, which function as a pro-apoptotic
transcription factor (Tabas and Ron, 2011; Hetz, 2012).

Similarly to PERK, IRE1 is activated through oligomerization
and autophosphorylation during ER stress. Activated IRE1
splices the mRNA of the transcription factor X-box binding
protein 1 (XBP1) by its endoribonuclease activity to produce
the active transcription factor spliced XBP1 (sXBP1). sXBP1
enhances the expression of chaperones and certain cytoprotective
genes, and promotes ER expansion (Chen and Brandizzi,
2013; Maurel et al., 2014). Activated IRE1 also promotes the
degradation of certain mRNAs to reduce the ER load through
regulated IRE1-dependent decay (RIDD). Moreover, activated
IRE1 can induce activation of the JUN amino-terminal kinase
(JNK) and the apoptosis signal-regulating kinase 1 (ASK1) by
binding to certain adaptor proteins. The third transducer of the
UPR, ATF6, transits to the Golgi complex during ER stress,
where it is cleaved by the proteases S1P and S2P. Cleaved ATF6
functions as a transcription factor that enhances the expression
of chaperones and certain cytoprotective genes (Shen et al., 2002;
Glembotski, 2014).
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Activation of the UPR in MS and EAE
Lesions

Multiple sclerosis (MS) is a T cell-mediated autoimmune
demyelinating disease of the central nervous system (CNS)
(Frohman et al., 2006; Bradl and Lassmann, 2010). The
pathological hallmark of MS is the presence of multiple
demyelinated plaques in the CNS white matter, which
are characterized by inflammation, oligodendrocyte loss,
demyelination, and axon degeneration. Although the etiology
of MS remains unknown, MS is thought to be initiated by an
autoimmune reaction against oligodendrocytes and myelin.
It is generally believed that T cells are activated by myelin
components in the peripheral immune system in MS patients,
and then myelin reactive T cells cross the blood-brain barrier,
entering the CNS where they initiate inflammation. CNS
inflammation in MS includes infiltration of T cells, B cells, and
monocytes, activation of macrophages and microglia, gliosis,
upregulation of major histocompatibility complex (MHC)
molecules, and elevated levels of inflammatory cytokines,
and reactive oxygen and nitrogen species. This inflammatory
environment leads to oligodendrocyte death, demyelination,
and axon degeneration. Once inflammation decreases,
oligodendrocytes can regenerate and remyelination can
occur in the demyelinated lesion. However, this remyelination
is insufficient to repair myelin damage, resulting in a loss of
neurological function in MS patients (Franklin, 2002; Franklin
and Ffrench-Constant, 2008).

Experimental autoimmune encephalomyelitis (EAE) is the
primary animal model used in MS research that displays many
of the clinical, pathological, and immunological features of MS
(Steinman, 1999; Gold et al., 2006). Unlike MS, which is a
spontaneous disease of unknown etiology, EAE is induced by
immunizing animals (most commonly mice) with myelin or
myelin components, such as proteolipid protein (PLP), myelin
basic protein (MBP) or myelin oligodendrocyte glycoprotein
(MOG) (Merrill et al., 1992; Baxter, 2007). This leads to exposure
of the peripheral immune cells to myelin components and results
in activation of myelin specific T cells, which then migrate into
the CNS where they induce inflammatory demyelination in a
manner similar to that seen inMS lesions (Mor and Cohen, 1992;
Baxter, 2007). EAE has successfully been used to develop several
drugs for the treatment of MS, including glatiramer acetate, and
natalizumab (Baxter, 2007).

The primary function of oligodendrocytes is to produce
the myelin sheath which wraps around axons, insulating and
protecting them (Bankston et al., 2013; Nave and Werner, 2014).
Several lines of evidence have suggested that oligodendrocyte
death induced by inflammatory attacks contributes significantly
to the development of MS and EAE (Prineas and Parratt, 2012;
Lin et al., 2013). Oligodendrocyte apoptosis has been identified
as the earliest structural change in newly forming demyelinating
lesions in both MS and EAE by a number of studies (Barnett
and Prineas, 2004; Lin et al., 2013). Both oligodendrocyte-specific
expression of anti-apoptotic proteins (such as p35, a viral caspase
inhibitor) and oligodendrocyte-specific deletion of pro-apoptotic
proteins (such as tumor necrosis factor receptor 1; TNF-R1,

Fas, and Fas-Associated protein with Death Domain; FADD)
protect oligodendrocytes against inflammatory attacks, resulting
in attenuation of EAE disease severity and amelioration of
demyelination, axonal degeneration, and inflammation in EAE
lesions (Hisahara et al., 2000, 2003; Hövelmeyer et al., 2005;
McGuire et al., 2010). A number of reports have also shown
that enhancing survival signaling pathways in oligodendrocytes
protects mice against EAE, while impairing survival signaling
pathways in oligodendrocytes renders mice susceptible to EAE
(Balabanov et al., 2007; Ren et al., 2011; Lin et al., 2013; Hussien
et al., 2014). Additionally, oligodendrocyte regeneration in
demyelinated lesions is essential and necessary for remyelination
and restoration of neurological functions in MS and EAE
(Franklin, 2002; Franklin and Ffrench-Constant, 2008).

The UPR plays a critical role in inflammatory diseases
(Zhang and Kaufman, 2008; Kitamura, 2011). Elevated levels
of inflammatory mediators, such as immune cytokines, reactive
oxygen species, and reactive nitrogen species, can activate
the UPR in tissue resident cells and infiltrated inflammatory
cells in inflammatory lesions. Activation of the UPR has been
observed in multiple cell types in MS and EAE lesions (Lin
and Popko, 2009). Microarray analysis revealed elevated levels
of the UPR-responsive genes ATF4 and heat shock protein 70
in MS demyelinated lesions (Cwiklinska et al., 2003; Mycko
et al., 2004). Real-time PCR analysis showed increased mRNA
levels of the UPR makers ATF4, immunoglobulin-heavy-chain-
binding protein (BiP), and CHOP in normal-appearing white
matter and demyelinating lesions in the CNS of MS patients
(Cunnea et al., 2011). Using biopsy specimens and post-
mortem samples, immunohistochemistry analysis demonstrated
increased expression of the UPR markers CHOP and BiP in
oligodendrocytes, astrocytes, T cells and macrophages/microglia
in MS lesions (Mháille et al., 2008; Cunnea et al., 2011; McMahon
et al., 2012; Ní Fhlathartaigh et al., 2013). Moreover, elevated
levels of several UPR markers, including p-PERK, p-eIF2α, BiP,
and CHOP, have been demonstrated in oligodendrocytes, T cells,
astrocytes, and macrophages/microglia during the course of EAE
(Chakrabarty et al., 2004, 2005; Lin et al., 2007; Deslauriers et al.,
2011; Ní Fhlathartaigh et al., 2013; Meares et al., 2014).

The Dual Roles of IFN-γ in Models of MS
are Mediated by the UPR

It has been well-documented that the T cell-derived pleiotropic
cytokine interferon-γ (IFN-γ) plays a critical role in the
development of MS and EAE (Popko et al., 1997; Lees and Cross,
2007; Goverman, 2009). A large number of studies have shown
that IFN-γ promotes myelin damage and oligodendrocyte death
in immune-mediated demyelinating diseases by stimulating
inflammation, including activation of macrophages/microglia,
upregulation of MHC molecules, and induction of inflammatory
mediators (reviewed in Goverman, 2009 as well as Popko and
Baerwald, 1999). Indeed, treatment of MS patients with IFN-
γ results in exacerbation of symptoms (Panitch et al., 1987).
Nevertheless, another set of reports showed that IFN-γ has
protective effects during EAE (Mühl and Pfeilschifter, 2003;
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Wheeler and Owens, 2005). Both IFN-γ deficient mice and
IFN-γ receptor (IFN-γR) deficient mice develop a more severe
EAE disease course compared to wild type control mice (Ferber
et al., 1996; Willenborg et al., 1996). Using transgenic mice
that allow for temporally regulated expression of IFN-γ in the
CNS using a tetracycline controllable system (Lin et al., 2004),
studies have shown that the beneficial or detrimental effects
of IFN-γ on the development of EAE are dependent on the
timing of its presence in the CNS (Lin et al., 2006, 2007).
CNS-expression of IFN-γ before EAE onset ameliorates the
disease course and prevents EAE-induced oligodendrocyte loss,
demyelination, and axon degeneration (Lin et al., 2007). In
contrast, CNS-expression of IFN-γ at the recovery stage of EAE
impairs the disease recovery and suppresses oligodendrocyte
regeneration and remyelination in demyelinated lesions (Lin
et al., 2006). Importantly, these studies also demonstrated that
both the beneficial and detrimental effects of IFN-γ on the
development of EAE are mediated, at least in part, by activation
of the PERK-eIF2α pathway in oligodendrocytes (Lin et al., 2006,
2007).

Lin et al. (2007) reported that CNS-expression of IFN-γ before
EAE onset almost completely blocked oligodendrocyte death,
demyelination, and axonal degeneration in the CNS of EAE
mice. Modest activation of the PERK-eIF2α pathway is detected
in the oligodendrocytes of control EAE mice; CNS-expression
of IFN-γ before EAE onset markedly enhances activation of
the PERK-eIF2α pathway in oligodendrocytes (Lin et al., 2007).
Importantly, CNS delivery of IFN-γ before EAE onset does not
ameliorate the severity of disease course or prevent EAE-induced
oligodendrocyte loss, demyelination, and axon degeneration in
mice on the PERK heterozygous deficient background. In fact,
MBP immunohistochemistry and toluidine blue staining show
there is more severe myelin damage in the CNS of PERK
heterozygous deficient mice that express transgenic IFN-γ in the
CNS before EAE onset than the control EAE mice (Lin et al.,
2007). However, PERK heterozygous deficiency alone does not
alter EAE disease course, tissue damage in the CNS, or the
immune responses in the peripheral immune system or CNS.
Thus, these results demonstrate that the beneficial effect of IFN-γ
in EAE is dependent on PERK signaling (Lin et al., 2007).

It is generally believed that remyelination in demyelinated
lesions in adult animals largely recapitulates developmental
myelination (Fancy et al., 2011). Several reports have shown
that CNS-expression of IFN-γ during development causes
myelinating oligodendrocyte death, hypomyelination, and
inflammation (Corbin et al., 1996; LaFerla et al., 2000;
Lin et al., 2008; Lin and Lin, 2010). Interestingly, a paper
showed that the presence of IFN-γ in the CNS activates the
PERK-eIF2α pathway in myelinating oligodendrocytes and
that PERK heterozygous deficiency exacerbates IFN-γ-induced
myelinating oligodendrocyte death and hypomyelination in
young, developing mice (Lin et al., 2005). Moreover, another
report demonstrated that GADD34 inactivation elevates the
level of p-eIF2α in myelinating oligodendrocytes and attenuates
myelinating oligodendrocyte death and hypomyelination in
young, developing mice that express IFN-γ in the CNS (Lin et al.,
2008).

Feeding of cuprizone (bis-cyclohexanone oxaldihydrazone)
to young adult mice induces a synchronous consistent
demyelination (Matsushima and Morell, 2001; Stidworthy
et al., 2003). Oligodendrocytes undergo apoptosis in response
to cuprizone treatment, followed by almost complete
demyelination of the corpus callosum. After removal of
cuprizone, oligodendrocytes regenerate and remyelination
takes place over the course of a few weeks. The cuprizone
model is considered to be one of the best mouse models
to study the mechanisms of remyelination in MS (Denic
et al., 2011; van der Star et al., 2012). The presence of IFN-γ
in the CNS suppresses oligodendrocyte regeneration and
remyelination in cuprizone-induced demyelinated lesions
(Lin et al., 2006). Importantly, the presence of IFN-γ in the
CNS activates the PERK-eIF2α pathway in remyelinating
oligodendrocytes and PERK heterozygous deficiency exacerbates
IFN-γ-induced apoptosis of remyelinating oligodendrocytes and
remyelination failure in cuprizone-induced demyelinated lesions
(Lin et al., 2006). Taken together, these results demonstrate that
activation of the PERK-eIF2α pathway protects (re)myelinating
oligodendrocytes against the detrimental effects of IFN-γ in
immune-mediated demyelinating diseases.

The mechanisms by which IFN-γ induces ER stress and
activates the UPR in oligodendrocytes in immune-mediated
demyelinating diseases remain unknown. IFN-γ exerts its
functions by binding to its receptors, IFN-γR1 and IFN-γR2
(Ramana et al., 2002). Binding of IFN-γ leads to oligomerization
of its receptors and activation of the Janus kinases (JAK)1 and
JAK2, resulting in trans-phosphorylation of the JAKs and the
intracellular domain of the receptors, allowing interaction with
STAT1. STAT1 is activated via phosphorylation of tyrosine 701,
and then translocates to the nucleus where it stimulates the
expression of IFN-γ-responsive genes. In vitro studies show that
IFN-γ can induce ER stress and activate the UPR in multiple cell
types, including oligodendrocytes (Lin et al., 2005; Gade et al.,
2012). Using STAT1 knockout mice, a study reported that STAT1
deletion diminishes the ability of IFN-γ to activate the UPR in
oligodendrocytes in the CNS (Lin and Lin, 2010). However, this
study also shows that STAT1 deletion diminishes the ability of
IFN-γ to induce inflammation in the CNS. Many inflammatory
mediators induced by IFN-γ, such as tumor necrosis factor-α,
nitrogen oxide, and hydrogen peroxide, are capable of activating
the UPR in cells (Hu et al., 2006; Cao and Kaufman, 2014).
Therefore, it is likely that the presence of IFN-γ in the CNS
activates the UPR in oligodendrocytes in immune-mediated
demyelinating diseases through both its direct actions on the cells
and through induction of inflammation.

The Protective Effects of Moderate Perk
Activation on Oligodendrocytes in Models
of MS

To further dissect the precise role of PERK signaling in
oligodendrocytes during immune-mediated demyelinated
diseases, a mouse model (PLP/Fv2E-PERK mice) that allows for
temporally controlled activation of PERK signaling specifically
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in oligodendrocytes has been generated (Lin et al., 2013).
This mouse model expresses Fv2E-PERK, an artificial PERK
derivative, under the control of the proteolipid protein (PLP)
promoter, thus restricting its expression to oligodendrocytes
in the CNS (Lin et al., 2013). Fv2E-PERK contains the effector
domain of PERK (eIF2α-kinase domain) fused to two modified
FK506 binding domains (Fv2E) (Lu et al., 2004). Treatment with
the ligand for the Fv2E domain (AP20187) results in dimerization
and autophosphorylation of the eIF2α-kinase domain allowing
activation of PERK signaling to be controlled and isolated from
ER stress. Importantly, AP20187 treatment activates PERK
signaling in oligodendrocytes of PLP/Fv2E-PERK mice in a dose
dependent manner. ER stress and activation of the UPR are
believed to be moderate under physiological and pathological
conditions (Qi et al., 2011). To mimic the moderate PERK
activation under normal and disease conditions, heterozygous
PLP/Fv2E-PERK mice are treated with a low dose of AP20187
to induce moderate activation of PERK signaling specifically in
oligodendrocytes. Moderate PERK activation has no effect on
mature oligodendrocytes in fully myelinated adult mice (Lin
et al., 2013). Moreover, moderate PERK activation does not
affect the viability or function of myelinating oligodendrocytes
in young, developing mice or remyelinating oligodendrocytes in
cuprizone-induced demyelinated lesions (Lin et al., 2014a).

Using this unique mouse model, a study demonstrated
that moderate PERK activation in mature oligodendrocytes
is cytoprotective and protects mice against EAE (Lin et al.,
2013). Treating heterozygous PLP/Fv2E-PERK mice with a
low dose of AP20187 starting before EAE onset, at post-
immunization day (PID) 10, elevates the level of p-eIF2α
exclusively in oligodendrocytes, significantly ameliorates the
severity of EAE clinical symptoms, and attenuates EAE-induced
oligodendrocytes loss, demyelination, and axon degeneration
in the CNS. Oligodendrocyte loss is one of the first signs of
pathological changes in EAE and can occur before demyelinating
lesions are identifiable. Importantly, the low dose of AP20187
treatment significantly reduces the number of apoptotic
oligodendrocytes in the CNS of heterozygous PLP/Fv2E-PERK
mice before the onset of clinical disease and the formation of
demyelinating lesions (at PID12). Moreover, moderate PERK
activation in mature oligodendrocytes does not significantly
affect the immune responses in CNS or peripheral immune
system during EAE (Lin et al., 2013).

Similarly, using the same mouse model, another study
demonstrated that moderate PERK activation promotes
remyelinating oligodendrocyte survival and remyelination
in demyelinated lesions in models of MS (Lin et al.,
2014a). It has been shown that the presence of IFN-γ in
the CNS stimulates inflammation and is detrimental to
myelinating oligodendrocytes in young, developing mice
and to remyelinating oligodendrocytes in demyelinated
lesions in the cuprizone models (Lin et al., 2005, 2006,
2008). This study showed that moderate PERK activation
specifically in myelinating oligodendrocytes protects both
oligodendrocytes and myelin against the detrimental effects
of IFN-γ in young, developing mice, without altering
the inflammatory response induced by the cytokine (Lin

et al., 2014a). Moderate PERK activation specifically in
oligodendrocytes also attenuates IFN-γ-induced remyelinating
oligodendrocyte apoptosis and remyelination failure in
cuprizone-induced demyelinated lesions. Moreover, moderate
PERK activation specifically in oligodendrocytes during
the recovery stage of EAE does not change the severity of
clinical symptoms, but significantly enhances oligodendrocyte
regeneration and remyelination in EAE demyelination
lesions. Additionally, moderate PERK activation specifically
in oligodendrocytes has no effect on the inflammatory response
in both cuprizone and EAE demyelination lesions (Lin et al.,
2014a).

In parallel to the above findings, Hussien et al. (2014)
showed that oligodendrocyte-specific PERK deletion
increases the susceptibility of mice to EAE. Mice with
oligodendrocyte-specific PERK deletion appear healthy
and exhibit normal myelination in the CNS under
physiological conditions. However, these mice develop a
significantly more severe EAE disease course as compared
to the control mice. Moreover, oligodendrocyte-specific
PERK deletion exacerbates EAE-induced oligodendrocyte
loss, demyelination and axon degeneration in the CNS.
Additionally, there is no evidence that oligodendrocyte-
specific PERK deletion alters the immune response in EAE
mice.

Data from these cell-specific conditional mouse models
that allow for manipulation of the activity of PERK
signaling specifically in oligodendrocytes demonstrate
that moderate PERK activation acts cell-autonomously to
protect oligodendrocytes (both mature and remyelinating
oligodendrocytes) against inflammatory attacks in immune-
mediated demyelinating diseases (Lin et al., 2013, 2014a;
Hussien et al., 2014). Although it is generally believed that
PERK activation promotes cell survival under cytotoxic
conditions through global attenuation of protein translation
and induction of stress-induced cytoprotective genes (Marciniak
and Ron, 2006; Walter and Ron, 2011), the precise molecular
mechanisms responsible for the cytoprotective effects of
PERK signaling on oligodendrocytes in these diseases remain
unknown. Several lines of evidence have suggested that PERK
signaling activates the NF-κB pathway by repressing the
translation of the NF-κB inhibitor IκBα during ER stress
(Jiang et al., 2003; Deng et al., 2004). Activation of NF-
κB, which is increasingly recognized as an anti-apoptotic
transcription factor (Karin and Lin, 2002; Mincheva-Tasheva
and Soler, 2013), has been observed in oligodendrocytes
in MS and EAE lesions (Yan and Greer, 2008; McGuire
et al., 2013). Interestingly, recent studies have shown that
PERK activation in oligodendrocytes activates the NF-κB
pathway in the cells in vitro and in vivo (Lin et al., 2012,
2013). These data raise the possibility that NF-κB activation
contributes to the protective effects of PERK signaling
on oligodendrocytes in immune-mediated demyelinating
diseases. A mouse model that allows for controllable
activation of PERK and inactivation of NF-κB specifically
in oligodendrocytes would be the ideal model system to test this
possibility.
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Unique Features of the UPR in
Oligodendrocytes

The myelin sheath is an enormous lipid-rich membrane
structure. Each myelinating oligodendrocytes must synthesize
vast amounts of myelin membrane proteins andmembrane lipids
through the ER to assemble the myelin sheath (Pfeiffer et al.,
1993; Anitei and Pfeiffer, 2006). Not surprising, evidence suggest
that oligodendrocytes are highly sensitive to disruptions in ER
homeostasis (Lin and Popko, 2009). Recent studies showed that
ER stress and the UPR play a critical role in a number of
myelin disorders in the CNS, including MS (as described above),
Pelizaeus-Merzbacher disease, vanishing white matter disease
(VWMD), and spinal cord injury (D’Antonio et al., 2009; Lin
and Popko, 2009; Ohri et al., 2013). Interestingly, the UPR in
oligodendrocytes has its unique features.

Data from VWMD, a disease caused by mutations in
the genes encoding the five subunits of eIF2B, suggest
that oligodendrocytes are hyper-sensitive to activation of the
PERK-eIF2α-eIF2B pathway (Scheper et al., 2006; Lin, 2015).
VWMD patients exhibit profound myelin loss in the CNS
white matter; however, the gray matter and other organs are
generally spared. eIF2B acts as a guanine nucleotide exchange
factor and participates in each translation initiation event in
eukaryotic cells. The activity of eIF2B is tightly regulated by
the level of p-eIF2α. A large number of studies have shown
that eIF2B mutations in VWMD patients reduce its activity
(reviewed in Pavitt and Proud, 2009). Interestingly, a very recent
study demonstrated that impaired eIF2B activity specifically
in oligodendrocytes during the active phase of myelination
reproduces the characteristic features of VWMD in mice,
including hypomyelinating phenotypes, premature death, foamy
oligodendrocytes, and myelin loss (Lin et al., 2014b). Taken
together, these data indicate that impairment of eIF2B induced by
VWMD mutations predominately affects oligodendrocytes and
subsequently results in the selective white matter pathology in
most cases of VWMD (Lin, 2015).

Of the three key transducers of the UPR the role of PERK
signaling in oligodendrocytes has been the best characterized.
Additionally, there is evidence (such as induction of BiP)
suggesting activation of the ATF6 branch of the UPR in
oligodendrocytes (Lin et al., 2005, 2013; Mháille et al., 2008; Ní
Fhlathartaigh et al., 2013). However, although the IRE1-XBP1
branch is the most conserved part of the UPR, there is no
evidence that this pathway plays amajor role in oligodendrocytes.
Despite considerable efforts, we and other groups have never
found activation of the IRE1-XBP1 pathway in oligodendrocytes
in vitro or in vivo under physiological or pathological conditions.
It is known that activation of PERK signaling and ATF6 signaling
is notoriously difficult to detect either in vitro or in vivo. In
contrast, PCR-based assays that examine XBP1 splicing are highly
sensitive methods for detection of activation of the IRE1-XBP1
pathway (Cox et al., 2011). Failure to detect XBP1 splicing in
oligodendrocytes suggests a minimal role for the IRE1-XBP1
pathway in oligodendrocytes.

A large number of studies have demonstrated that CHOP, an
effector of the PERK-eIF2α pathway, functions as a pro-apoptosis

transcription factor in many cell types during ER stress (Tabas
and Ron, 2011; Hetz, 2012). In contrast, evidence suggests
that CHOP induction is not detrimental to oligodendrocytes
(Gow and Wrabetz, 2009). Southwood et al. (2002) showed that
UPR markers such as CHOP, BiP, and ATF3 are upregulated
in oligodendrocytes of PLP1 mutant mice and that CHOP
deletion exacerbates the clinical symptom and oligodendrocyte
apoptosis in PLP1 mutant mice. It has also been shown that
upregulation of CHOP induced by moderate PERK activation
in oligodendrocytes of heterozygous PLP/Fv2E-PERK mice does
not have a detrimental effect on the cells under normal
or disease conditions (Lin et al., 2013, 2014a). Moreover, a
recent study showed that treating homozygous PLP/Fv2E-PERK
mice with a high dose of AP20187 strongly activates PERK
signaling specifically in oligodendrocytes, resulting in strong
inhibition of protein biosynthesis and upregulation of CHOP
in the cells. Notably, strong PERK activation inhibits the
myelinating function of oligodendrocytes in young developing
mice by suppressing protein translation, but does not affect
oligodendrocyte viability. Intriguingly, strong PERK activation
in mature oligodendrocytes of fully-myelinated adult mice had
minimal effects on the function and viability of the cells (Lin
et al., 2014b). Consistent with these studies, a report showed
that CHOP deletion does not alter the disease severity of EAE
in mice (Deslauriers et al., 2011). Collectively, these data suggest
that CHOP does not act as a pro-apoptosis transcript factor in
oligodendrocytes.

Therapeutic Potential of the UPR in MS

It is well-documented that the UPR influences the development
of a number of human diseases, including inflammatory
diseases, neurodegenerating diseases, myelin disorders, and
tumors (Zhang and Kaufman, 2008; Lin and Popko, 2009; Hetz
and Mollereau, 2014; Wang and Kaufman, 2014). Recent studies
suggest that manipulation of the UPR pathways has therapeutic
potential (Hetz et al., 2013). A number of small chemical
compounds that selectively modulate the PERK-eIF2α pathway
have been documented (Figure 2). PERK inhibitors GSK2606414
and GSK2656157 are high affinity ligands of the eIF2α kinase
domain of the PERK protein and suppress PERK-mediated eIF2α
phosphorylation by competing for ATP (Axten et al., 2012;
Harding et al., 2012; Atkins et al., 2013). Salburinal, a selective
inhibitor of the phosphatase complexes that dephosphorylate p-
eIF2α, elevates the level of p-eIF2α in ER-stressed mice (Boyce
et al., 2005). Guanabenz selectively binds to GADD34 and
inhibits the activity of GADD34/PP1 complex, attenuating p-
eIF2α dephosphorylation during ER stress (Tsaytler et al., 2011).
The PERK activator CCT020312 stimulates PERK-mediated
eIF2α phosphorylation in the absence of ER stress (Stockwell
et al., 2012). Interestingly, the therapeutic potential of these
modulators of the PERK-eIF2α pathway has been tested in
animal models of human diseases. Treatment with the PERK
inhibitor GSK2606414 attenuates protein translation inhibition
induced by PERK activation and abrogates neurodegeneration
and clinical symptoms in a mouse model of prion disease
(Moreno et al., 2013). Administration of the PERK inhibitor
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FIGURE 2 | Modulators of the PERK-eIF2α pathway. (A) CCT020312

activates PERK, inducing activation of the PERK-eIF2α pathway independently

of ER stress. (B) GSK2606414 and GSK2656157 both selectively suppress

PERK-mediated eIF2α phosphorylation. (C) Salburinal selectively inhibits of the

activity of phosphatase complexes that dephosphorylate p-eIF2α, including

both GADD34/PP1 complex and CReP (constitutive repressor of eIF2a

phosphorylation)/PP1 complex. Guanabenz selectively binds to GADD34 and

inhibits the activity of GADD34/PP1 complex, attenuating eIF2α

dephosphorylation.

GSK2656157 inhibits multiple human tumor xenografts growth
in mice by suppressing angiogenesis (Atkins et al., 2013).
Salubrinal treatment reduces ER accumulation of α-synuclein in
neurons and extends the life span of A53T α-synuclein transgenic
mice, a mouse model of Parkinson’s disease (Colla et al., 2012).
Guanabenz treatment increases the level of p-eIF2α, reduces
accumulation of mutant superoxide dismutase type 1 (mtSOD1),
attenuates motor neuron death, and prolongs survival of
mtSOD1 transgenic mice, a mouse model of amyotrophic lateral
sclerosis (Wang et al., 2014).

Using genetic approaches, the studies described above well-
documented the cytoprotective effects of the PERK-eIF2α
pathway on both mature and remyelinating oligodendrocytes
in mouse models of MS (Lin et al., 2013, 2014a; Hussien
et al., 2014). Oligodendrocytes are not only highly sensitive
to activation of the PERK-eIF2α pathway but also tolerate
the activation extremely well (Lin and Popko, 2009; Lin
et al., 2014b; Lin, 2015). Importantly, CHOP, a major pro-
apoptotic transcription factor induced by PERK activation, has
no significant effect on oligodendrocyte viability (Gow and
Wrabetz, 2009; Lin et al., 2014b). These genetic studies indicate
that the PERK-eIF2α pathway would be an ideal target to
develop therapeutic strategies for oligodendrocyte protection in
MS patients. Consistently, data from studies using small chemical
compounds suggest the therapeutic potential of activation of
the PERK-eIF2α pathway in models of MS. A report showed
that Salburinal treatment elevates the level of p-eIF2α and

attenuates IFN-γ-induced myelinating oligodendrocyte death
and myelin loss in hippocampal slice cultures, an in vitro model
of myelination (Lin et al., 2008). Moreover, a very recent report
showed that Guanabenz treatment increases the level of p-
eIF2α and protects myelinating oligodendrocytes against the
detrimental effects of IFN-γ in cerebellar slice cultures and in
transgenic mice that express IFN-γ in the CNS. This report
also showed that Guanabenz treatment elevates the level of p-
eIF2α, ameliorates EAE disease severity, and attenuates EAE-
induced oligodendrocyte death and demyelination in the CNS
(Way et al., 2015). Additionally, Guanabenz treatment does not
alter T cell proliferation or cytokine production in the peripheral
immune system, but suppresses CD4 T cell activation in the CNS
during EAE. Although data derived from mouse models of MS
are compelling, it is a formidable challenge to develop effective
therapeutic strategies to activate the PERK-eIF2α pathway forMS
treatment, without causing side effects.

Future Directions

The ER is essential for the biosynthesis of myelin lipids and
proteins. The volume of the ER increases dramatically in the
cytoplasm of oligodendrocytes during the active phase of
myelination (Wollmann et al., 1981). However, the mechanisms
that regulate the ER expansion during oligodendrocyte
development remain unexplored. Recent studies suggest the
UPR plays a role in the ER biogenesis (Brewer and Hendershot,
2005; Aragon et al., 2012). Activation of the IRE1-XBP1 pathway
directs the expansion of the ER during the differentiation
of B lymphocytes into antibody-secreting cells (Iwakoshi
et al., 2003; Sriburi et al., 2004). Activation of ATF6 also has
the ability to drive the ER expansion independent of sXBP1
(Bommiasamy et al., 2009). In contrast, the PERK-eIF2α
pathway does not participate in ER expansion during the
development of antibody-secreting cells (Gass et al., 2008;
Aragon et al., 2012). Although activation of PERK and ATF6
has been observed in oligodendrocytes, deletion of either
PERK or ATF6 has no discernible effect on oligodendrocyte
development (Yamamoto et al., 2010; Hussien et al., 2014). Since
the functions of the PERK pathway and the ATF6 pathway
overlap considerably (Marciniak and Ron, 2006; Walter and
Ron, 2011), the minimal effect of either PERK or ATF6 deletion
on oligodendrocyte development might suggest that they
compensate for each other. It would be interesting to determine
the role of the UPR in the ER biogenesis during oligodendrocyte
development using PERK and ATF6 double knock-out
mice.

While the actions of PERK activation in oligodendrocytes
in immune-mediated demyelinating diseases have been studied
extensively, the underlying mechanisms through which PERK
mediates protection remain unknown and deserve further
investigation. Moreover, activation of the PERK pathway has
been observed in other cell types in MS and EAE demyelinating
lesions, including T cells, microglia/macrophages, and astrocytes
(Chakrabarty et al., 2004; Mháille et al., 2008; Cunnea et al.,
2011). A number of studies have shown that the PERK pathway
regulates the functions of T cells, macrophages, and astrocytes
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(Woo et al., 2009; Wheatley et al., 2011; Meares et al., 2014).
Therefore, it would be important to dissect the precise role
of PERK signaling in these cell types in the pathogenesis of
EAE using cell-specific PERK knock-out mice. Moreover, future
studies will need to assess the role of the ATF6 pathway in
oligodendrocytes and other cell types in models of MS.

For many years, the focus of MS research has been on T
cell-mediated demyelination of the white matter. Recent studies,
however, have shown that neurodegeneration is not only an early
event but also the primary cause of chronic disability in MS
(Dutta and Trapp, 2011; Popescu and Lucchinetti, 2012). It is
well-documented that axon transection and loss occur early in
the CNS of MS patients (Trapp and Nave, 2008). Significant
neuron loss has also been observed in the CNS gray matter
of MS patients, including the cerebral cortex, hippocampus,
thalamus, and spinal cord (Papadopoulos et al., 2009; Vogt
et al., 2009). Moreover, magnetic resonance image studies show
that progressive brain atrophy in MS patients correlates well
with disability (Vigeveno et al., 2012). Interestingly, several
studies have shown that both axon degeneration and neuron
loss occur early in the EAE disease course (Lassmann, 2010).
Although the current predominant view is that inflammation
is ultimately responsible for neurodegeneration in MS and
EAE (Glass et al., 2010; Siffrin et al., 2010), the actual steps
leading from the immune attack on oligodendrocytes and myelin
to neurodegeneration remain elusive. A number of studies

have shown that the UPR influences, positively or negatively,
neuron viability in various neurodegenerating diseases, including
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral
sclerosis, and prion disease (Doyle et al., 2011; Hetz and
Mollereau, 2014). Importantly, a report showed that the levels of
p-eIF2α and CHOP are increased in neurons in the CNS of EAE
mice as compared to naïve mice (Ní Fhlathartaigh et al., 2013).
Thus, there is a possibility that the UPR regulates neuron viability
in MS and EAE. It is therefore important to determine the role of
the individual branches of the UPR in neurons during EAE using
neuron-specific knock-out mice.

In summary, previous studies have demonstrated the
cytoprotective effects of the PERK branch of the UPR on
oligodendrocytes in models of MS. Future studies will need to
assess the role of other branches of the UPR in oligodendrocytes
and the roles of individual branches of the UPR in other cell
types involved in MS, particularly neurons, in this disease.
The knowledge gained from these studies would provide a
foundation to develop therapeutic strategies that protects both
oligodendrocytes and neurons in patients with MS.
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