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Many model-based methods have been developed over the last several decades for

analysis of electroencephalograms (EEGs) in order to understand electrical neural data.

In this work, we propose to use the functional boxplot (FBP) to analyze log periodograms

of EEG time series data in the spectral domain. The functional bloxplot approach

produces a median curve—which is not equivalent to connecting medians obtained from

frequency-specific boxplots. In addition, this approach identifies a functional median,

summarizes variability, and detects potential outliers. By extending FBPs analysis from

one-dimensional curves to surfaces, surface boxplots are also used to explore the

variation of the spectral power for the alpha (8–12 Hz) and beta (16–32 Hz) frequency

bands across the brain cortical surface. By using rank-based nonparametric tests,

we also investigate the stationarity of EEG traces across an exam acquired during

resting-state by comparing the spectrum during the early vs. late phases of a single

resting-state EEG exam.

Keywords: EEGs time series, functional boxplots, surface boxplots, spectral analysis, band depth, exploratory

analysis, stationarity

1. Introduction

Electroencephalograms (EEGs) have been used for many decades to study the complex spatio-
temporal dynamics of brain processes (Nunez and Srinivasan, 2006). Due to its excellent temporal
resolution (sampling rates usually range from 100 to 1000Hz), EEGs can capture transient
changes in brain activity, identify oscillatory behavior and study cross-dependence between EEG
components. Since EEGs indirectly measure neuronal electrical activity, they can be used to infer
the statistical properties of the underlying brain stochastic process. One such statistical property is
the spectrum (or power spectrum) which decomposes the total variability in the EEG according to
the contribution of oscillations at different frequencies. Most approaches to analyzing EEGs focus
immediately on statistical modeling and spectral estimation. Here, we offer a systematic framework
for exploring structures, patterns and features in the signal—prior to formal modeling. We explore
the spectral properties only in a single channel using EEG traces from several epochs.

One approach to estimating the spectrum using EEG traces is to fit a parametric time domain
model, such as the autoregressive moving average (ARMA) model. Applications of parametric
modeling of EEGs have a long history. See (Bohlin, 1973; Isaksson et al., 1981; Krystal et al., 1999;
Jain and Deshpande, 2004) among many others. When the spectrum of the EEG evolves over time
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(e.g., within an epoch), one could still use the ARMA model but
allow the coefficients to vary over time. A key element in ARMA
models is the order of the autoregressive (AR) and moving
average (MA) components. These can be obtained objectively
using an information-theoretic criterion such as the Akaike
information criterion (AIC) and the Bayesian information
criterion (BIC). Using these criteria, we obtain an optimal AR and
MA order that jointly gives the best fit with the least complexity
(as determined by the orders). BIC puts a heavier penalty for
complexity compared to AIC and thus often gives a model with
lower orders (lower complexity). From the parametric fit, we
derive the estimates of the auto-correlation function and the
spectrum. The theoretical background for parametric models are
developed in Priestley (1981), Shumway and Stoffer (2000), and
Brockwell and Davis (2009).

One could also estimate the spectrum without resorting
to a parametric model. Under this approach, the EEGs are
considered to be superpositions of sines and cosines (Fourier
waveforms) with different frequencies and random amplitudes.
These random amplitudes (or coefficients) are computed using
the fast Fourier transform (FFT). The squared magnitude of
these amplitudes, often called the periodograms, are the data-
analogs of the spectrum defined on discrete frequencies. The
theoretical background on the frequency domain approach to
time series is developed in Brillinger (1981) and Percival and
Walden (1993). This approach to analyzing EEGs continues to be
popular in the cognitive and brain sciences. The following papers
cover bothmethods and applications of spectral analysis to EEGs:
Pfurtscheller and Aranibar (1979), Bressler and Freeman (1980),
Makeig (1993), and Srinivasan and Deng (2012), to name a few.

The common practice prior to spectral estimation is to pre-
process EEGs, often to remove artifacts (Makeig et al., 1996).
After artifact rejection and segmentation according to epochs, the
spectrum is estimated from each EEG trace. As noted, there is
a lack a systematic framework for exploring structures, patterns
and features in the signal—prior to formal modeling. Due to
the complexity of EEG data, exploratory data analysis (EDA)
plays an important role, especially when data are recorded from
many epochs or trials during an experiment. For example, it is
often expected that brain responses to the same stimulus ought
to be relatively uniform, with minimal variation across epochs.
In contrast, greater variability across epochs may be expected
during neuroimaging studies that examine the brain in resting-
state, as cognitive processes can vary within and across sessions
for individual subjects and across subjects. An appropriate EDA
methods can provide insights into features of EEG, including
similarities and variability of the brain responses across epochs
to facilitate the statistical model. In this paper, we propose to use
the functional boxplot (FBP) method originally developed by Sun
and Genton (2011) to address these questions.

The methods presented in this paper are motivated by a motor
skill acquisition study at the Neuro-rehabilitation laboratory
at the University of California, Irvine (Principal Investigator:
Steven C. Cramer). In the previous study, EEGwas recorded from
17 subjects both during resting-state prior to motor skill training
and during motor skill training using dense-array EEG (256
electrodes) as shown in Figure 1. The resting-state EEG exam

FIGURE 1 | Map of channels on the scalp.

was 3 min, and during post-processing, was segmented into 1-s
non-overlapping epochs. As demonstrated in Wu et al. (2014),
the spectral features of the resting-state EEGs when combined
with a partial least squares regression analysis, was predictive of
an individual’s subsequent ability to acquire a novel motor skill.
These may be of clinical importance to the field of rehabilitation,
as improved methods for stratifying patients may significantly
improve response to treatment and assist allotment of limited
resources.

We present an exploratory spectral analysis (ESA) of resting-
state EEG traces using FBPs for one subject. In spectral analysis,
the spectrum is an important stochastic property of the signal. It
indicates the amount (or proportion) of variance that is explained
by each frequency bin. Thus, the spectrum or the log spectrum
of the EEG signal can be used to examine relative amounts
of variability explained by slow (delta or theta) waves and fast
(alpha or beta) waves. Throughout this analysis, we obtain a
sample spectral curve by smoothing the log periodograms of
each 1-s EEG epoch, and treat it as one observation unit in
the FBP. By using the FBP, we address three primary objectives.
The first objective is to identify the median, i.e., the most
characteristic spectral curve rather than the pointwise frequency-
specific medians. In addition, outliers are demonstrated by their
unusual sample log spectral curve, and can be caused by extra-
brain artifacts, including eye blinks, eye movements, and muscle
movements in the EEG signal. Subsequently, confirmed outliers
will be removed from subsequent analyses. The advantage of the
FBP approach, over the usual pointwise boxplot method, is that
it identifies epochs that have potential outlying spectral curves.

The second objective is to compare the median curves and
the variability of the spectral curves from multiple phases of
the resting state period. To test the stationarity of the EEG
signal over the entire recording, we compare the spectral curves
and the frequency-specific spatial distribution of spectral power
during the early phase (first 60 epochs) vs. the late phase (last
60 epochs). Evidence against stationarity must be taken seriously
since this would suggest an evolution of brain processes across
the recording (Fiecas and Ombao, under revision). Moreover,
the FBP approach is able to provide some characterization of the
variation of the sample log spectral curves across EEG recording.
In experiments comparing more than one group (e.g., healthy
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controls vs. patients with stroke), it would be also interesting
to determine whether groups differ with respect to consistency
(uniformity) of the EEG signal over time.

The third objective is to investigate the spatial variability of
spectral power across the brain for a given frequency band using
the surface boxplot, which is a generalization of the FBP. Using
the surface boxplots approach, it is possible to identify cortical
regions (or channels) that, relative to the other channels, exhibit
a high proportion of beta power. The beta band is particular
interest to neuroscientists, as changes in beta activity have a good
association with motor function (Roopun et al., 2006; Joundi
et al., 2012).

The remainder of the paper is organized as follows. In
Section 2, we present a comprehensive exploratorymethod which
consists of the following: a review of the spectra in Section 2.1, a
demonstration of automatic bandwidth selector for periodogram
smoothing using the gamma generalized crossvalidation criterion
in Section 2.2, some remarks on smoothing the periodogram in
Section 2.3, a description of the FBPs in Section 2.4, a description
of the surface boxplots in Section 2.5, and a demonstration
of testing for differences in mean curves between families of
curves in Section 2.6. In Section 3, we examine the finite sample
performance of the proposed exploratory method. In Section 4,
the resting-state EEG data are analyzed. Finally, in Section 5,
conclusions and future work are discussed.

2. Method for Exploratory Spectral
Analysis (ESA)

In this section, we review the methods that are needed for
ESA of the EEG data. In Section 2.1, we first formally define
the spectrum and then discuss a consistent estimator which
is obtained by smoothing the periodogram using a bandwidth
that is automatically selected by the gamma generalized cross-
validation (Gamma-GCV) method described in Section 2.2.
Next, we highlight two remarks on smoothing the periodogram
in Section 2.3, then we present the FBPs method in Section 2.4
and surface boxplots method in Section 2.5. Finally, we present
a rank sum test which tests for differences in median curves or
surfaces between families of curves or surfaces in Section 2.6.

2.1. Spectrum
The spectrum of an EEG signal (which is assumed to be
stationary) can give the amount of variance contributed by
oscillatory components (from delta to beta band activity). Let
X(t), t = . . . ,−1, 0, 1, . . . be a zero-mean stationary time
series with covariance function γ (τ ) = E

(
X(t)X(t + τ )

)
(τ =

. . . − 1, 0, 1, . . .) that is assumed to be absolutely summable,
i.e.,

∑∞
τ=−∞ |γ (τ )| < ∞. The spectrum, denoted f (ω), is

defined to be

f (ω) =
∞∑

τ=−∞
γ (τ ) e−i2πωτ , ω ∈

[
−
1

2
,
1

2

]
.

The starting point for estimating f (ω) is the periodogram. Denote
I(ωk) to be the periodogram computed from a finite sample of the

stationary process X(0),X(2), . . . ,X(T − 1) at frequency ωk =
k/T which is defined to be

I(ωk) =
1

T

∣∣∣∣∣

T−1∑

t = 0

X(t) e−i2πωkt

∣∣∣∣∣

2

, k = −[[T/2]]−1, . . . , [[T/2]],

where [[T/2]] is the quotient of T/2.
To characterize the spectra of the EEG signals, we classify the

oscillatory patterns of periodograms into four primary frequency
bands: delta (0–4Hz), theta (4–8Hz), alpha (8–16Hz), beta (16–
32Hz), and gamma (32–50Hz) as shown in Figure 2. Since each
frequency band is defined by a range, we define Ŝ(�) to be the
estimated spectral power at the � band:

Ŝ(�) =
∫

ω∈�

I(ω)dω.

It is well-known that the periodogram I(ωk) is an asymptotically
unbiased estimator for f (ωk), but it is inconsistent because
its variance approaches a positive constant when T → ∞.
Therefore, to reduce the variance, we smoothed the periodogram.
A number of nonparametric smoothing methods have been
proposed including the kernel smoother (Lee, 1997; Ombao
et al., 2001), wavelet (Gao, 1997), smoothing spline (Wahba,
1980; Pawitan and O’sullivan, 1994), or local polynomial (Fan
and Kreutzberger, 1998). For kernel smoothing, Ombao et al.
(2001) developed an automatic span selector via the generalized
crossvalidation criterion for generalized additive models based
on the deviance which is discussed in Section 2.2.

2.2. Automatic Span Selector Using the Gamma
Generalized Crossvalidation Method
From Brillinger (1981) (Theorem 5.2.6), I(ωk) follows an
asymptotic distribution

I(ωk) ∼
{
Gamma(1, f (ωk)) k = 1, . . . ,T/2− 1

Gamma( 12 , 2f (ωk)) k = 0,T/2,

where I(ω0), . . . , I(ωT/2) are independent. As a caveat, we note
here that the actual result requires that the number of frequencies
is fixed and does not depend onT. However, inmost applications,
this is often ignored. This result can be equivalently stated as
I(ωk)/f (ωk) ∼ ǫk where ǫk ∼̇ χ2(1) when k = 0 or T/2 and
ǫk ∼̇ 1

2χ
2(2) when k = 1, . . . ,T/2 − 1. As noted, we need to

smooth the periodogram I(ωk) to produce a consistent estimator
for f (ωk). Let f̂p(ωk) be a smoothed periodogram estimator of
f (ωk) which we define to be

f̂p(ωk) =
p∑

j=−p

Wp,jI(ωk+ j) k = 0, . . . ,T/2, and j = −p, . . . , p

where 2p + 1 is the smoothing span and Wp,j are nonnegative
weights that satisfy the following conditions for any fixed p:

Wp,j = Wp,−j(j = 1, . . . , p),

p∑

j=−p

Wp,j = 1.
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A

B

C

D

E

FIGURE 2 | Left: the spectrum of second order auto-regressive processes

AR(2) with power concentrated at the delta (0–4Hz), theta (4–8Hz), alpha

(8–16Hz), beta (16–32Hz), and gamma (32–50Hz) bands. Right:

realizations from each corresponding AR(2) process. (A) Delta band. Left: the

spectrum of second order auto-regressive processes AR(2). Right:

realizations from each corresponding AR(2) process. (B) Theta band. Left:

the spectrum of second order auto-regressive processes AR(2). Right:

realizations from each corresponding AR(2) process. (C) Alpha band. Left:

the spectrum of second order auto-regressive processes AR(2). Right:

realizations from each corresponding AR(2) process. (D) Beta band. Left: the

spectrum of second order auto-regressive processes AR(2). Right:

realizations from each corresponding AR(2) process. (E) Gamma band. Left:

the spectrum of second order auto-regressive processes AR(2). Right:

realizations from each corresponding AR(2) process.
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Generally, the weights are chosen so that Wp,j is a decreasing
function of p, but (Priestley, 1981) shows that the choice of
the weights Wp,j is of secondary importance to the value of
the span or bandwidth. Thus, for simplicity, we use the boxcar
smoother with weights defined by Wp,j = 1/(2p + 1) for all
j = −p, . . . , p. The gamma generalized crossvalidation method
selects p to minimize the generalized crossvalidated deviance
function

GCV(p) =
M−1

M−1∑
j=0

D(I(ωj), f̂p(ωj))

(1− tr(Hp)/M)2
,

whereM = T/2+1. The devianceD(I(ωj), f̂p(ωj)) can be chosen

as qj{− log(I(ωj)/̂fp(ωj)) + (I(ωj) − f̂p(ωj))/̂fp(ωj)} (McCullagh
and Nelder, 1989). Here, qj = 1 − 0.5I{j = 0,M − 1}, and I

is the indicator function. The Hp is the smoother matrix with
smoothing parameter p, and the term (1 − tr(Hp)/M)2 often
referred to as the model degrees of freedom, can be expressed in
terms of the weight at the center of the smoothing window: (1 −
Wp,0)

2. Then, the generalized crossvalidated deviance function
can be written as

GCV(p) =

M−1
M−1∑

j=0

qj

{
− log(I(ωj)/̂fp(ωj))+ (I(ωj)− f̂p(ωj))/̂fp(ωj)

(1−Wp,0)2

}
.

2.3. Remarks
For frequencies over 100Hz, the periodogram values are almost
negligible because the signals underwent low–pass filtering at
100Hz. , so for simplicity, we will only show the spectrum
over the frequency range of 0–100Hz. In Figure 3, we show
the location of channel 197 in right pre-motor region at the
resting-state. Figure 4 gives an illustration of smoothing the
periodograms for randomly selected epochs 3, 85, and 160
for a fixed channel 197. It can be seen that the power at
these periodograms are dominated by low frequencies, and
the values of smoothing span minimizing the generalized
crossvalidated deviance function are about 3–5. Also, the
smoothing lines reasonably approximate the periodograms and
the small bandwidths preserve the peaks. Second, since the
distribution of I(ωk) is a multiple of the spectral density, its
variance [which depends on f (ωk)] also changes across the
frequencies ωk. To stabilize the variance across frequencies and
to standardize comparisons of median curves across two phases
(early vs. late phases of the resting-state EEG recording) we will
use the log transformed periodograms. It is convenient then,
that the variance of the log periodograms at each frequency is

constant and takes the approximate value of π2

6 . Moreover, while
the periodogram is approximately unbiased for the spectrum, the
log periodogram is no longer (approximately) unbiased for the
log spectrum due to Jensen’s inequality. This is easily fixed by
adding the EulerMascheroni constant 0.57721 to log transformed
periodograms to obtain the log bias-corrected periodograms

(Wahba, 1980). Let g(ωk) be the true log spectrum, then Yr(ωk),
the log bias of the corrected periodogram at epoch r, is defined as

Yr(ωk) = g(ωk)+ 0.57721, k = 0, 1, . . . ,T/2.

Figure 5 gives the log bias-corrected periodograms, Yr(ωk),
corresponding to Figure 4. Throughout this paper, we will
apply the gamma crossvalidation method to obtain the optimal
smoother of log bias-corrected periodograms.

2.4. Functional Boxplots
The FBP is constructed in a similar manner to the classical
(pointwise) boxplot. Each observation will be sorted based on
decreasing values of some depth measure, and band depth is
one notion. A curve is said to be “deeply situated” within a
sample of curves if it is covered by many bands from pairs of
curves. This idea is an extension of a pointwise boxplot where the
median is also located “deep” in a sample because it is situated
in the middle of the boxplot and hence covered by many pairs
of points. Here, our observation units are curves (or real-valued
functions) which are the log bias-corrected periodograms Yr(ωk),
k = 0, . . . ,T/2 over many epochs r. The notion of a band depth
was introduced in López-Pintado and Romo (2009) through
a graph-based approach to order all sample curves which we
briefly describe. Suppose that a curve Y(ωk) is the subset of the
plane G(Y(ωk)) = {(ωk,Y(ωk)) : ωk ∈ A = [0,T/2]}. The
band in R

2 can be delimited by a number J of curves, and this
number is fixed as J = 2 in our study. Now, let Yα,Yβ be two
continuous functions, Lk = min(Yα(ωk),Yβ (ωk)), and Uk =
max(Yα(ωk),Yβ (ωk)). Then the band delimited by Yα,Yβ is

B(Yα,Yβ ) =
(
(ωk,Y

′(ωk)) : ωk ∈ A, Lk ≤ Y ′(ωk) ≤ Uk

)
.

Let Y1, . . . ,Yn be n independent sample curves, then the band
depth for a given curve Yi, i = 1, . . . , n is defined as

BD(Yi) =
(
n

2

)−1 ∑

α=1,...,n; β=1,...,n

I{G(Yi) ⊆ B(Yα,Yβ )}

where I(·) is the indicator function. When J = 2, there are(n
2

)
possible bands delimited by two curves. The limit of the

band depth BD is that it does not measure the proportion of
curve inside the band. Thus, López-Pintado and Romo (2009)
also proposed a modified band depth method (MBD), which
measures the proportion of a curve Yi that is actually in a band:

MBD(Yi) =
(
n

2

)−1 ∑

α=1,...,n; β=1,...,n

λ{A(Yi;Yα,Yβ )}

where A(Yi;Yα,Yβ ) ≡ {ωk ∈ A : Lk ≤ Yi ≤ Uk}, λ(Yi) =
λ(A(Yi;Yα,Yβ ))/λ(A), and λ is a Lebesgue measure on A. We
notice that the MBD computation will be time-consuming when
n is large, so we use an exact fast method from Sun et al. (2012)
to compute the MBD for the EEG data.

Based on the ranks of the depths of the curves, the FBPs
can provide the descriptive statistics, such as the 50% central
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A

B C

FIGURE 3 | EEG time series and raw periodograms after filtering out frequency 60HZ by averaging method of channel 197 (right pre-motor region) for

the first 10 traces.

A B C

FIGURE 4 | Smoothing periodograms at randomly selected epochs 3,

85, and 160 of channel 197 (in the right pre-motor region) using the

bandwidth that was automatically selected by the gamma

generalized crossvalidation (gamma-GCV) method. (A) Smoothing

periodograms at epoch 3. (B) Smoothing periodograms at epoch 85. (C)

Smoothing periodograms at epoch 160.
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A B C

FIGURE 5 | Log bias-corrected periodograms of epochs 3, 85, and 160 from Channel 197 (Right pre-motor region). (A) Log bias-corrected periodograms

of epoch 3. (B) Log bias-corrected periodograms of epoch 85. (C) Log bias-corrected periodograms of epoch 160.

region, the median curve, and the maximum and minimum non-
outlying curves. Moreover, the potential outliers can be detected
by the 1.5 times inter-quartile range (IQR) empirical rule, which
is commonly used for classical boxplots. The boundary region is
defined as 1.5 times the height of the 50% central region. Any
curves outside this region are considered potential outliers. In
contrast with a constant factor 1.5 in classical boxplot, a factor 1.5
in FBP can be modified due to potential spatio-temporal outliers.
This is because the curves from different locations will be spatially
correlated, and there can be dependence in time/frequency for
each curve (Sun and Genton, 2012a).

2.5. Surface Boxplots
Similar to FBPs, one can compute the data depth of all the
observations, then order them according to decreasing depth
values. Suppose that the observed sample surfaces, z1(s), . . . ,
zn(s), s ∈ S , where S is a region in R

2. The information unit for
such a dataset is the entire surface. To order sample surfaces, we
need to generalize univariate order statistics to surfaces. To this
end, we generalize the MBD with J = 2 to R

3 through a volume.
Genton et al. (2014) define the sample modified volume depth
(MVD) to be

MVDn(z) =
(
n

2

)−1 ∑

1≤i1≤i2≤n

λrA(z; zi1 , zi2 ),

where A(z; zi1 , zi2 ) ≡ s ∈ S : minr=i1,i2 zr(s) ≤ z(s) ≤
maxr=i1,i2 zr(s) and λr(z) = λ(A(z;zi1 ,zi2 ))

λ(S)
, if λ is the Lebesgue

measure on R
3. A sample median surface is a surface from

the sample with the largest sample MVD value, designed by
argmaxz∈z1,...,zn MVDn(z). If there are ties, the median will be the
average of the surfaces maximizing the sample MVD.

The first step for constructing surface boxplots is the surface
ordering. Sample surfaces are ordered from the center outwards
based on theirMVD values, inducing the order z[1], z[2], . . . , z[n].
The sample α central region is naturally defined as the volume
delimited by the α proportion (0 < α < 1) of the deepest
surfaces. In particular, the sample 50% central region is

C0.5 = {(s, z(s)) : min
r=1,...,[n/2]

z[r](s) ≤ z(s) ≤ max
r=1,...,[n/2]

z[r](s)},

where [n/2] is the smallest integer not less than n/2. The border
of the 50% central region is defined as the inner envelope
representing the box in a surface boxplot. This is the surface
analog of the first and third quartiles of the classical boxplot. The
median surface in the box is the one with the largest depth value.
Because the ordering is from the center outwards, the volume of
the central region increases as α increases. Hence, the maximum
envelope, or the outer envelope, is defined as the border of the
maximum non-outlying central region. To determine this region,
we propose to identify outlying surfaces by an empirical rule
similar to the 1.5 times the 50% central region rule in a FBP. The
fences (or the upper and lower surface boundaries for flagging
potential outliers) are obtained by inflating the inner envelope
(as defined above) by 1.5 times the height of the 50% central
region. Any surface crossing the fences are flagged as potential
outliers. The factor 1.5 can be also adjusted as in the adjusted
FBPs to take into account spatial autocorrelation and possible
correlations between surfaces.

2.6. Testing for Differences in Median Between
Families of Curves or Surfaces
To compare the median curves from two populations of curves,
López-Pintado and Romo (2009) proposed the rank sum test. Let
µ̃Y and µ̃Y ′ be the median curves of two populations Y and Y ′,
respectively. Define the null hypothesis to be

H0 : µ̃Y = µ̃Y ′ for all µ.

Suppose that we observe two sets of curves, namely {y1, . . . , yn}
and {y′1, . . . , y′m}. Then define the reference sample to be
{r1, . . . , rk} which is from one of the two observed sets with
k ≥ max(n,m). The position of a particular yi for i = 1, . . . , n,
or y′j for j = 1, . . . ,m with respect to the reference sample r, is

defined as

R(yi) =
1

n

n∑

l=1

I{MBD(zl) ≤ MBD(yi)},

R(y′j) =
1

m

m∑

l=1

I{MBD(zl) ≤ MBD(y′j)},
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whereMBD is the MBD defined in previous section, and I is the
indicator. Then, we can order the values R(yi) and R(y′i) from
the smallest to the largest, and their ranks are between 1 and
n+m. The test statisticsT =

∑m
l=1 rankR(y

′
j), then under the null

hypothesisH0, the distribution of T is the distribution of the sum
of m numbers that are randomly chosen from 1, 2, . . . , n+m
(Sun and Genton, 2012b).

2.7. Remarks on the Applications of Functional
and Surface Boxplots
In this paper, we use functional and surface boxplots to explore
the structure of EEGs. However, these methods are general and
can be applied to other types of data such as growth data and
climate time series (Sun and Genton, 2012b).

3. Simulation Study

The purpose of the simulation study is to examine the
performance of the exploratory spectral methods under various
experimental settings. In Section 3.1, we demonstrate the
performance of the FBP on the smoothed log periodograms of
a mixture of two first order AR time series, denoted AR(1).
In Section 3.2, we illustrate the rank sum test to compare the
functional median from two families of curves.

3.1. Functional Boxplot Simulation Study
For the rth epoch, let U1r(t) be an AR(1) process with its spectra
dominated by high frequencies and U2r(t) be another AR(1)
with its spectra mostly containing low frequencies. The AR(1)
parameters are allowed to vary across epochs. Here, we set t ∈
T = {1, . . . , 1000}. We define Xr(t) to be the mixture of U1r(t)
and U2r(t), such that

Xr(t) = a1rU1r(t)+ a2rU2r(t)

where r = 1, . . . , 220, a1r and a2r are weighted coefficients of
U1r(t) and U2r(t), respectively. Then, the model for high and low
frequency AR(1) processes are defined as

Uℓr(t) = φℓrUℓr(t − 1)+Wrt

where ℓ = 1, 2 and W(t) is white noise. In this setting, the
high and low frequency AR(1) are distinguished by the value
of φℓr . For example, for high frequency U1r(t), we set φ1r =
0.9 + ξr , where ξr are independent and identically distributed
from N (0, 0.001). Similarly, for low frequency U2r(t), we set
φ2r = −0.5 + ηr , and ηr are also independent and identically
distributed from N (0, 0.001). Here, we need the variance of ξr
and ηr to be small so that it guarantees causality, i.e., ξr ∈ (−1, 1)
and ηr ∈ (−1, 1). Next, we split the 220 subjects into two groups,
such that the first group will include both high and low frequency
series, U1r(t) and U2r(t), while the second group will only have
the high frequency series U1r(t). To split Xr(t) into two groups,
we set the weight coefficients a1r and a2r as following

a1r ∼ N (10, 1) for r = 1, . . . , 220

a2r ∼ N (5, 1), for r = 1, . . . , 120, and

a2r ∼ N (0, 0.001) for r = 121, . . . , 220.

The two groups of Xr(t) are shown in Figure 6. Using the gamma
generalized crossvalidation method, Figure 7 displays the log
bias-corrected periodograms for each group, and Figure 8 shows
the corresponding FBPs. Note that group 1 is dominated by both
high (right) and low (left) frequencies while group 2 includes only
low frequencies. Thus, the functional median of group 1 should
have two peaks, one each in high and low frequency ranges, while
the functional median of group 2 has only one peak in the low
frequency range. In Figure 8, the black curve is the median curve
in the center of the FBP. The two median curves from each group
have clearly summarized the typical power distribution for each
group. The blue curves in the center form the envelope of the
50% central region. The blue curves outside of the 50% central
region are the non-outlyingminimum andmaximum curves. It is
worth remarking that the envelope of group 1 is smaller than the
envelope of group 2, and therefore, we demonstrate that group
2 has more dispersion than group 1. Moreover, the envelope
of group 1 is in the middle of the non-outlying minimum and
maximum curves, while the envelope of group 2 tends to move
upwards. This indicates that group 2 shows more skewness than
group 1. The red dashed curve in Figure 8 denotes the outliers.
We see that the curves from group 1 that are dominated by high
frequencies only are detected as outliers while the curves from
group 2 that include both high and low frequencies are detected
as outliers.

In order to illustrate the usefulness of the FBP compared to
the pointwise boxplot, we introduce a simulation study which
randomly chooses 10 bias-corrected log periodograms among
160 total periodograms.We simulate an outlying curve by adding
additional noise across the 0–100Hz frequency range, and close
to the center for the remaining frequencies. Figure 9A shows
the simulation data including the 10 random bias-corrected log
periodograms (gray curves) and a simulated outlying curve (red
curve). In Figure 9B, the FBP successfully detects the simulated
outlying curve and other outliers. However, Figure 9C shows
that the pointwise boxplot fails to detect the simulated outlying
curve, and provides some disconnected outlying curves across
frequencies. We also notice that the non-outlying maximum and
minimum curves of pointwise boxplot are actually the outlying
curves detected by FBP. Figure 9D compares the two median
curves from these two methods, and by visual inspection, there
is a slight difference between the two median curves at low
frequencies. Thus, FBP can be a non-parametric method to
obtain the median curve and the variability around it for EEG
data compared to pointwise boxplot.

3.2. Rank Sum Test Simulation Study
To investigate the performance of this nonparametric test, we
simulated two sets of curves, which are defined as below:

Yℓ,r(ωk) = fℓ(ωk)+ arg(ωk)+ hr(ωk),

where r = 50, ℓ = 1, 2, g(ωk) = 1 for all ωk, and ωk is
defined as ωk = k/100, where k = 1, . . . , 100. In the model,

f1(ωk) and f2(ωk) are the mean functions; ar
iid∼ N(0, 5) and

hr(ωk)
iid∼ N(0, 2) represent the variation between and within the
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A B

FIGURE 6 | Time series AR(1) for group 1 and group 2. (A) Time series AR(1) for group 1 with 120 subjects. (B) Time series AR(1) for group 2 with 100 subjects.

A B

FIGURE 7 | Smoothed log bias-corrected periodograms for Group 1 and Group 2.

A B

FIGURE 8 | Functional boxplots of Group 1 and Group 2 with a

black curve representing the median curve, the pink area

denoting the 50% central region, the two inside blue curves

indicating the envelopes of 50% central region, the two outside

blue curves representing for two non-outlying extreme curves,

and the red dashed curves illustrating the outlier candidates

detected by 1.5 times the 50% central region rule. (A) Functional

boxplots of Group 1. (B) Functional boxplots of Group 2.

curves, respectively. Let the function f1(ωk) be defined as

f1(ωk) = 5 ·
√
1000 · ωk,

and consider three different cases:

1. The two means are identical, let f2(ωk) = f1(ωk) for all ωk.

2. There is a slight deviation between the two means; define
f2(ωk) = 5 ·

√
900 · ωk.

3. There is an appreciable deviation between the two means; let
f2(ωk) = f1(ωk)+ 2k/3.

We applied the kernel average smoother with window size 7 to
smooth each curve from these two families. Figure 10 illustrates
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A B

C D

FIGURE 9 | (A) Simulation data with gray curves representing sample

curves, a red curve denoting the simulated outlying curve (B) functional

boxplots, (C) pointwise boxplots with black curve representing a mean

curve, blue curves for the envelope of the 50% central region, the green

curves for the non-outlying minimum and maximum curves, and the red

points for outliers, and (D) two median curves obtaining by functional

boxplots method (blue) and pointwise boxplot method (red) are shown in

the same plot.

the simulated curves (left panel) and the smoothed curves (right
panel). In order to investigate the rank sum test performance
in each case, we simulated two families of curves and obtain p-
values of rank sum test; this procedure was repeated 1000 times.
Let the type I error α be 5%, we report the percentage of time
that the rank sum test rejects Ho : f1(ωk) = f2(ωk) for all ωk

in Table 1.
Overall, the rank sum testmethod performedwell in each case.

When the two families are identical, this method rejected the null
hypothesis of equality only 44 times (4.4%) out of 1000 times,
which is close to the nominal α. When the two families are nearly
identical, this method rejects 605 times (the power is 60.5%),
and when the two families are completely different, the power is
100%. Thus, this method demonstrates power and sensitivity to
differences.

4. Analysis of Resting-State EEGs Data

4.1. Data Description
In this paper, we analyze EEG data from one participant
in a resting-state EEG study approved by the Institutional
Review Board of the University of California, Irvine. The over-
arching aim of this study was to identify a pattern of EEG-
derived coherence acquired during rest-state that could predict
subsequent response to training on a novel motor skill. During
EEG acquisition, subjects sat quietly with both feet flat on the
floor, and were instructed to fixate their gaze to the center
of a fixation cross. Each recording was 3 min in duration.
While the original EEG recording included 256 channels, only
194 were used in subsequent analyses, as extra-brain artifacts,
including cheek and neck muscle artifacts, and heart rhythms,

are more likely to contaminate EEG signals recorded from
electrodes overlying cheek and neck regions. Following data
acquisition, pre-processing steps included: 100Hz low pass
filter; EEG segmentation into 1-s consecutive, non-overlapping
epochs; mean detrend; and EEG signal re-reference to mean
signal across all 194 channels. In addition, a combination of
visual inspection and Infomax Independent Component Analysis
decomposition were used to remove extra-brain artifacts,
including eye blinks, eye movements, muscle artifact, and heart
rhythm artifacts. The final dataset consisted of 160 epochs,
with each epoch lasting 1 s, and T = 1000 time points for
each epoch.

The goals of the present analysis are as follows: In Section 4.2,
we closely examined a representative channel in the pre-motor
region (specifically channel 197 in this dataset). Since EEGs
are not well-localized in space (as opposed to local field
potentials), conclusions are constrained to the sensor space.
However, electrical activity captured in channel 197 reflects
activity roughly around the pre-motor area. Specifically, we
estimated the (log) spectrum for each epoch to identify any
frequency bin or frequency band that accounts for the majority of
the power spectrum. Moreover, using the method of estimating
the functional medians, we obtained an estimate of the median
curve from the log periodogram curves obtained from several
epochs. The median curve is interpreted as a “typical” (log)
spectral profile across several epochs. Using this method, we
also identified outlier curves which could also be interpreted
as epochs with “unusual” EEG activity. In Section 4.3, we
investigated the possibility of non-stationarity across the 3
min resting-state EEG recording. Our specific goal was to
compare the log spectrum during the early phase (first 60
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C D

E F

FIGURE 10 | The two families of simulated curves, Y1,r and Y2,r . The gray shaded area represents the first family, and the yellow shaded area is for the

second family. The red and blue lines are the first and second mean functions, f1 and f2, respectively.

TABLE 1 | Rank sum test study result.

First case Second case Third case

Percentage of time rejecting Ho 44 605 1000

epochs) of the recording with the log spectrum during the late
phase (last 60 epochs) of the recording, and identify frequency
bands that exhibit any differences between the early vs. late
phases. In Section 4.4, we studied the spatial variation of
power, at each of the five frequency bands: delta, theta, alpha,
beta, and gamma, across all 194 channels, with the goal of
identifying regions that exhibit relatively greater proportion of
spectral power in each of the five frequency bands of interest.
Finally, we compared the spatial variation for each of the
five bands during the early vs. late phases of the resting-state
EEG recording.

4.2. Functional Medians of the Pre-motor Log
Spectral Curves
The log of the bias-corrected periodograms at the representative
channel (channel 197) that approximately overlies cortex of
the pre-motor region recorded for several traces and the FBPs
are displayed in Figure 11A. The functional median curve is
represented by the black curve, which is located inside the 50%
central region, shaded area. The two blue curves outside of
the shaded area are the non-outlying maximum and minimum
curves. Similar to a FBP, we show in Figure 11B the pointwise
boxplot (per frequency point), where the black curve is the
median obtained by connecting the medians at each frequency
point; the blue curves form the central region (50-th percentile
region); the green curves are two non-outlying extreme curves.
We compared these two median curves in Figure 11C and noted
a slight discrepancy between these median curves derived using
a FBP and the pointwise boxplot, with an emphasis on the low
frequency range. The main difference between the functional
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A B

C

FIGURE 11 | (A) The functional boxplots, (B) pointwise boxplots of log bias-corrected periodograms, and (C) two median curves obtaining by functional boxplot

method (blue) and pointwise boxplot method (red) are shown in the same plot.

median and the point-wise median curve is in the interpretation.
The former is one of the curves from a recorded epoch, whereas
the latter may not be an actual curve. Hence the latter cannot
really be interpreted as a “typical” curve from a family of curves
formed from several epochs. Moreover, the FBPs approach allows
us to identify specific epochs that produce “unusual” or outlying
log bias-corrected periodogram curves. Note that in the plots,
the gray curves are the log bias-corrected periodograms of 160
epochs and the red curves are outliers. Figure 11B also shows that
these outlying curves are discontinuous around the frequency bin
centered at 100Hz.

4.3. Testing for Stationarity of EEG Epochs
Across the Entire Resting-state
In the previous section, the FBP provided descriptive statistics
for the log bias-corrected periodograms of 160 epochs from
the pre-motor region. Note that there were originally 180
epochs but 20 had to be removed from further analysis due to
extra-brain artifact contamination. Our interest now is to test
whether resting-state brain activity evolved across the 3 min
EEG recording. While there are many ways to characterize such
an “evolution” of the underlying brain processes, here we will
specifically look into changes on the log spectral curves for
early vs. late phases of the resting-state EEG recording. In this
case, a change in the log spectral power in early vs. late phases
would indicate non-stationarity of the EEG signal across the
resting-state recording.

The null hypothesis of stationarity here is that the true median
curves of the early and last phrases are identical. We test this
hypothesis using the rank sum test with the significance level set

to 0.05. We defined the early phase to include the first 60 epochs
(60 s) of the 3 min recording and the late phase to include the
last 60 epochs. In Figure 12, we display the FBPs and the other
descriptive statistics for each phase. A visual inspection suggests
that the median curves are only slightly different from each
other for electrodes that approximately overlie the pre-motor
region. More significant differences are noted for electrodes that
approximately overlie the prefrontal region (see Figure 12C).
Moreover, the rank sum test failed to reject the null hypothesis,
as the p-value is 0.56. Therefore, the two median curves are
not significantly different and the hypothesis of stationarity
in the pre-motor regions is not rejected. This is not entirely
unexpected since the whole 3-min recording was purely resting-
state. There was no experimental stimulus and the time frame
was short.

Next, we use the same testing procedure at this particular
channel in the pre-motor region (channel 197) to test the
same null hypothesis of non-evolution of the brain process at
each of the other channels across the 3 min EEG recording.
Among the 194 total channels, 18 channels were identified that
demonstrated a significant difference in median curves during
the early vs. late phase at a significance level of 0.05. These
channels are represented by colored circles in Figure 13. Of
these 18, channel 29 (approximately overlying the supplementary
motor area) has the lowest p-value at 10−4. Since we repeat the
same test for 194 channels, we used the Bonferroni correction so
that the significance level for each test was set to 0.05/194 =
2 × 10−4. Indeed, only channel 29 (anterior supplementary
motor area) survived the stringent threshold after the Bonferroni
correction.
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FIGURE 12 | Comparing median curves of the early and last phrases from pre-motor region and left pre-frontal region.

The tests for temporal stationarity at each channel (local
spatial tests) revealed several channels having a significant
difference between the median curves of the early vs. last phases
of the EEG recording. As a next step, we studied stationarity
in each of 19 predefined regions of the cortex. In this analysis,
the representative EEG signal for each region was obtained by
averaging the EEG signal-epochs over all channels within each
region.

The plots in Figure 14 suggest that the median curves for
the early vs. late phases of the EEG recording are similar for
EEG signals recorded from channels that approximately overlie
right pre-motor and anterior supplementary motor regions, but
different in the right pre-frontal and left parietal regions. Indeed,

we conclude from the rank sum test that there is significant
difference between the early vs. late phases in cluster of channels
that approximately overlie the right pre-frontal (p = 0.01) and the
parietal regions (p = 0.029). We found that the right pre-frontal
region is significantly non-stationary (i.e., early and late phases
differ) at level 0.05 (see Figure 15). This result overlaps with the
channel-specific tests, in which several of the channels identified
to be non-stationary in the single channel tests are included in the
predefined right pre-frontal region. In contrast, while the cluster
of electrodes that overlie the left parietal region was found to
be non-stationary in the region-by-region tests, none of the 18
channels that were identified to be non-stationary in the single
channel tests are part of the left parietal cluster. Therefore, the
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FIGURE 13 | Color circles represent channels, which have

significant difference between the median curve of first 60 epochs

and the median curve of last 60 epochs at α = 0.05. Gray circles

represent channels which do not have significant difference between the

median curve of first 60 epochs and the median curve of last 60 epochs

at α = 0.05.

A B

C D

FIGURE 14 | Median curves of the early phase (first 60 epochs, in blue)

and the late phase (last 60 epochs, in red) in the right pre-motor,

anterior supplementary motor, right pre-frontal and left parietal

regions.

additional averaging step across group of channels may improve
signal-to-noise in this type of analysis. A similar phenomenon
was also noted for predefined clusters of electrodes overlying at
the left pre-frontal region.

4.4. The Variation of Spectral Power at Each
Frequency Band Across the Entire Cortex
Our goal here is to test whether the spectral power at each
frequency band differed across the cortical surface. We first
computed the estimate of the spectral power for each channel
at each epoch. Starting with the delta band, for each epoch

FIGURE 15 | Testing for difference between the early and late phases

of the resting-state for each region. The right pre-frontal regions (blue

circles) and the left parietal regions (red circles) exhibit significant

non-stationarity at level 0.05.

we construct a 2 − D surface plot of the delta power across
the entire cortical surface of 194 channels. These surfaces
were then grouped according to the early and late phases of
the resting-state. We then applied the surface boxplot method
for each frequency band to obtain the median surfaces. In
Figure 16, we present the median surface for five frequency
bands in the early and late phases. The color blue represents
the low spectral power while red is for high power. In
Figure 16, it is interesting that even during resting-state there is
relatively high spectral power at the beta and gamma bands—
which are both associated with higher cognitive processing
(Engel and Fries, 2010).
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FIGURE 16 | The median surfaces of five frequency bands.

The next step is to test for differences between the early
and late phases of the EEG recording for each of the five
frequency bands of interest. Using the rank sum test, the delta
and alpha bands do not have significant difference between the
early and late phases. However, theta, beta and gamma bands
show significant differences. In Figure 17, the colored regions
indicate significant differences between the first and last phases
while the gray color regions indicate no significant differences
between these two phases. For the theta band, the rank sum
test rejected the null hypothesis at only one region which is the
cluster of electrodes overlying anterior supplementary motor.
For the beta band, the rank sum test identified differences at
the left medial parietal region. For the gamma band, there were
13 regions (out of 19) with significant difference between the
early and late phases. Since the gamma band is wider than other
bands, an estimated spectrum powers’ variation across channel
in gamma band is expected to be smaller than the estimated
spectrum powers’ variation in other bands. In Section 4.3, we
tested the stationarity for each region. Figure 15 shows two
regions, namely, the right pre-fontal and left parietal, which

are significantly non-stationary across all frequencies between
the early and late phases. Figure 17 shows that the cluster of
electrodes overlying the left parietal region exhibits significant
non-stationarity in the beta and gamma bands while the cluster
of electrodes overlying the right pre-fontal region is significantly
non-stationary only in the gamma band.

5. Conclusion

This study has extended the use of the classical boxplot to
FBP, which is a new visualization tool to analyze functional
neuroimaging data, including EEG. The primary findings from
the current study demonstrate the FBP is useful for both
characterizing the spectral distribution of both simulated and real
EEG data and identifying potential outliers in a continuous EEG
signal.

In the current implementation of the FBP, ranked sample
curves are used to characterize the EEG spectrum by defining
a 50% central region, a median curve, and maximum and
minimum non-outlying curves. Thus, the shape, size, and length
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FIGURE 17 | Rank sum test results for regions. Color circles in a bounded curve represents a region, which has a significant difference between the first 60

epochs and the last 60 epochs.

of the FBP can be used to characterize the distribution of the
dataset, including the skewedness and degree of variability of the
EEG recording. Therefore, potential application of the FBP in this
context includes comparing FBPs derived from EEG recordings
before and after an experimental intervention (e.g., across a
period of motor skill training), comparing mean FBPs derived
from EEG recordings in healthy and diseased experimental
groups, and comparing mean FBPs derived from EEG recordings
during resting-state vs. task.

An additional use of the FBP, as demonstrated by the current
results, is to identify potential outliers of the EEG recording.
Extra-brain artifacts, including eye blinks, eye movements,
heart rhythms measured at pulse points downstream, and
muscle movements can cause large deviations in the EEG
signal, and represent a significant hurdle in EEG signal
processing (Delorme et al., 2007). As a method for identifying

outliers in the EEG signal, the FBP could be used to
rapidly identify periods of an EEG recording that show
high likelihood for contamination by artifacts. In clinical
applications, the continuous EEG recording has demonstrated
promise as a method for monitoring neural function in patients
who have compromised level of consciousness (Fyntanidou
et al., 2012) or changes in neural function in patients
undergoing neurosurgical interventions (de Vos et al., 2008).
The use of FBP to identify outliers in the EEG recording
represents a novel method for determining periods of the
EEG recording that represent changes in consciousness in
patients with a compromised level of consciousness, or for
determining changes in neural function across neurosurgical
intervention.

The current study also presents an application of the FBP
to examine resting-state EEG data acquired from a single
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individual by comparing EEG signals acquired during early vs.
late phases of the 3 min EEG recording. This result has important
implications for resting-state studies of neural activity, as many
neuroimaging studies that examine resting-state brain function
assume resting-state neural activity to be static. However, recent
studies that examine dynamic changes in resting-state neural
activity suggest momentary change in cognitive processes can
cause non-stationarity in resting-state function (Chang and
Glover, 2010; Hansen et al., 2015). In contrast, the current results
show that the majority of channels demonstrate stationarity
across the recording period, and provide support for the
assumption that the average EEG signal is static across a 3 min
EEG recording. Combined with previous findings, the current
results suggest that while momentary changes in cognitive
processes result in non-stationary fluctuations of the time series,
when averaged across a 60 s subset of the complete 3 min EEG
recording, the EEG signal is relatively static. This is supported by
the current results that show channels which demonstrate non-
stationarity of the EEG signal when comparing early and late
phases of the recording include electrodes that overlie the right
prefrontal region, which is associated with higher-order cognitive
processes (Logue and Gould, 2014). Thus, the assumption of
stationarity in resting-state functional neuroimaging studies may

be more appropriate for non-cognitive networks, including the
motor network. Regardless, further work is needed to determine
the minimal time-frame in which EEG signal demonstrate
stationarity.

Additional future work is focused on developing a new
method for computing confidence bands for the median curve.
This method needs to consider the data as a whole. One possible
approach is a re-sampling method, in which the notion of band
depth is used to construct a 95% confidence band. A potential
limitation of the re-sampling method is that there is the potential
for multiple curves demonstrating ties with respect to band
depth, thus affecting the resultant confidence band. One of the
assumptions of the current smoothed periodogram method is
that the log bias-corrected periodogram is an unbiased estimator
of spectrum. Future work will provide further investigation
of this assumption as the current method includes several
levels of periodogram manipulation, including smoothing with
the gamma generalized crossvalidation, log transformation, and
correction by adding Euler Mascheroni constant. In conclusion,
the current study presents a novel implementation of the FBP
and demonstrates promise as a method for exploratory analysis
of complex, high-dimensional neuroimaging datasets, including
EEG data.
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