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Dynamic connectivity detection: an
algorithm for determining functional
connectivity change points in fMRI
data
Yuting Xu and Martin A. Lindquist *

Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA

Recently there has been an increased interest in using fMRI data to study the dynamic

nature of brain connectivity. In this setting, the activity in a set of regions of interest (ROIs)

is often modeled using a multivariate Gaussian distribution, with a mean vector and

covariance matrix that are allowed to vary as the experiment progresses, representing

changing brain states. In this work, we introduce the Dynamic Connectivity Detection

(DCD) algorithm, which is a data-driven technique to detect temporal change points

in functional connectivity, and estimate a graph between ROIs for data within each

segment defined by the change points. DCD builds upon the framework of the recently

developed Dynamic Connectivity Regression (DCR) algorithm, which has proven efficient

at detecting changes in connectivity for problems consisting of a small to medium (<50)

number of regions, but which runs into computational problems as the number of regions

becomes large (>100). The newly proposed DCD method is faster, requires less user

input, and is better able to handle high-dimensional data. It overcomes the shortcomings

of DCR by adopting a simplified sparse matrix estimation approach and a different

hypothesis testing procedure to determine change points. The application of DCD to

simulated data, as well as fMRI data, illustrates the efficacy of the proposed method.

Keywords: functional connectivity, dynamic functional connectivity, resting state fMRI, change point detection,

network dynamics

1. Introduction

Functional connectivity (FC) is the study of the temporal dependencies between distinct, possibly
spatially remote, brain regions (Friston, 1994). Assessing FC using functional Magnetic Resonance
Imaging (fMRI) data, has proven particularly useful for discovering patterns indicting how brain
regions are related, and comparing these patterns across groups of subjects (Lindquist, 2008;
Friston, 2011). In recent years, it has become one of the most active research areas in the
neuroimaging community, and it is a central concept in the long term goal of understanding the
human connectome (Sporns et al., 2005). The hope is that increased knowledge of networks and
connections will help facilitate research into a number of common brain disorders.

FC is fundamentally a statistical concept, and is typically assessed using statistical measures such
as correlation (Biswal et al., 1995), cross-coherence (Sun et al., 2004), and mutual information
(Jeong et al., 2001). In the past few years it has become increasingly common to assume that
the fMRI time series data follows a multivariate Gaussian distribution, and quantify FC using
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the estimated covariance, correlation or precision (inverse
covariance) matrix (Varoquaux et al., 2010; Cribben et al., 2012,
2013). In this setting there is a well-known relationship between
the estimated precision matrix and the underlying network
graph of interest, and the use of algorithms for estimating
sparse precision matrices (and thus graphs) have become critical
(Friedman et al., 2008).

Most functional connectivity analyses performed to date
have generally assumed that the relationship within functional
networks is stationary across time. However, in recent years there
has been an increased interest in studying dynamic changes in
FC over time. These analyses have shown that rather than being
static, functional networks appear to fluctuate on a time scale
ranging from seconds to minutes (Chang and Glover, 2010).
Here changes in both the strength and directionality of functional
connections have been observed to vary across experimental runs
(Hutchison et al., 2013), and it is believed that these changes
may provide insight into the fundamental properties of brain
networks.

When the precise timing and duration of state-related changes
in FC are known before hand, it is possible to apply methods such
as the psychophysiological interactions (PPI) technique (Friston
et al., 1997) or statistical parametric networks analysis (Ginestet
and Simmons, 2011). However, in many research settings the
nature of the psychological processes being studied is unknown,
particularly in resting-state fMRI (rfMRI), and it is therefore
important to develop methods that can describe the dynamic
behavior in connectivity without requiring prior knowledge of
the experimental design. In the past couple of years, a number
of such approaches have been suggested in the neuroimaging
literature, including the use of sliding window correlations
(Chang and Glover, 2010; Handwerker et al., 2012; Hutchison
et al., 2013; Allen et al., 2014), change point models (Cribben
et al., 2012, 2013), and volatility models (Lindquist et al., 2014).

One example is dynamic connectivity regression (DCR),
which is a data-driven technique for partitioning a time course
into segments and estimating the different connectivity networks
within each segment (Cribben et al., 2012). It applies a greedy
search strategy to identify possible changes in FC using the
Bayesian Information Criteria (BIC). While optimizing the
BIC value within each subsequence, DCR utilizes the GLASSO
algorithm to estimate a sparse inverse covariance matrix. This
is followed by a secondary analysis of the candidate split points,

FIGURE 1 | An illustration of DCR. Left: There exist two change points t1 and t2 where the connectivity between 4 ROIs changes as shown in the corresponding

precision matrix. Right: DCR discovers the change points, recursively, using a binary search tree.

where a permutation test is performed to decide whether or not
the reduction in BIC at that time point is significant enough to be
deemed a true change point. The structure of the DCR algorithm
is briefly demonstrated in Figure 1.

While the DCR algorithm has proven useful for detecting
changes in FC, it has two major drawbacks. First, the
computational cost of the algorithm increases rapidly with the
number of ROIs. As the number of ROIs surpasses 50, the
computation time can become prohibitive. Second, DCR requires
a number of user-specified input parameters, some of which
may be difficult to optimize without in-depth knowledge of the
experiment and familiarity with the algorithm.

In this work, we introduce the Dynamic Connectivity
Detection (DCD) algorithm for change point detection in fMRI
time series data, as well as the estimation of a graph representing
connectivity within each partition. It builds upon the basic
DCR framework, using the same binary search tree structure
to recursively identify potential change points. However, it
replaces a number of critical components of DCR, including the
manner in which the sparse matrix estimation is performed and
significant change points determined. An adaptive thresholding
approach is used to estimate a sparse covariance matrix, which
provides a significant speed up in computation time compared
to the GLASSO algorithm, and improves scalability. In addition,
the permutation test used to detect significant change points
is replaced by an alternative hypothesis test. Because of these
changes, all the input parameters in the DCD algorithm have a
clear interpretation in the context of hypothesis testing, allowing
users to specify the desired control of Type I and Type II errors.

This paper is organized as follows. In Section 2 we begin by
briefly reviewing the basic steps of DCR, followed by a discussion
of sparse parameter estimation, and a description of the new
DCD algorithm for single-subject change point detection and
graph estimation. Thereafter we demonstrate the performance of
DCD in Sections 3 and 4 by applying the method to a series of
simulation studies and experimental data. The obtained results
are contrasted with similar results obtained using DCR. The
paper concludes with a discussion.

2. Methods

Consider fMRI data from a single subject consisting of
multivariate time series, where each dimension corresponds to
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activity from a single region of interest (ROI). Assume that the
measurement vector at each time point follows a multivariate
Gaussian distribution, whose parameters may vary across time.
Throughout, we denote the measurement at time t as y(t) (1 ≤
t ≤ T), which represents a J-dimensional Gaussian random
vector whose distribution isN (µ(t), 6(t)).

The goal of DCD is to detect temporal change points
in functional connectivity and estimate a sparse connectivity
graph for each segment, where the vertices are ROIs and the
edges represent the relationship between ROIs. More specificity,
we seek to partition the time series into several distinct
segments, within which the data follows a multivariate Gaussian
distribution with a different mean vector or covariance matrix
from its neighboring segments. Further, for each segment we seek
to estimate a graph representing connectivity between ROIs in
the segment.

The DCR algorithm (Cribben et al., 2012, 2013) was
previously developed to deal with the same problem. While,
DCR has proven efficient at detecting changes in connectivity
for problems consisting of a small to medium (<50) number
of regions, it runs into computational problems as the number
of regions becomes large (>100). The proposed DCD algorithm
seeks to circumvent these issues by updating how (i) the
underlying mechanisms by which change points are determined,
and (ii) network structures are identified. Before discussing DCD
in detail, we begin by giving a brief overview of DCR and sparse
parameter estimation.

2.1. Dynamic Connectivity Regression (DCR)
The original DCR algorithm (Cribben et al., 2012), dealt with
detecting change points in a group of subjects, but here
we concentrate on the single subject case (Cribben et al.,
2013). DCR aims at detecting temporal change points in
functional connectivity and estimating a graph of the conditional
dependencies between ROIs, for data that falls between each pair
of change points. The measured signal is modeled as a Gaussian
random vector where each element represents the activity of
one region. The partitions in DCR are found using a regression
tree approach. It attempts to first identify a candidate change
point using the Bayesian Information Criterion (BIC), and then
perform a permutation test to decide whether it is significant.
If a significant change points is found, the same procedure is
recursively applied to search for more changes points by further
splitting the subset; see Figure 1 for an illustration.

The required user specified input parameters for the
algorithm are:

1) 1: the minimum possible distance between adjacent changes
points, chosen based on prior knowledge about the fMRI
experiment.

2) λ − list: the full regularization path of tuning parameters λ

required by GLASSO.
3) ξ : the mean block size of the stationary bootstrap.
4) α: the significance level for the permutation test.
5) Nb: the number of bootstrap samples.

Suppose we have a J-dimensional time series Y: = {y(t)}1≤ t≤T ,
where the y(t)′s are assumed to be independent identically

distributed random variables which follow a multivariate
Gaussian distribution. Here the mean vector can be estimated
using the sample mean, and a sparse precision matrix can
be estimated using the GLASSO technique (see next section
for more detail). In order to choose the appropriate tuning
parameter λ needed for GLASSO, the full regularization path
λ − list is run, and the optimal value is selected based on
the value that minimizes the BIC. Finally, the model is refit
without regularization, but keeping the zero elements fixed, and
the optimized baseline BIC for the original time series, b0, is
recorded.

For all possible split points t (1 ≤ t ≤ T − 1), the
same procedure is repeated, and the BIC score for the two
subsequences Y1: = {y(t′)}1≤ t′ ≤ t and Y2: = {y(t′)}t+ 1≤t′≤T ,
denoted b1(t) and b2(t), respectively, are computed. A time point
t0 is chosen as a candidate change point, if it (i) produces the
smallest combined BIC score b1(t0) + b2(t0) for all possible split
points t, and (ii) the combined BIC score is smaller than the
baseline b0. In the continuation we let δb = b0− (b1(t0)+ b2(t0))
represent the decrease in BIC at t0.

Because change points are defined by a decrease in BIC, a
random permutation procedure is used to create a 100(1 − α)%
confidence interval for BIC reduction at the candidate change
point t0, to determine whether it should be deemed a significant
change point. Using a stationary bootstrap procedure with mean
block size ξ , permuted time series are repeatedly created. Each
time course is partitioned at time t0 and the BIC reduction
is computed as described above. The procedure is performed
Nb times, thus allowing for the creation of a permutation
distribution for the BIC reduction. If δb is more extreme than the
(1−α) quantile of the permutation distribution, we conclude t0 is
a significant change point. This procedure is recursively applied
to each individual partition until no further split reduces the BIC
score.

2.2. Sparse Parameter Estimation
The estimation of the covariance and precision matrix is a
critical step in identifying candidate change points in the DCR
algorithm. While the number of ROIs J is moderate, and the
length of time series T is large, the sample covariance matrix S
is a consistent estimator of the covariance matrix 6. However,
in high dimensional settings, when J is large compared to
the sample size T, S has an infinite determinant, leading to
divergence in the numerical algorithm. Thus, sparsity constraints
are required to estimate the covariance, or precision matrix,
consistently.

In this section we discuss two methods for performing sparse
matrix estimation. While the original DCR method imposes
sparsity on the precision matrix, the proposed DCD algorithm
instead seeks to estimate a sparse covariance matrix. By making
this shift, we can use a newly developed adaptive thresholding
approach that provides a faster, more scalable solution to the
change point problem described above. Statistically this changes
the interpretation of the problem, as zeros in the precision matrix
correspond to conditional independence between variables,
while zeros in a covariance matrix correspond to marginal
independence between variables. In a series of simulations and
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an application to real data we examine the implications of this
choice.

2.2.1. Graphical LASSO (GLASSO)
The Least Absolute Shrinkage and Selection Operator (LASSO)
technique (Tibshirani, 1996), is often used for shrinkage
and feature selection in regression problems. It adds an L1
penalty term to the objective function, thus producing more
interpretable models with some coefficients forced to be exactly
zero. The Graphical LASSO (GLASSO) (Friedman et al., 2008)
is an extension of this idea to graphical models, aimed at
estimating sparse precision matrices. Based on the assumption
that the observed data vectors {y(t)}1≤ t≤T follow a multivariate
Gaussian distribution with covariance matrix 6, it adds an L1
norm penalty to the elements of the precision matrix � = 6−1,
and estimates the mean vector µ and precision matrix � by
maximizing the penalized log-likelihood. After substituting the
sample mean (the MLE of µ) into the objective function, this
reduces to:

log det(�)− tr(S�)− λ‖�‖1
where S is the empirical covariance matrix, and the parameter λ

controls the amount of regularization. Maximizing the penalized
profile log-likelihood gives a sparse estimate of �.

If the ijth element of matrix � is zero, the variables yi(t) and
yj(t) are conditionally independent, given the other variables. We
can therefore define a connectivity graph G = (V,E) with the
ROIs the vertices in V , and prune the edge between vertices i and
j if the variables are conditionally independent. Thus, increasing
the sparsity of � provides a sparser graphical representation of
the relationship between the variables.

2.2.2. Adaptive Thresholding Approach
Here we introduce an adaptive thresholding approach that allows
one to estimate a sparse covariance matrix. Again, assume
the data {y(t)}1≤ t≤T follows an i.i.d. multivariate Gaussian
distributionN (µ, 6). In this setting, the sample mean

µ̂ = 1

T

∑

1≤ t≤T

y(t)

is a consistent estimator of µ̂.
To estimate the covariance matrix, we begin by using the

empirical covariance matrix

6̂ = 1

T

∑

1≤ t≤T

(y(t)− µ̂)T(y(t)− µ̂)

as a candidate estimator of 6. To achieve sparsity we investigate
whether individual elements should be set equal to zero following
an idea of Cai and Liu (2011), where a method to model the
distribution of 6̂ij is proposed.

Let X
ij
t : = (yi(t)−µi)(yj(t)−µj), where a subscript represents

a single dimension of a vector, then the ijth element of 6̂ is:

6̂ij =
1

T

∑

1≤ t≤T

X
ij
t = X̄ij (1)

Now X
ij
1 ,X

ij
2 , ...X

ij
T is a sequence of i.i.d. random variables with

E[X
ij
t ] = E[(yi(t) − µi)(yj(t) − µj)] = 6ij by definition, and

further assume Var[X
ij
t ] = δ2ij < ∞. Then by the Central Limit

Theorem,

√
T
(

6̂ij − 6ij

)

→ N (0, δ2ij)

A natural estimate of δ2ij is given by:

δ̂2ij =
1

T

∑

1≤ t≤T

(X
ij
t − X̄ij)2 (2)

Alternatively, one can use the Jackknife technique to estimate the
variance of estimator 6̂ij directly (see Appendix B).

Using this result, we can test H0 : 6ij = 0 vs. H1 : 6ij 6= 0 at
significance level η as follows:

∣

∣

√
T6̂ij

δ̂ij

∣

∣ =
T|6̂ij|

√

∑T
t= 1(X

ij
t − X̄ij)2

> z1−η/2

If we successfully reject the null hypothesis, we can conclude that
6ij 6= 0 and keep 6̂ij as the estimator for 6ij. Otherwise we

modify the candidate estimator and set 6̂ij = 0. Similarly, using

the diagonal elements of 6̂ as estimates of the variance of µ̂, we
can perform a hypothesis testing for each element ofµ and obtain
a sparse estimate of µ̂. Since the testing procedure is performed
for a potentially large number of parameters, we need to correct
for multiple comparisons (Lindquist and Mejia, 2015).

2.3. Dynamic Connectivity Detection (DCD)
The DCD algorithm seeks to speed up the DCR algorithm, while
achieving equivalent, or improved, results. The general procedure
of DCD is similar to DCR, where a candidate split point is
identified based on whether it further maximizes a likelihood-
based function, and a hypothesis test is performed to decide
whether this candidate split point is statistically significant. If
a significant change point is found, the procedure is applied
recursively to each of the two subsequences in order to find
further split points.

The major improvement from DCR to DCD is that we
incorporate the adaptive thresholding approach as our sparse
matrix estimation method, which successfully improves upon the
computational efficiency. In addition, during each step, a binary
“mask” representing the non-zero parameter elements (in the
mean vector and covariance matrix) is saved for each partition. If
an additional change point is found for this partition, the “mask”
is imposed on the parameters of both “child” partitions (the two
subsets of time series created by splitting the data at the change
point). This implies that if the estimate of one element of the
covariance matrix for some partition is zero, then the estimate
of corresponding element in any sub-partition will also be zero.
The recursive sparsity feature is illustrated in Figure 2.

All input parameters in DCD have a clear statistical
interpretation, enhancing its user-friendliness. The required user
specified input parameters for the algorithm are:
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FIGURE 2 | An illustration of how the sparsity structure is recorded in DCD. Left: The split points t1 and t2, and the corresponding covariance matrix within

each partition. Yellow elements in the covariance matrix plot represents 1, green elements 0.5, and blue elements 0. Right: DCD uses a binary mask to record the

sparsity structure at each node of the binary search tree.

1) α: the type I error bounds for the hypothesis tests used to
determine significant splits.

2) β: the type II error bounds for the hypothesis test used to
determine significant splits.

3) η: the type I error bound for the hypothesis test used to
determine the sparsity of the covariance matrix.

Since the length of the time series partition affects statistical
inference, we need to calculate the minimum partition length 1

needed to achieve the desired error bounds. We apply a power
analysis based on a two sample t-test to calculate 1 from the
inputs α and β; for details please refer to Appendix A.

Given a J-dimensional time seriesY: = {y(t)}1≤ t≤T , we begin
by calculating themaximized baseline log-likelihood L0 under the
assumption that

y(t)
i.i.d∼ N (µ0, 60), 1 ≤ t ≤ T.

Hence, the log-likelihood function is given by

L(µ0, 60|Y) ∝ −
T

∑

t= 1

(y(t)− µ0)
T6−1

0 (y(t)− µ0)

−T log(det60). (3)

We first calculate the sample mean and sample covariance
matrix as the maximum likelihood estimator of µ0 and 60, and
then further improve the estimator by performing the adaptive
thresholding method described in Section 2.2.2, in order to
obtain a sparse mean vector µ̂0 and sparse covariance matrix 6̂0.

The maximized log-likelihood function can now be
expressed as:

L0 = −T
(

tr(6̂−1
0 S)+ log(det 6̂0)

)

where S is the normalized scatter matrix:

S = 1

T

∑

1≤ t≤T

(y(t)− µ̂0)
T(y(t)− µ̂0)

While calculating the sparse structure of parameter θ0 =
(µ0, vec{60}), a binary array mask is saved, indicating the non-
zero elements of θ0. It is assumed that any subsequence of the
time series will satisfy the parent sparsity property.

For any possible candidate split point t (1 ≤ t ≤ T − 1),
assume the two subsequences Y1: = {y(t′)}1≤ t′ ≤ t and Y2: =
{y(t′)}t+ 1≤t′≤T follow multivariate Gaussian distribution with
parameters θ1t = (µ1t, vec{61t}) and θ2t = (µ2t, vec{62t}),
respectively. Here only the upper triangular elements are used
when vectorizing the covariance matrix. The dimension of the
parameter vector is therefore J + J∗(J + 1)/2 = (J + 1)(J + 2)/2.

Next, the maximum likelihood estimators θ̂
ML

it (i = 1,2) are
computed, imposing the parent sparsity structure by taking the
Hadamard product with themask vector:

θ̂ it = θ̂
ML

it ⊗mask, i = 1, 2

Now themaximized log-likelihood under current split point t can
be obtained as follows:

Lt = L(θ̂1t|Y1)+ L(θ̂2t|Y2).

Similar to DCR we can now step through all possible candidate
split points and find the one, denoted t0, which shows the
maximum improvement in log-likelihood Lt compared to L0:

t0 = argmax
t

(Lt − L0)+

If the maximum Lt0 is less than the baseline L0, the DCD
procedure returns no detected split points; otherwise a set of
hypothesis tests are performed to determine whether t0 is a
significant change point.

For the sake of clarity, denote the Gaussian distribution
parameters of the two subsequences as θ i = (µi, vec{6i}): = θ it ,
(i= 1,2). We now seek to test:

Hj0 : θ1(j) = θ2(j) vs. Hj1 : θ1(j) 6= θ2(j),

j ∈ {j′ : mask(j′) = 1} (4)
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If any of the non-zero parameters are significantly different
for the two subsequences, i.e., if we reject any of the null
hypotheses, then we conclude that t0 is a significant change point
for partitioning the time series Y. We use Bonferroni correction
to control the family-wise error rate (FWER), and rejectHj0 if the
p-value is less than α

∑

j′ mask(j′) .

To perform each test we use Welch’s t-test (two-sample t-test
for unequal variance). For j ≤ J, use the diagonal element of 6̂ as
an estimate of the variance of µ̂; and for j > J, use the estimator
described in Equation (2) to estimate the variance of each element
of 6̂. If t0 is identified as a significant change point, continue
searching for more change points by recursively repeating the
above procedure on the two “child” subsequences until no further
change points are returned; otherwise finish the DCD procedure
by returning a null value.

The complete procedure for performing the DCD algorithm
is summarized below:

1. Take the input parameters α, β,η, and calculate the minimum
partition length 1 as described in Appendix A.

2. Consider the full multivariate time series with length T,
calculate the sparsity structure of its multivariate normal
distribution parameters as described in Section 2.2.2, estimate
the mean vector and a sparse covariance matrix accordingly,
and calculate the baseline likelihood function L0.

3. For each value of t ranging from1 to T−1, partition the time
series into two subsequences {1 : t} and {t + 1 : T}, calculate
the sparsity structure of parameters based on the parent
sparsity structure from Step (2), then calculate the combined
likelihood function using the estimated sparse parameters.

4. Find the time point which produces the largest increase
in combined likelihood function, perform the hypothesis
test described in Equation (4) to determine whether it is a
significant change point. If yes, split the time series into two
partitions accordingly.

5. Apply Steps (2–4) recursively to each partition until no further
change points are found.

6. After detecting all change points, estimate a connectivity
graph for each partition using a sparse matrix estimation
technique, such as Adaptive Thresholding Approach to obtain
a covariance graph or GLASSO to obtain a connectivity graph.

3. Simulations

A series of simulations were performed to test the efficacy of
the new DCD algorithm, and compare its performance to the
DCR method. For this reason, we adopt simulation settings
inspired by those found in the original DCR work (Cribben et al.,
2012). However, in contrast to that work, for each simulation
the connectivity pattern and strength between nodes remains the
same across different subjects, since our focus is on the single
subject case instead of on group-level inference. In addition,
the object of each simulation in this paper is focused on
identifying the timing of the connectivity change points, rather
than explicitly assessing the quality of the estimation of the
underlying graphs.

The descriptions and parameter settings for each simulation
are listed below. Here N, T, and p represent the number of
subjects, the length of the time series, and the number of
regions, respectively. The true dependency between ROIs (i.e.,
the precision matrices) are shown as heat maps in Figures 3–7.
More details regarding the exact strength of these connections
can be found in Appendix C. Here the notation (i, j) = k
indicates that the (i, j) element of the precision matrix takes
the value k. All unspecified diagonal elements are one and non-
diagonal elements are zero. In the latter case, the ROIs were
made up of i.i.d. Gaussian noise indicating a lack of functional
connectivity. Hence, each simulation is created assuming sparsity
in the precision matrix, which should theoretically benefit DCR
over DCD, which imposes sparsity in the covariance matrix.

For each simulation, both the DCD andDCR approaches were
applied to the N subjects individually. Since the DCR algorithm
has many parameters, and according to previous work several are
insensitive to change, we fix several of them as follows:

1 = 50, λ − list = (20, 2−1, ..., 2−9), Nb = 50, ξ = 1/2.

For DCD, we fix η = 0.05. All remaining parameters are altered
depending on the simulation setting.

Below we list a brief description of each simulation study.

• Simulation 1

Description: The data is white noise with no connectivity
change points.

FIGURE 3 | The dependency structure used in each of the three partitions of Simulation 2.
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FIGURE 4 | The dependency structure used in each of the four partitions of Simulation 3.

FIGURE 5 | The dependency structure between regions 1–5 (all other regions are conditionally independent) used in each of the two partitions of

Simulation 4.

Size: N = 20, T = 1000, p = 20
DCD parameters: (α, β) = (0.05, 0.1);
DCR parameters: α = 0.05.

• Simulation 2

Description: There are two change points at times 200 and
400. Spikes are imposed onto the time series, imitating a
common artifact found in fMRI data. For each subject there
are 5 randomly placed spikes, each with magnitude 15.
Size: N = 20, T = 1000, p = 20
DCD parameters: (α, β) = (0.05, 0.1);
DCR parameters: α = 0.05.

• Simulation 3

Description: There are three change points at times 125,
500, and 750.
Size: N = 15, T = 1000, p = 20
DCD parameters: (α, β) = (0.05, 0.05);
DCR parameters: α = 0.05.

• Simulation 4

Description: There is a single change point at time 100.
Size: N = 25, T = 200, p = 5
DCD parameters: (α, β) = (0.05, 0.1);
DCR parameters: α = 0.05.

• Simulation 5

Description: There are five change points at times 200, 300,
500, 600, and 800.
Size: N = 20, T = 1000, p = 20
DCD parameters: (α, β) = (0.05, 0.05);
DCR parameters: α = 0.05.

• Simulation 6

Description: There are four change points at times 200, 400,
600, and 800.
Size: N = 20, T = 1000, p = 20
DCD parameters: (α, β) = (0.05, 0.05);
DCR parameters: α = 0.05.

The results of the simulations are shown in Figures 8–13. In

each figure, the y-axis represents the subject number, while the x-

axis represents time points. All red crosses in the left sub figures

represent change points detected for each subject by DCD, and
the blue circles are those detected by DCR. The blue vertical line

indicates the true change points for each simulation setting. In

Table 1, we list the respective runtimes of DCD and DCR for

each simulation. The computing platform used was an Intel Core
i5-3210M CPU 2.5 GHz with 16.0 GB RAM.

Frontiers in Neuroscience | www.frontiersin.org 7 September 2015 | Volume 9 | Article 285

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Xu and Lindquist Dynamic connectivity detection

FIGURE 6 | The dependency structure used in each of the six partitions of Simulation 5.

FIGURE 7 | The dependency structure used in each of the five partitions of Simulation 6.

The results of Simulation 1, where there are no true change
points, are shown in Figure 8. The DCD algorithm finds 5 false
positive change points, whereas the DCR algorithm finds 9.

Interestingly, the DCR false positives are primarily grouped at the
time points1 and T−1. The reason for this is that when adding
the BIC score from two sub-series of lengths n1 and n2, where
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FIGURE 8 | The results of Simulation 1. Left: The red crosses show significant split points found by DCD. Right: The blue circles show significant split points

found by DCR. Here there should ideally be no change points for any of the subjects.

FIGURE 9 | The results of Simulation 2. Left: The red crosses show significant split points found by DCD. Right: The blue circles show significant split points

found by DCR. The blue vertical lines indicate the timing of the true change points.

n1 + n2 = n, and assuming the number of parameters k1 ≈ k2 ≈
k, the total penalty term is klog(n1)+klog(n2) ∝ log

(

n1(n−n1)
)

,
which favors small or large values of n1 when minimizing the
BIC. In addition, the runtime of DCD is approximately 30 times
faster than DCR, providing a significant decrease in computation
time.

The results of Simulation 2 are shown in Figure 9. Here there
exist two true change points, the first at time 200, and the second
at time 400. In addition, there are 5 spikes placed at random
time points for each subject. Both algorithms do a good job
of detecting the true change points in most cases, with a few
instances of false positives for each. Here DCD is approximately
60 times faster than DCR in obtaining the results.

The results of Simulation 3 are shown in Figure 10. Here there
exist three true change points, the first at time 125, the second at

time 500, and the third at time 750. Clearly, both algorithms do
an excellent job of detecting the true change points. Here DCD is
approximately 30 times faster than DCR in obtaining the results.

Figure 11 shows the results of Simulation 4. Again, both
algorithms do an excellent job of detecting the true change point,
which is located at time 100, but DCD does so with a 20-fold
increase in speed.

Finally, the results of Simulations 5 and 6 are shown in
Figures 12, 13, respectively. In both cases the algorithms do an
excellent job of detecting the true change points. However, DCD
does so with a 30-fold increase in speed in both cases.

Although the main goal of DCD is to detect change points,
and the estimation of a connectivity graph seems a byproduct, the
accuracy of the covariance matrix or precision matrix estimation
leads to better change point detection, and vice versa. Using the
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FIGURE 10 | The results of Simulation 3. Left: The red crosses show significant split points found by DCD. Right: The blue circles show significant split points

found by DCR. The blue vertical lines indicate the timing of the true change points.

FIGURE 11 | The results of Simulation 4. Left: The red crosses show significant split points found by DCD. Right: The blue circles show significant split points

found by DCR. The blue vertical line indicates the true change points.

Adaptive Thresholding Approach, we need to control the family-
wise error rate or false discovery rate. The estimation of a J-
dimensional covariance matrix requiresO(J2) hypothesis tests. In
our simulation examples, we adjust the significance level η by η/J,
to guard against being as conservative as Bonferroni correction,
while still obtaining adequate control over the family-wise error
rate. Results show that the estimation of the sparsity structure is
accurate in most simulations. The list of the average proportion
of correctly identified zero/non-zero elements of the covariance
matrices are listed in Table 2.

In summary, in each of the “low dimensional” simulations
described above, with the number of ROIs ∼ 20, DCR
achieves similar results as DCD with a significant speed-up
in runtime. However, to investigate how well the methods
scale to a more “high dimensional” settings, we expand upon
two of the simulations to inspect how computational time

changes as a function of the number of ROIs for the two
algorithms.

In the first (denoted 2B), we generated 80 ROIs data for
50 subjects under the same settings as described in Simulation
2. Here only the first 20 nodes contain information, and the
remaining are simply white noise. We ran DCD and DCR using
ROIs 1:r, where r ranged from 20 to 80 in increments of 5. In the
second (denoted 4B), we generated 70 ROIs for 50 subjects under
the same settings as described in Simulation 4. Here only the first
5 nodes contain information, while all remaining nodes are white
noise. We ran DCD and DCR on a subset of ROIs numbered 1:r,
where r ranged from 5 to 70 in increments of 5.

The results of Simulation 2B are summarized in Figures 14,
15. From Figure 14 it is clear that the computation time for
DCR increases exponentially with the number of ROIs, while the
computation time for DCD is much shorter and nearly linear.
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FIGURE 12 | The results of Simulation 5. Left: The red crosses show significant split points found by DCD. Right: The blue circles show significant split points

found by DCR. The blue vertical lines indicate the timing of the true change points.

FIGURE 13 | The results of Simulation 6. Left: The red crosses show significant split points found by DCD. Right: The blue circles show significant split points

found by DCR. The blue vertical lines indicate the timing of the true change points.

TABLE 1 | Runtime comparison between the DCD and DCR algorithms for each simulation.

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 Simulation 6

DCR run time 249.163458 351.531306 408.477891 13.262008 585.510362 581.070222

DCD run time 8.005733 5.756054 12.363800 0.712059 16.958910 18.126004

ratio = DCRtime
DCDtime

31.1231 61.0716 33.0382 18.6249 34.5252 32.0573

Runtime is measured in units of seconds.

TABLE 2 | Sparsity control results of covariance matrices.

Simulation 1 2 3 4 5 6

Correct zero rate 0.9497 0.9568 0.9474 0.9529 0.4955 0.9461

Correct non-zero rate(TP) 1 0.9763 0.9644 0.6535 0.9837 0.9628

False positive rate (average) 0.0503 0.0432 0.0526 0.0471 0.5045 0.0539
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FIGURE 14 | Runtime for Simulation 2B as a function of number of nodes for both DCD and DCR on both regular (left) and log-scale (right). Clearly, DCD

scales much better than DCR.

FIGURE 15 | The results of Simulation 2B. Left: The red crosses show significant split points found by DCD. Right: The blue circles show significant split points

found by DCR. The blue vertical lines indicate the timing of the true change points.

Though the results of DCR appear slightly better than DCD (see
Figure 15), with less deviations from the true change points, this
comes at a substantial computational cost.

The results of Simulation 4B are summarized in Figures 16,
17. Based on Figure 16 it is clear that the computation time for
DCR increases exponentially with the number of ROIs, while the
computation time for DCD is much shorter and has a near linear
increase. In addition, judging by Figure 17 the algorithm also
appears to more accurately detect the timing of the true change
points.

4. Application to Experimental Data

4.1. Social Evaluative Threat Experiment
The data was taken from an experiment where subjects
performed an anxiety-inducing task while fMRI data was

acquired (Wager et al., 2009). This is the same data set used in
the previous DCR papers (Cribben et al., 2012, 2013), as well as
in other papers exploring mean change points (Lindquist et al.,
2007; Robinson et al., 2010). The task was a variant of a well-
studied laboratory paradigm for eliciting social threat, during
which participants were asked to give a speech under evaluative
pressure. It consisted of an off-on-off design, with an anxiety-
provoking speech preparation task sandwiched between two
lower-anxiety rest periods. Prior to the scanning session, subjects
were informed that they were to be given 2 min to prepare a 7
min speech, the topic of which would be revealed to them during
scanning, that would be delivered to a panel of expert judges after
the scanning session. However, they were told that there was a
small chance that they would be randomly selected not to give
the speech. After the start of fMRI acquisition, during the initial
2 min resting period subjects viewed a fixation cross. At the end

Frontiers in Neuroscience | www.frontiersin.org 12 September 2015 | Volume 9 | Article 285

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Xu and Lindquist Dynamic connectivity detection

FIGURE 16 | Runtime for Simulation 4B as a function of number of nodes for both DCD and DCR on both regular (left) and log-scale (right). Clearly, DCD

scales much better than DCR.

FIGURE 17 | The results of Simulation 4B. Left: The red crosses show significant split points found by DCD. Right: The blue circles show significant split points

found by DCR. The blue vertical line indicates the true change point.

of this period, an instruction slide appeared describing the speech
topic for 15 s (“why you are a good friend”). The slide instructed
subjects to prepare enough for the entire 7 min period. After 2
min of silent preparation, a second instruction screen appeared
for 15 s that informed subjects that they would not have to give
the speech. The functional run concluded with an additional 2
min period of resting baseline.

During the course of the experiment a series of 215 functional
images were acquired (TR = 2 s). A detailed description of the
data acquisition and preprocessing can be found in previous
work (Wager et al., 2009). In order to create ROIs, time series
of voxels were averaged across pre-specified regions of interest.
We used data consisting of 4 ROIs and heart rate for 23 subjects.
The 4 ROIs were chosen due to the fact that they showed a
significant relationship to heart rate in an independent data set.
They included the ventral medial prefrontal cortex (VMPFC), the

anteriormedial prefrontal cortex (mPFC), the striatum/pallidum,
and the dorsal lateral prefrontal cortex (DLPFC)/inferior frontal
junction (IFJ). The temporal resolution of the heart rate was 1 s
compared to 2 s for fMRI data, so it was down-sampled by taking
every other measurement.

Both the DCD and DCR approaches were applied to the
23 subjects individually. For the DCD algorithm, we used
(α, β, η) = (0.1, 0.1, 0.05) as input parameters, and the runtime
was 0.92 s. For the DCR algorithm, we adopted similar parameter
settings used in Cribben et al. (2013), where we used the following
settings: 1 = 40, λ − list = (1, 2−1, ..., 2−9), α = 0.1, Nb = 50,
and ξ = 20. The runtime for DCR was 32.14 s.

The change points detected by the two algorithms are
displayed in Figure 18. Both consistently give rise to change
points around the time of the first visual cue. In addition, there
appear to be changes toward the middle of speech preparation
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FIGURE 18 | Results of the social evaluative threat experiment, with data consisting of four ROIs and heart rate. The x-axis represents time and

y-axis depicts the subject number. The vertical lines represent the timing of the instruction slides. Left: Red crosses show the change points identified by

DCD. Right: The black circles show the change points obtained via DCR.

and around the time of the second visual cue, though these
are less consistent across subjects. Interestingly, in contrast to
the DCR algorithm, the first change points given by the DCD
algorithm appears to coincide more closely to the timing of the
first introduction cue. Otherwise the number, and placement,
of the detected change points are roughly equivalent across
methods.

4.2. Human Connectome Project
To study DCD’s performance on high dimensional data, we
applied the method to resting-state fMRI (rfMRI) data from
the 2014 Human Connectome Project (HCP) data release
(Van Essen et al., 2013). The data consists of 4 separate 15
min rfMRI runs, each consisting of 1200 time points, collected
for each of 468 subjects. Each run was minimally preprocessed
according to the procedure outlined in Glasser et al. (2013), with
artifacts removed using FIX (FMRIB’s ICA-based Xnoiseifier)
(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). Each data set
was temporally demeaned with variance normalization applied
according to Beckmann and Smith (2004). Group-PCA output
was generated by applying MELODICs Incremental Group-PCA
on the 468 subjects. This comprises the top 4500 weighted
spatial eigenvectors from a group-averaged PCA. The output
was fed into group-ICA using FSL’s MELODIC tool (Beckmann
and Smith, 2004), applying spatial-ICA with 100 distinct ICA
components. The set of ICA spatial maps were mapped onto each
subject’s time series data to obtain a single representative time
series per ICA component using the “dual-regression” approach,
in which the full set of ICA maps are used as spatial regressors
against the full data (Filippini et al., 2009).

For illustration purposes we applied DCD to data consisting
of 100 ICA component time courses from a single subject
(100307). We began by computing the static correlation matrix
for the subject by concatenating data across the four runs.
The resulting correlation matrix was sorted using the Louvain
algorithm (Blondel et al., 2008), which has proven efficient

FIGURE 19 | Results of the analysis of the HCP data. The static

correlation matrix for a single subject (100307), computed using data from the

four runs. Components corresponding to the default mode network are

highlighted by DMN.

at identifying communities in large networks. The resulting
correlation matrix can be seen in Figure 19. There are clear
groupings of similar components that correspond to common
networks seen in the resting-state literature, including the visual,
somatomotor, cognitive control, and default mode networks.

Next, we applied DCD with input parameters (α, β, η) =
(0.05, 0.05, 0.02) to each of the four runs. The runtime for each
was less than 10 s. The correlation matrices for all partitions are
displayed in Figure 20, along with the corresponding temporal
partition listed above them. Each run consisted of either 6 or 7
partitions, and there are clear similarities in connectivity states
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FIGURE 20 | Results of the analysis of the HCP data using DCD. Each row depicts the estimated correlation matrices for the time partitions detected by DCD for

each of 4 runs for subject 100307. Above each matrix is the temporal information for each time partition.

between runs. Here one would not expect the timing of the
change points to be similar across runs, as there is no explicit
task designed to invoke state changes. Rather, this example is
primarily meant to illustrate that DCD is able to detect change
points in situations where there are 100 nodes.

That said, these results are consistent with results seen in
previous literature (Allen et al., 2014), and suggest that dynamic
behavior of functional connectivity is present in the resting
state data. In particular states appear to be differentiated by
connectivity between default mode components, and between
default mode components and other components throughout the
brain.

5. Discussion

In this work, we have developed a novel algorithm for change
point detection in fMRI data. It partitions the fMRI time
series into sequences based upon functional connectivity changes
between ROIs or voxels, as well as mean activation changes.
DCD can be applied to time series data from ROI studies,
or to temporal components obtained from either a principal
components or independent components analysis. Its data-
driven design means it does not require any prior knowledge of
the nature of the experiment. In addition, the accuracy of the
result on single subject data allows for analysis on experiments
where one expects large heterogeneity in connectivity across

subjects and between runs, such as in resting state fMRI
data.

To reduce the burden on users, all three input parameters to
the DCD algorithm have a clear statistical interpretation, making
it easy to use even for those unfamiliar with the intrinsic details
of the algorithm. As long as the user has a basic understanding of
hypothesis testing, they should have the appropriate knowledge
necessary to alter the parameters in order to improve the
performance of the algorithm.

We contrast the approach to the previously introduced DCR
technique, which also seeks to find connectivity change points.
The most significant advantage of DCD compared to DCR is
its computational efficiency, driven in large part by the newly
proposed adaptive thresholding schema for sparse covariance
matrix estimation. Based on the results of two high-dimensional
simulation studies, as well as further empirical studies, we
found that the computation time for DCR grows rapidly with
an increased number of ROIs. Thus, when the number of
regions exceeds 50, the computational burden of DCR can
be intimidating for most users. In contrast, the computation
time of DCD increases roughly linearly, and can easily handle
hundreds of ROIs, in a matter of minutes for most general fMRI
experimental settings.

In the DCD algorithm, we choose to maximize the total
likelihood function instead of the Bayesian information criterion
(BIC) that is used in the DCR algorithm. The design of the DCD
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algorithm frees the user from performing model selection from a
list of regularization parameters, so that we can use the likelihood
function as a more natural criterion. Furthermore, utilizing the
likelihood function avoids a common problem arising when
applying the BIC; namely that when adding the BIC score of two
subsets of lengths n1 and n2 (n1 + n2 = n), consisting of roughly
the same number of parameters k1 ≈ k2 ≈ k, the total penalty
term is klog(n1)+klog(n2) ∝ log

(

n1(n−n1)
)

, which tends to favor
small or large n1 when minimizing the BIC. This is the reason for
the apparent cluster of false positives obtained using DCR at time
points 1 and T − 1, shown in Figure 8.

Another critical difference between the two algorithms is
the manner in which sparsity is enforced. DCR uses GLASSO,
and thus places sparsity constraints on the precision matrix,
while DCDs adaptive thresholding approach places them on the
covariance matrix. The former may be more natural in the fMRI
setting, due to the relationship between the precision matrix
and the connectivity graph where zero elements correspond to
conditional independence. However, we found in our simulation
studies that when estimating connectivity change points it does
not appear to be critical upon which matrix we impose sparsity,
and the computational advantages of operating on the covariance
matrix becomes increasingly attractive. However, in settings
where the precision matrix is sparse, and the corresponding
covariance matrix is dense, DCD can potentially run into
problems and alternative approaches should be explored.

One limitation preventing us from further improving the
runtime of the DCD algorithm comes from the nature of greedy
method we used for maximizing the likelihood. The greedy
search strategy makes the locally optimal choice at each step,
but cannot ensure the global optimum solution is obtained.
However, as a data-driven method, the results from DCD
will still provide a reasonable starting point for exploring the
experimental data. Another disadvantage of DCD are limits on
the types of experiments it may be applied to. In this work, we
have demonstrated its effectiveness using both blocked-design

task fMRI experiments as well as resting state data. However,
for event-related designs, the brain connectivity and activity level
may change too rapidly to be able to obtain a valid estimate from
DCD. Hence, when the DCD algorithm detects no significant
change points, it may in fact be the case that the activity pattern
changes too frequently to be detected.

Similar to group-level DCR, there is also a simple variant of
DCD for group inference, which stacks subjects and calculates
the summation of the likelihood function in each step. This
approach can be used in experiments where one expects subjects
to change states at similar time points (e.g., in the social evaluative
threat experiment), and is not recommended for resting-state
experiments where subjects are not expected to behave in
a similar manner. In general, we suggest one first performs
single-subject DCD, and if the resulting change points show
synchronization across a subset of subjects, then apply group-
level DCD to obtain more accurate results. Due to the flexibility
of the DCD algorithm, we can also incorporate the GLASSO
technique for sparse precision matrix estimation in place of
adaptive thresholding method, which may also lead to improved
accuracy at the cost of slower runtime.

In sum, the newly proposed DCD algorithm is a fast
and efficient approach toward detecting changes in functional
connectivity, especially for experiments where the nature, timing
or duration of the involved psychological processes are unknown.
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Appendix

A. Minimum Partition Length

We need to calculate a minimum partition length 1 to control
the type II error based on a pre-specified bound β. Consider
two time series, each of length 1. Denote the test statistic
tstat = δx

√

2
1
s
, where s represents the pooled variance. Under

the null hypothesis, tstat follows a Student’s t-distribution with
21 − 2 degrees of freedom, and we reject H0 if |tstat| ≥
t1−α/2(21 − 2).

If the alternative hypothesis H1 is true, and the actual
difference in mean between the two groups is δµ, then the

statistic t′ = δx−δµ
√

2
1
s

follows a Student’s t-distribution with

21 − 2 degrees of freedom. Without loss of generality, assume
that δµ > 0. Then the type II error of this hypothesis test
satisfies:

Pr(|δx|) ≤ s · t1−α/2(21 − 2) ≈ Pr(t′ ≤ t1−α/2(21 − 2)

− δµ
√

2
1
s
) ≤ β

In practice, we set the effect size as δµ
s = 1 and since we

are comparing time courses from J regions we use Bonferroni
correction to set α → α/J and β → β/J. Beginning

at 1 = 10, if Pr(t′ ≤ t1−α/2M(21 − 2) −
√

1
2 ) is

larger than β, increase 1 by 1 until the above equation is
satisfied.

B. Jackknife Resampling

The jackknife is a useful technique for variance estimation. It
“bootstraps” the estimator by systematically leaving out each
observation and re-calculating the estimate. Suppose we have
a sequence of data {Xt}1≤ t≤T , and we want to estimate the
variance of an estimator:

θ̂ = 1

T

∑

t

Xt

First we calculate the jackknife estimate of θ as

θJack =
1

T

∑

t

θ̃t

where θ̃t is the estimator for a subsample omitting the tth

observation,

θ̃t =
1

T − 1

∑

s6=t

Xs

Hence,

θJack =
1

T

∑

t

1

T − 1
(

T
∑

s= 1

Xs − Xt)

= 1

T − 1

∑

t

( 1

T

T
∑

s= 1

Xs

)

− 1

T(T − 1)

∑

t

Xt

= T

T − 1
θ̂ − 1

T − 1
θ̂ = θ̂

(A1)

Now calculate an estimate of the variance of θ̂ using the jackknife
technique:

Var(θ̂) = T − 1

T

∑

t

(θ̃ − θJack)
2

= T − 1

T

∑

t

( 1

T − 1
(

T
∑

s= 1

Xs − Xt)− θ̂
)2

= T − 1

T

∑

t

( T

T − 1
θ̂ − 1

T − 1
Xt − θ̂

)2

= T − 1

T

∑

t

1

(T − 1)2
(Xt − θ̂)2

= 1

(T − 1)T

T
∑

t= 1

(Xt − θ̂)2

(A2)

Applying the result to Equation (1), we can estimate the variance
of 6̂ij as

Var(6̂ij) =
1

(T − 1)T

∑

1≤ t≤T

(X
ij
t − 6̂ij)

2 ≈ 1

T
δ2ij

which is similar to that obtained using the central limit theorem.

C. Simulation Setting

Below is a more detailed list of simulation studies, including the
exact value of precision matrices used in simulation 2–6.

• Simulation 1

Description: The data is white noise with no connectivity
change points.
Size: N = 20, T = 1000, p = 20

• Simulation 2

Description: There are two change points at times 200 and
400. Spikes are imposed onto the time series, imitating a
common artifact found in fMRI data. For each subject there
are 5 randomly placed spikes, each with magnitude 15.
Size: N = 20, T = 1000, p = 20
Dependency Structure:

t ∈ [1, 200]: (3, 14) = 0.3, (3, 9) = 0.6, (9.14) = 0.4

t ∈ (200, 400]: (1, 6) = 0.7, (6, 14) = 0.5, (1, 19) = 0.6

t ∈ (400, 600]: (3, 10) = 0.7, (3, 13) = 0.6, (3, 20) = 0.4,

(10, 20) = 0.1, (13, 20) = 0.1
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• Simulation 3

Description: There are three change points at times 125,
500, and 750.
Size: N = 15, T = 1000, p = 20
Dependency Structure:

t ∈ [1, 125]: (2, 8) = 0.7, (8, 17) = 0.5, (2, 17) = 0.2

t ∈ (125, 500]: (6, 14) = 0.1, (1, 6) = 0.3, (1, 18) = 0.2,

(1, 14) = 0.3, (6, 18) = 0.4

t ∈ (500, 750]: (3, 8) = 0.5, (8, 13) = 0.5, (13, 19) =
0.4, (3, 19) = 0.4, (3, 13) = 0.1, (8, 19) = 0.2

t ∈ (750, 1000]: (5, 11) = 0.8

• Simulation 4

Description: There is a single change point at time 100.
Size: N = 25, T = 200, p = 5
Dependency Structure:

t ∈ [1, 100]: (1, 3) = 0.7, (3, 5) = 0.6, (1, 5) = 0.3, (3, 4)

= 0.2, (4, 5) = 0.2, (1, 4) = 0.1

t ∈ (100, 200]: (1, 2) = −0.1, (1, 5) = −0.2, (2, 5) = 0.4

• Simulation 5

Description: There are five change points at times 200, 300,
500, 600, and 800.

Size: N = 20, T = 1000, p = 20
Dependency Structure:

t ∈ [1, 200]: (2, 14) = 0.8

t ∈ (200, 300]: (2, 14) = 0.4, (3, 9) = 0.3, (9, 18) = 0.4,

(3, 18) = 0.3

t ∈ (300, 500]: (3, 9) = 0.7, (3, 18) = 0.5, (9, 18) = 0.3

t ∈ (500, 600]: (2, 19) = 0.4, (3, 18) = 0.3, (2, 13) =
0.5, (6, 13) = 0.2, (9, 18) = 0.3

t ∈ (600, 800]: (2, 6) = 0.6, (6, 19) = 0.5, (2, 19) = 0.3,

(2, 13) = 0.5

t ∈ (800, 1000]: (1, 11) = 0.9

• Simulation 6

Description: There are four change points at times 200, 400,
600, and 800.
Size: N = 20, T = 1000, p = 20
Dependency Structure:

t ∈ [1, 200]: (1, 5) = 0.8, (5, 10) = 0.3, (10, 15) = 0.5

t ∈ (200, 400]: (2, 9) = 0.6, (9, 18) = 0.3

t ∈ (400, 600]: (3, 6) = 0.4, (6, 13) = 0.3, (13, 19) = 0.2

t ∈ (600, 800]: (4, 8) = 0.7, (8, 15) = 0.3, (15, 20) = 0.6

t ∈ (800, 1000]: (2, 14) = 0.5
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