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In this work, some case studies were conducted to classify several kinds of hand motions

from electrocorticography (ECoG) signals during intraoperative awake craniotomy &

extraoperative seizure monitoring processes. Four subjects (P1, P2 with intractable

epilepsy during seizure monitoring and P3, P4 with brain tumor during awake craniotomy)

participated in the experiments. Subjects performed three types of hand motions

(Grasp, Thumb-finger motion and Index-finger motion) contralateral to the motor

cortex covered with ECoG electrodes. Two methods were used for signal processing.

Method I: autoregressive (AR) model with burg method was applied to extract features,

and additional waveform length (WL) feature has been considered, finally the linear

discriminative analysis (LDA) was used as the classifier. Method II: stationary subspace

analysis (SSA) was applied for data preprocessing, and the common spatial pattern (CSP)

was used for feature extraction before LDA decoding process. Applying method I, the

three-class accuracy of P1∼P4 were 90.17, 96.00, 91.77, and 92.95% respectively. For

method II, the three-class accuracy of P1∼P4 were 72.00, 93.17, 95.22, and 90.36%

respectively. This study verified the possibility of decoding multiple hand motion types

during an awake craniotomy, which is the first step toward dexterous neuroprosthetic

control during surgical implantation, in order to verify the optimal placement of electrodes.

The accuracy during awake craniotomy was comparable to results during seizure

monitoring. This study also indicated that ECoG was a promising approach for precise

identification of eloquent cortex during awake craniotomy, and might form a promising

BCI system that could benefit both patients and neurosurgeons.

Keywords: electrocorticography (ECoG), brain-computer interface (BCI), hand movements, feature extraction,

classification
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1. Introduction

Electrical recordings from surface of brain cortex [i.e.,
electrocorticography (ECoG)], have been recognized as a
promising signal resource not only for clinical application
(e.g., eloquent cortex identification during awake craniotomy,
Roland et al., 2010, or epileptic seizure localization) but also for
brain-computer interface (BCI) research (Schalk and Leuthardt,
2011). Clinical and BCI research may benefit from each other.
Clinical research gave the access to the valuable ECoG signal,
and BCI research could enhance our understanding of the ECoG
characteristic and expand its application.

For a pure BCI-purpose implantation, it would be highly
necessary to demonstrate reliable neuroprosthetic control during
surgical implantation (i.e., during awake craniotomy), in order
to verify the optimal placement of electrodes (Fifer et al., 2014).
Non-invasive methods of functional mapping (e.g., fMRI) could
only be used for gross surgical planning, but intraoperative
verification of control with ECoG would be extremely useful
to refine the final implantation site. This would help to avoid
the need for re-implantation because the patient was unable to
control the neuroprosthetic.

Precise identification of eloquent cortex was a clinical
necessity prior to surgical resections adjacent to motor cortex.
ECoG signals could serve as a useful adjunct to cortical
stimulation mapping during the intraoperative setting (Roland
et al., 2010; Kamada et al., 2014). It also possessed the
potential to increase the identification efficiency and resolution
of the motor cortex (Leuthardt et al., 2007), and reduce the
amount of necessary electrocortical stimulation during the awake
craniotomy process. However, motion tasks within these studies
were simply opening and closing the contralateral hand, and
dexterous hand motion types may have the potential for more
precise localization of eloquent cortex.

There was a general agreement that low-frequency (<25Hz)
components of the electroencephalography (EEG) decrease in
amplitude after onset of movement over the contralateral
sensorimotor cortex, and this finding was later found in subdural
ECoG (Miller et al., 2007). Compared with EEG, additional
increases of ECoG in the amplitude of higher frequency
components (<35Hz) were described in relation to movement
(Crone et al., 1998; Miller et al., 2007), and those changes had a
more localized spatial distribution on the surface of brain cortex
than low-frequency changes. Signals at higher frequencies were
demonstrated to carry more detailed information about hand
movements (Schalk and Leuthardt, 2011), thereby providing
more critical information which was hardly accessible with EEG-
based BCI.

On the early stage, ECoG-based BCI focused on classifying
simply movements of different body parts, such as hand, foot
and tongue movements based on neural oscillatory dynamics
(Graimann et al., 2003). Subsequently, predicting the kinematic
and kinetic parameters of human hand and finger motions
aroused much interest. Spatially distinct brain regions were
specific to individual fingers (Miller et al., 2009), and the flexion
time courses were highly specific to fingers (Kubánek et al.,
2009). Individual finger flexion and movements were decoded

with particularly high correlation coefficient (0.46 in Liang and
Bougrain, 2012, 0.42 in Flamary and Rakotomamonjy, 2012), and
multiple types of hand posture and grasps have been classified
with “macro” (Pistohl et al., 2012; Chestek et al., 2013) and
“micro” (Bleichner et al., 2014) electrode grids. Five isometric
hand postures could be classified correctly with an average of
77.6% (20% chance) with three subjects (Chestek et al., 2013), and
for four complex hand gestures, two participants achieved 97 and
74% (25% chance) classification accuracy respectively (Bleichner
et al., 2014). However, all these studies were carried out after the
implantation.

We here test the hypothesis that reliable identification of
multiple types of hand motions can be realized on subjects
under awake craniotomy, which is comparable to the decoding
results of subjects during epileptic seizure monitoring. This is the
first step toward the dexterous neuroprosthetic control during
surgical implantation, in order to verify the optimal placement
of electrodes that are implanted for pure BCI-purpose, and
aimed for more precise localization of eloquent cortex during
intraoperative surgical process.

Considering the clinical condition and current studies for
multiple hand motion types decoding (Liang and Bougrain,
2012; Bleichner et al., 2014), three types of simple hand motions
(i.e., grasp, thumb-finger motion and index-finger motion)
were performed by four subjects (two brain tumor subjects
undergoing an awake craniotomy, two epilepsy subjects during
seizure monitoring, for one epilepsy subject in good condition,
two more hand motion types, i.e., hand unfold and wrist
motion, were performed). To further validate the decoding
results, two methods were applied in this study. Method I:
autoregressive (AR) model with burg method was applied to
extract features, and additional waveform length (WL) feature
has been considered, finally the linear discriminative analysis
(LDA) was used as the classifier. Method II: stationary subspace
analysis (SSA) was applied for data preprocessing, and the
common spatial pattern (CSP) was used for feature extraction
before LDA decoding process.

2. Methods

2.1. Subjects
The experiment was conducted on five right-handed human
subjects. Subject P0 (Figure 1A) suffered from intractable
epilepsy, and underwent temporary placement of subdural
electrode arrays, however, he has already underwent resection of
brain tumor before been diagnosed with epilepsy (shown within
the black circle of Figure 1A), Hand motion information could
not be decoding from ECoG signal of P0, thus Subject P0 was
excluded and four subjects were considered in the study.

Subject P1 (male, 14 years old), P2 (male, 30) suffered from
intractable epilepsy, and they underwent temporary placement
of a subdural electrode array in order to localize the epileptic
seizure focus and map brain function prior to surgical resection
(Figure 1B). The epileptic focus was found to be left posterior
frontal for P1 and right for P2. Platinum grid electrodes (4 mm
electrode diameter and 1 cm inter-electrode distance, 87 contacts
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for P1, and 95 contacts for P2) were subdurally implanted above
the region of corresponding hemisphere. The sites of electrode
implantation were exclusively based on the requirements of the
clinical evaluation.

Subject P3 (male, 60), P4 (female, 61) suffered with brain
tumor, and they were undergoing an awake craniotomy for
the treatment of tumors adjacent to motor and speech cortex.
Platinum grid electrodes (4mm electrode diameter and 1 cm
inter-electroded,16 contacts for P3 and 52 contacts for P4) were
subdurally implanted above the region of the left hemisphere for
both of the subjects.

All the subjects were recruited from Huashan Hospital and
were informed about the whole experiment process. This study
was approved by the Ethics Committee of Huashan Hospital.
All subjects signed the informed consent forms by themselves or
legal guardians before participating in the experiments.

2.2. ECoG Data Recording
ECoG data of subjects P1, P3, P4 were recorded from the
electrode grid connected to the Stellate eAMP 64 (Canada)
system, and CEEGRAPH (128+ channal XL 2) was used on
subject P2. The signals were amplified, bandpass filtered between
0.15∼100Hz, digitized at 250, 256, 200, and 2000Hz for P1∼P4,
respectively.

2.3. Experimental Design
2.3.1. Setup for Subjects P1, P2
Subject P1 was lying in a semi-recumbent position in a hospital
bed. He was instructed to perform the given tasks with the hand
contralateral to the implant in response to a sound clip. A total
of 100 trials were performed by subject P1 in 20 runs. Each

FIGURE 1 | Photo of ECoG grids placed on the brain cortex surface. (A)

Grid photo of Subject P0, the black circle indicates the resection cortex of

brain tumor; (B) Grid photo of Subject P1.

FIGURE 2 | The full run experiment of subject P1. T1, hand unfold; T2,

hand grasp; T3, thumb-finger motion; T4, wrist motion; T5, index-finger

motion. Each trial lasts 5 s, thereby 50 s were needed for the full run.

run contained 5 trials which indicated different hand motion
types (Figure 2), i.e., hand unfold (T1), hand grasp (T2), thumb-
finger motion (T3), wrist motion (T4), and index-finger motion
(T5). For each trial, the subject repeated to do a given motion
type for 5 s, e.g., repeating to perform hand grasp with normal
speed, and then following a relaxation period with 5 s. Data were
collected for a total period of about 20 min, which yielded an
average of 20 trials for each hand motion type. During the data
collecting process, any other movements including facial or head
movements were avoided.

Subject P2 did the similar tasks as P1, and three hand motion
types were executed : hand grasp, thumb-finger motion, index-
finger motion. A total of 60 trials were performed in 20 runs, and
thus yielded an average of 20 trials for each types.

2.3.2. Setup for Subjects P3, P4
Subject was in the operating room, and was instructed to perform
the given tasks with the hand contralateral to the implant in
response to the voice commands. Three motion types were
performed in separate run (Figure 3), i.e., run I for hand grasp,
run II for thumb-finger motion and run III for index-finger
motion. Twenty trials were performed for each run, and 60 trials
during the whole experiment. For each trial, subject performed
the given task just once instead of repetitively performing the task
(as P1, P2), the execution time last for 2∼3 s and then following
a relaxation period with 2∼3 s. Data were collected for a total
period of about 5 min, which yielded an average of 20 trials for
each motion type.

2.4. Offline Analysis
Before decoding of hand motion types, the data during the
awake craniotomy and seizure monitoring process was analyzed
offline to investigate which electrodes and frequency ranges
carry more task-relevant information. The raw signal was re-
referenced to the common average by subtracting the mean value
over all channels at each time point. The autoregressive model
of order 60 with Burg method (Harris, 1967) was applied to
estimate the power spectrum for each data segment. Logarithmic
power of 1Hz frequency bins from 1∼100Hz were used to
calculated the R2-values (Sheikh et al., 2003) between all relevant
combinations of two hand motions for each frequency bin at
each electrode. Channels with high R2-values indicated more
task-relevant information.

FIGURE 3 | Full run experiment of subject P3, P4. RUN I, hand grasp;

RUN II, thumb-finger motion; III, index-finger motion. Each run contained 20

trials, each trial lasts 4∼6 s.
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2.5. Algorithms for Decoding Hand Motion Types
To further validate the decoding results, two methods (Method I
and Method II) were applied in this study.

2.5.1. Method I: AR-LDA with WL Feature
Before decoding of hand motions, the frequency ranges and
electrodes that carry more task-relevant information need to
be selected. The raw signal was re-referenced to the common
average by subtracting the mean value over all channels at each
time point. The autoregressive model of order 60 with Burg
method (Harris, 1967) was applied to estimate the logarithmic
power spectrum for each data segment. We calculated the R2-
values (Sheikh et al., 2003) between all relevant combinations of
two handmotions for each 10Hz frequency bin at each electrode.
To reduce dimensionality of the input space, 5 electrodes with
5 frequency ranges within each electrode were selected for
classification according to the R2-values. Thus, 25 features (AR
feature) were selected for a single trial.

In this study, we also considered another informative feature:
Waveform Length feature. WL is a measure of signal complexity
(Tkach et al., 2010), and has been proved to be a robust and
efficient feature for electromyography (EMG) (Tkach et al., 2010)
and EEG (Lotte, 2012) signals. TheWL feature could be extracted
from an ECoG signal as follows (Tkach et al., 2010):

wl = log(
∑N−1

i= 1 |xi+1 − xi|) = log(
∑N−1

i= 1 |1xi|) (1)

where wl is the WL feature, |x| is the absolute value of x, N is
the number of sample points for a data segment. We extracted wl
feature from the 5 selected electrodes (the same electrodes as the
previous step), and combined the wl feature to the AR feature.
Thus, 30 features were determined for a single trial.

And finally, LDA was used as the classifier.

2.5.2. Method II: dSSA-mulCSP-LDA
Non-stationarity brain sources cause differences between the
distributions of electrophysiological signals over time and in
particular between the calibration and the application phase (von
Bunau et al., 2010), Stationary Subspace Analysis (SSA) (von
Bünau et al., 2009) can be used to restrict the decoding to the
stationary brain sources. SSA is limited when applying it tomulti-
class data, and dSSA (Samek et al., 2012; Liu et al., 2015) that
trades-off stationarity and discriminativity was used in this study.
Common spatial pattern (CSP) (Fukunaga, 1990; Ramoser et al.,
2000) has been widely used in BCI literature, mathematically
it is realized by simultaneous diagonalization of the covariance
matrices for the two classes. For multi-class decoding, CSP with
one-to-one strategy has been proved (Liu et al., 2009). In a pre-
processing step we apply dSSA to the calibration data and then
mulCSP+LDA on the estimated s-sources. The details are shown
as follows.

SSA (von Bünau et al., 2009) is a novel method to factorize a
high-dimensional time-series signal x(t) into its stationary Ss(t)
and non-stationary Sn(t) components.

x(t) = AS(t) = [As An][Ss(t) Sn(t)]−1 (2)

where A is an invertible matrix. The goal of dSSA is to
minimize the distance measured as Kullback-Leibler Divergence
DKL, between the distribution of the estimated s-sources in
each epoch (described by first two moments) and the standard
normal distribution. The objective function of dSSAmeasures the
divergence can be written as

L(R) =
∑ng

i= 1 DKL[N(ūi, ¯
∑

i)‖N(ū, ¯
∑

) (3)

where ng is the number of groups, N(ūi, ¯
∑

i) is the average

distribution in group i, N(ū, ¯
∑

) is the average distribution of all
groups and R is a rotation matrix.

For CSP method, the stationary ECoG signal is represented as
Sk with dimensions ch× len, where ch is the number of recording
electrodes (i.e., the channel numbers of the signal), and len is
the number of sample points in one set. The normalized spatial
covariance matrix of the ECoG can be obtained from

Ck =
SkS

T
k

trace(SkS
T
k
)

(4)

where k is the trial number, ST
k
denotes the transpose of thematrix

Sk, and trace(SkS
T
k
) is the sum of the diagonal elements of the

matrix SkS
T
k
. Let

Cl =
∑

k∈ Il
Ck Cr =

∑

k∈ Ir
Ck (5)

where Cl, Cr is the average covariance matrix, Il and Ir are the
two index sets of the separate classes (e.g., hand grasp and hand
unfold). Set C = Cl + Cr , the eigenvalue decomposition of C

C = Uc
∑

UT
c (6)

where
∑

is the diagonal matrix,Uc is the eigenvector matrix. The
average covariance matrix Cl, Cr can be transformed as

Sl = PClP
T = U

∑

l∈ UT; Sr = PCrP
T = U

∑

r ∈ UT (7)

where P =

√

∑−1UT
c is the whitening matrix,

∑

l +
∑

r = I.

The projection matrix W could be gained from W = UTP, the
rows of W are called spatial filters, and the columns of W−1

are called spatial patterns. To the k-th trial, the filtered signal
Zk = WSk is uncorrelated. In this work, the log variance of the
first n rows and last n rows (n = 3 or 4) of Zk corresponding
to largest n eigenvalues and smallest n eigenvalues are chosen
as feature vectors. One-to-one strategy were employed for three
classes decoding in this study, 3 spatial filters were achieved, and
finally, obtained 6n dimension (i.e., 3*2n) feature vector for each
trial.

Finally, LDA was used as the classifier.
For both method I and method II, a 10 × 10 fold cross

validation was adopted to evaluate the classification accuracy
among different tasks, which was described as follows: trials
were randomly permutated firstly, then equally divided into
ten partitions, each partition was used as an unknown test set
which was classified by the classifier trained with the remaining
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nine partitions, and a classification accuracy for each partition
was achieved. This process was repeated ten times, and 100
classification accuracy indexes were generated. The average value
of these 100 indexes was the final classification accuracy.

3. Results

3.1. Spatial/Spectral Selection and Analysis
To determine the most discriminative features (electrodes and
frequency ranges), R2-values of the training data set were
calculated for all relevant class combinations and for each
electrode and each frequency bin. Exemplary R2-values for two-
class combinations with 1Hz frequency range bins are shown in
Figures 4, 5. Subjects P1∼P4 were implanted with 87, 95, 16, 52
electrodes, respectively.

As shown in Figure 5A, for example, the selected frequency
bins and electrodes of P3 for “Grasp vs. index-finger” and
“thumb-finger vs. index-finger” are different, indicating that
different types of hand motion is induced by different cortical
areas. Figures 4, 5A show the R2-values of Subject P1, P2, and P3
with two different combinations of classes, the movement-related

information is highly localized in a several electrodes, which is
in line with previous ECoG studies (Leuthardt et al., 2004). For
“Grasp vs. Thumb-finger” and “Thumb-finger vs. Index-finger”
of Subject P4 (Figure 5B), the activity in the low frequency
band is widespread, and most electrodes over the grid contain
movement-related information. For the higher frequency ranges
(>80Hz), the activity is localized, and only a few electrodes
contain movement-related information.

Figure 6 shows the R2-values for two-class combinations
(motion state and idle state) with 1Hz frequency range bins.
For both seizure monitor (P2) and awake craniotomy (P4)
signal, the activity in the alpha (8∼12Hz) and beta (13∼28Hz)
frequency bands was widespread, and lots of electrodes contained
movement-related information. Within the high frequency
ranges (>50Hz), the activity was localized to a few electrodes,
and this result was in accordance with the existing literature
studies (Spüler et al., 2014).

3.2. Decoding of Hand Motion Types
Different class combinations with 10Hz frequency range
bins were tested by cross-validation to estimate how well

FIGURE 4 | R2-values for Subject P1 and P2 with two different combinations of classes (Grasp vs. Thumb-finger, Grasp vs. Index-finger, Thumb-finger

vs. Index-finger) during seizure monitoring. The power spectrum shown here was calculated with a frequency bin width of 1Hz for each electrode. The selected

frequency bins of P2 with combination of thumb-finger and index-finger, for example, were 64, 65, 97, 98, 99 within electrodes 3, 4, 9, 10, 16. (A) R2-values of

Subject P1; (B) R2-values of Subject P2.
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different hand motions can be decoded. Results from
the cross-validation with combination of three and two
classes of subjects P1∼P4 are presented in Tables 1, 2 with

method I and method II, respectively. “Two-class mean”
in Tables 1, 2 is the average of all two-class combinations,
i.e., average of Thu-Ind, Thu-Gra and Ind-Gra (Thumb,

FIGURE 5 | R2-values for Subject P3 and P4 with two different combinations of classes (Grasp vs. Thumb-finger, Grasp vs. Index-finger, Thumb-finger

vs. Index-finger) during awake craniotomy. The power spectrum shown here was calculated with a frequency bin width of 1Hz for each electrode. The selected

frequency bins of P3 with combination of Grasp and index-finger, for example, were 64, 65, 97, 98, 99 within electrodes 3, 4, 9, 10, 16. And similarly, the selected

frequency bins of P3 with combination of thumb-finger and index-finger were 2, 14, 18, 35, 65 within electrodes 4, 11, 12, 13, 14. (A) R2-values of Subject P3; (B)

R2-values of Subject P4.

FIGURE 6 | R2-values for Subject P2, P4 with combinations of motion and idle state. Integrating all types of hand motions duration as motion state, and all the

relax interval as idle state. (A) R2-values of Subject P2; (B) R2-values of Subject P4.
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TABLE 1 | Three and two classes classification results from the offline

analysis applying method I.

Sub. Three Thumb-index Thumb-grasp Index-grasp Two-class

classes (%) mean (%) (%)

(%)

P1 90.17 97.00 98.75 95.00 96.92

P2 96.00 99.00 95.25 97.00 97.08

P3 91.77 97.50 96.33 88.83 94.22

P4 92.95 81.27 100.00 100.00 93.76

Cross-validation was used to estimate the accuracy.

TABLE 2 | Three and two classes classification results from the offline

analysis applying method II.

Sub. Three classes Thumb-index Thumb-grasp Index-grasp Two-class

(%) (%) (%) (%) mean

P1 72.00 61.00 86.75 89.00 77.19

P2 93.17 100.00 100.00 88.25 95.35

P3 95.22 95.00 98.50 99.50 97.06

P4 90.36 86.16 100.00 100.00 94.13

Cross-validation was used to estimate the accuracy.

Index, and Grasp are abbreviated with Thu, Ind, and Gra
respectively).

Applying method I, the classification accuracy of three classes
for P1∼P4 were 90.17, 96.00, 91.77, and 92.95% respectively.
And the “two-class mean” of P1∼P4 were 96.92, 97.08, 94.22,
and 93.76% respectively. For method II, the frequency band of
the stationary signal was 50∼80Hz for P1, P3, P4, and 8∼25Hz
for P2. The classification accuracy of three classes for P1∼P4
were 72.00, 93.17, 95.22, and 90.36% respectively. And the “two-
class mean” of P1∼P4 were 77.19, 95.35, 97.06, and 94.13%
respectively.

Additional analysis was performed to classify more complex
hand motion types. Results of P1 with combinations of 2∼5
classes are illustrated in Figure 7, and only class combinations
with classification accuracy higher than 70% are presented. The
best two-class accuracy was achieved for the combination of
grasp and thumb-finger motion with accuracy of 98.75%, the best
three-class was combination of grasp, wrist motion and index-
finger motion with accuracy of 94.17%, while the best four-class
was combination of grasp, thumb-finger motion, wrist motion
and index-finger motion with accuracy of 81.25%. The five-class
accuracy was acceptable with accuracy of 75.40%.

3.3. Comparison of Method I and II in Awake
Craniotomy Condition
For awake craniotomy signal (P3, P4), method II achieved
a better decoding performance than method I, as shown in
Figure 8. Particularly, three-class accuracy of P3 was 91.77% with
method I and 95.22% with method II, i.e., 3.75% improvement.
For Ind-Gra (P3) and Thu-Ind (P4), it had 12.01, 6.01%
improvement, respectively. Results indicated that method II
was a good algorithm for awake craniotomy signal decoding.
Because of the two different clinical conditions (under anesthetic

TABLE 3 | Decoding results of awake craniotomy signal applying

traditional AR-LDA or CSP-LDA methods, and results using improved

methods.

Sub. Three Thumb-index Thumb-grasp Index-grasp Two-class

classes (%) (%) (%) mean

(%)

P3 A1 91.77 97.50 96.33 88.83 94.22

A2 78.67 92.83 94.83 87.83 91.83

P4 A1 92.95 81.27 100.00 100.00 93.76

A2 91.70 78.82 100.00 100.00 92.94

P3 B1 95.22 95.00 98.50 99.50 97.06

B2 95.33 93.33 98.33 98.50 96.72

P4 B1 90.36 86.16 100.00 100.00 94.13

B2 86.05 81.52 100.00 100.00 93.84

A1, A2 is the representation of method I with and without Waveform Length feature

(WL) respectively. B1, B2 is the representation of method II with and without Stationary

Subspace Analysis (SSA) process respectively. Red font indicates results with significant

improvement.

and not), ECoG signals during awake craniotomy and seizure
monitoring may have some difference. Subjects was under
anesthetic state during awake craniotomy, and both volatile
and intravenous anesthetics had deep influence on the central
nervous system (Engelhard and Werner, 2006). With increase
of end-expiratory concentrations, the spectral edge frequency
decreased, the total power and relative power in the delta and
theta band increased and the power in the beta band decreased
(Schwender et al., 1998; Gugino et al., 2001). These two different
clinical conditions may gave a reason to the better decoding
performance of method II. And also, the decoding results
indicated that method I and II were robust enough for both
clinical conditions.

AR-LDA andmulCSP-LDAmethods have been widely used in
EEG and MEG signal decoding, this study gave an improvement
based on the two methods for ECoG signal processing. WL
feature was considered in the AR-LDA method, and SSA
was applied in the mulCSP-LDA method. Table 3 showed the
decoding results of awake craniotomy signal (A1: AR-LDA
with WL, A2: traditional AR-LDA; B1: SSA-mulCSP-LDA, B2:
traditional mulCSP-LDA). With WL feature, the three-class
accuracy of P3 was 91.77%, while 78.67% without WL feature.
For Thu-Ind, 5.03 and 3.10% improvements were obtained for
P3 and P4. Applying SSA process, the three-class accuracy of P4
was 90.36%, while 86.05% with traditional method. And 3.05%
improvement was obtained for P4 with Thu-Ind.

4. Discussion

Results (Tables 1, 2) obtained by two different methods verified
the possibility of decoding multiple hand motion types with
high accuracy. Two kinds of subjects were involved in this
study, i.e., during awake craniotomy and seizure monitoring
processes. Although the clinical condition (Engelhard and
Werner, 2006) and signal characteristics (Schwender et al., 1998;
Gugino et al., 2001) were different, both methods were robust
enough to achieve a high decoding accuracy. Especially, subjects
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FIGURE 7 | Classification accuracies of Subject P1 with combinations of 2∼5 classes of hand motions. The power spectrum was calculated with a

frequency bin width of 10Hz for each electrode. Only class combinations with accuracy higher than 70% were presented. T1∼5 means hand unfold, hand grasp,

thumb-finger motion, wrist motion and index-finger motion respectively. T1T3 is the combination of T1 and T3, and so on for the rest combination. “ALL” is the

combination of all the five motion types.

FIGURE 8 | Classification accuracies of Subject P3, P4 (awake craniotomy) applying method I (AR-LDA with WL feature) and method II

(dSSA-mulCSP-LDA). “P3-mean” is the average of all two class combination of Subject P3, i.e., average of thu-Ind, Thu-Gra and Ind-Gra. “P4-mean” is similar to

“P3-mean.” The power spectrum used in method I was calculated with a frequency bin width of 10Hz for each electrode. The frequency band of the stationary signal

used in method II was 50∼80Hz for P3, P4.

undergoing awake craniotomy achieved a comparable results to
the subjects during seizure monitoring. For awake craniotomy
subjects P3, P4, the accuracy of three classes were 91.77, 92.95%
using method I, and 95.22, 90.36% using method II. It is also

important to note that, similar hand motions are considered, like
index-finger motion and thumb-finger motion. The accuracies of
P1∼P4 (index-finger vs. thumb-finger) were 98.75, 99.00 97.50,
and 81.27% respectively (Table 1). For P1, the five-class accuracy
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was 75.40%, which once again showed the possibility of decoding
complex hand motions with ECoG signal. These results of the
seizure monitor signal were consistence with previous studies
(Pistohl et al., 2012; Chestek et al., 2013; Bleichner et al., 2014).

So far, additional important questions need to be answered to
accelerate research of ECoG-based BCI, and the ECoG feature
selection was one of those (Schalk and Leuthardt, 2011). As
AR feature and CSP feature were commonly used for neural
electrophysiological signals analysis, two methods, i.e., AR-
LDA and mulCSP-LDA, were applied in this studies to further
validate the decoding results. Preliminary results indicated that
the later one was a good algorithm for awake craniotomy
signal decoding. However, this case study mainly focused on
the feasibility of decoding awake craniotomy ECoG signal, the
best feature and optimal decoding algorithm for intraoperative
ECoG signal need to be intensively studied in further
researches.

With substantial theoretical and empirical evidence, ECoG-
based implant could enhance the functional capability of
disabled patients by enabling their ability to modulate their
environment, communicate, or control a prosthesis. Looking
into the future, as the risk profile is low enough, it may
also become reasonable to contemplate implants that augment
capabilities in normal functioning adults (Schalk and Leuthardt,
2011). For a pure BCI-purpose implantation, it would be
highly necessary to demonstrate reliable neuroprosthetic control
during surgical implantation (i.e., during awake craniotomy),
in order to verify the placement of electrodes and troubleshoot
any technical difficulties during the intraoperation (Fifer
et al., 2014). Classifying multiple hand motion types during
an awake craniotomy was the crucial first step toward the
dexterous neuroprosthetic control during the time of surgical
implantation.

For clinical condition, the human ECoG signals were mainly
measured on patients with intractable epilepsy and brain tumor.
ECoG has been verified as an effective approach for precise
identification of eloquent cortex prior to surgical resections
adjacent to motor cortex (Roland et al., 2010; Schalk and
Leuthardt, 2011; Kamada et al., 2014). Speech and motor
cortex could be localized broadly and grossly in real time
during an awake craniotomy (Roland et al., 2010). By taking
multiple hand motion types into consideration, it has the
potential for more precise identification of eloquent cortex, and
thus reduces the risk of motor related paralysis after surgical
resection.

As the motor imagery is associated with actual movement
in ECoG signals (Miller et al., 2010) and it is very hard
(and sometimes unable) for patients to execute actual moment
during awake craniotomy, ECoG signal may be a good approach
for eloquent cortex identification based on motor imagery or

intended movement. Using motor imagery ECoG signal during
awake craniotomy to localize the eloquent cortex in real time
can be a useful BCI system, which may help both patients and
neurosurgeons.

ECoG decoding in this case study was completed off-line,
so real-time decoding should be performed during an awake
craniotomy for optimal placement of electrodes and on-line
identification of precise eloquent cortex. In addition, for more
precise cortex localization, micro-electrode grids should be taken
into consideration, so as to obtain ECoG signal with higher
spatial resolution.

5. Conclusion

This study verified the possibility of decoding multiple hand
motion types during an awake craniotomy, and its accuracy
was comparable with subjects during seizure monitoring. Even
similar hand motions, like index-finger motion and thumb-
finger motion, could be decoded with accuracy of 98.75, 99.00,
97.50, and 81.27% for P1∼P4, respectively, which once again
showed the possibility of decoding complex hand motions with
ECoG signal. Two methods were applied to further validate
the decoding results, both of the methods could achieve high
decoding accuracy, and method II showed good performance for
awake craniotomy signal decoding.We finally suggest that, ECoG
signal during awake craniotomy could be used for intraoperative
BCI study and precise localization of eloquent cortex, and
intensive real-time study should be performed during awake
craniotomy.
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