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Regional analysis of volumes examined in normalized space (RAVENS) are transformation

images used in the study of brain morphometry. In this paper, RAVENS images are

analyzed using a longitudinal variant of voxel-based morphometry (VBM) and longitudinal

functional principal component analysis (LFPCA) for high-dimensional images. We

demonstrate that the latter overcomes the limitations of standard longitudinal VBM

analyses, which does not separate registration errors from other longitudinal changes

and baseline patterns. This is especially important in contexts where longitudinal

changes are only a small fraction of the overall observed variability, which is typical

in normal aging and many chronic diseases. Our simulation study shows that LFPCA

effectively separates registration error from baseline and longitudinal signals of interest

by decomposing RAVENS images measured at multiple visits into three components: a

subject-specific imaging random intercept that quantifies the cross-sectional variability,

a subject-specific imaging slope that quantifies the irreversible changes over multiple

visits, and a subject-visit specific imaging deviation. We describe strategies to identify

baseline/longitudinal variation and registration errors combined with covariates of

interest. Our analysis suggests that specific regional brain atrophy and ventricular

enlargement are associated with multiple sclerosis (MS) disease progression.

Keywords: longitudinal functional principal component analysis, regional analysis of volumes examined in

normalized space, voxel-based morphometry, multiple sclerosis, brain volume measurement

1. INTRODUCTION

Magnetic resonance imaging (MRI) is commonly used in the study of brain structure. Many
studies are based on measurements of tissue volumes within a number of predefined regions
of interest (ROIs); for example, see Bartzokis et al. (2001) and Bermel et al. (2003). Although
ROI analysis can directly quantify the volume of structures and reduce the dimensionality
of images, the ROIs have to be defined before the analysis is conducted. In disease studies,
this can be difficult without sufficient prior knowledge about what and how various regions
will be affected. Moreover, ROI based measurements can be time-consuming and labor-
intensive. The results of the analysis will depend on the quality of the ROI delineation and
thus depend upon the experience of the operator and accuracy of segmentation algorithms.
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Voxel-based morphometry (VBM) is a complementary
technique that measures local brain volumes in a normalized
space and thus does not suffer from these limitations (Ashburner
and Friston, 2000, 2001). In this work, we consider Regional
Analysis of Volumes Examined in Normalized Space (RAVENS),
which registers each subject brain to a template of anatomy so
that the intensities of the RAVENS image represent regional
volumes relative to those of template (Shen and Davatzikos,
2002). In voxel-based morphometry methods such as RAVENS,
segmentations of structures such as the ventricles, are mapped
to a template brain. If a subject’s ventricles are larger than the
template brain’s ventricles, each voxel in the ventricles need to be
shrunken to be mapped to the template. This in turn increases
the intensity of the RAVENS map at each voxel, implying a
larger volume was present in the subject at each voxel. Figure 1
displays examples of ventricular RAVENS images in the template
space. The first subject has much larger ventricles than the
second subject (and template). Its RAVENS image of ventricles is
displayed underneath the associated T1 image with red and blue
colors representing higher and lower intensities, respectively.
Subject 1 has larger ventricles, depicted by red in the RAVENS
image. Similarly, the second brain, having a smaller ventricle
than that of the first subject, has lower intensities in its RAVENS
image, depicted by yellow and cyan in RAVENS image. By
applying statistical VBM analysis of RAVENS images (RAVENS-
VBM) to the resulting spatial distributions of gray matter (GM),
white matter (WM), and ventricular cerebrospinal fluid (CSF),
local atrophy or enlargement can be detected if the intensities
significantly change across subjects.

In many disease studies, longitudinal patterns of brain
structure between and within control and patient groups are
of interest. Such studies are often based on ROI volume
measurements followed by statistical analysis, such as a

FIGURE 1 | The image intensities of the RAVENS image represent regional volumes relative to those of the template. Red color represents high intensity

and blue color represents lower intensity. The first brain, having a larger ventricle than the template brain, has brighter intensities in the RAVENS image. The second

brain, which has smaller ventricles, has lower intensities in the associated RAVENS image.

linear mixed model. Several neuroimaging software platforms,
including: FSL (Smith et al., 2004), the SPM-VBM toolbox
(available at http://dbm.neuro.uni-jena.de/vbm) and SurfStat
(Worsley et al., 2009), support flexible longitudinal models.
Statistical inference of the contrast between two different time
points is the most commonly used approach (Bendfeldt et al.,
2011). Numerous other approaches for longitudinal imaging
data have been proposed for prediction. The methods include
support vectormachine classifiers (Chen and Bowman, 2011) and
Bayesian spatial models (Derado et al., 2013).

In practice, there are frequently cases that VBM does not
find significant longitudinal trend. Possible causes are (1) the
chosen statistical method is not sophisticated enough to extract
longitudinal information; (2) a substantial amount of visit-to-
visit variation to longitudinal signals exists; (3) heterogeneous
longitudinal patterns exist within the diseases population.

The obvious solution to overcome such limitations is to
combine the VBM analysis with more sophisticated statistical
methods such as linear mixed models. However, for the first two
cases, hypothesis driven VBM analyses cannot further exploit
the data. In that case, figuring out the underlying structures of
variation in the longitudinal data would be of interest. Further, we
want to quantify the longitudinal and cross-sectional variability,
and the association between each subject and their spatial
patterns.

Thus, our main goal is to introduce a new statistical
framework for longitudinal VBM analysis. To achieve the goal,
we consider a data-driven analysis to provide a more complete
statistical framework to analyze high-dimensional longitudinal
brain images. A framework to allow for this conceptual partition
of variability is longitudinal functional principal component
analysis (LFPCA; Greven et al., 2011). This method was originally
proposed for low to moderate dimensional functional data and
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was extended to high dimensional data by Zipunnikov et al.
(2014). The main idea of high-dimensional inference is based
on projecting onto the intrinsic low dimensional space spanned
by high-dimensional vectors (Di et al., 2009; Zipunnikov et al.,
2011b). More precisely, we start by modeling the observed
data with high-dimensional longitudinal functional principal
component analysis (HD-LFPCA). Each RAVENS ventricular
image is unfolded into a p × 1 dimensional vector, where p ≈

80, 000 is the number of voxels in the RAVENS ventricular image.
These vectors are decomposed in their baseline, longitudinal
and visit-to-visit components; each component is then estimated
from the data. The method takes only a few minutes on a
standard PC.

In this paper we focus on LFPCA as a useful tool for
longitudinal voxel-based analyses, particularly to quantify cross-
sectional and longitudinal variability in the data. The simulation
study illustrates the application of LFPCA to a simplified
imaging setting. It demonstrates that LFPCA effectively separates
longitudinal, cross sectional, and other variations. Notably, the
simulation study shows that LFPCA can separate registration
errors from baseline and longitudinal components of interest.

2. MATERIALS AND METHODS

2.1. Participants
Forty eight MS patients (aged 42 ± 12 years at baseline) were
enrolled in a longitudinal study of brain volume change. The
study population included 33 female and 16 male patients;
28 patients with relapsing-remitting MS (RRMS), 13 patients
with secondary progressive MS (SPMS), 5 patients with primary
progressive MS (PPMS) and 2 patients with clinically isolated
syndrome (CIS). One hundred forty eight T1 images have been
acquired, with three images per subject for 44 subjects and 4
images per subject for 3 subjects. The average time interval
between scans was 368 days (±27). All images were spatially
normalized via registration of T1 maps into the mean template,
generated using Advanced Normalization Tools (Avants et al.,
2010, 2011) from 30 randomly chosen MS patients among those
with more than three visits. Ethical approval for the study was
granted by IRB-2 and Johns Hopkins Medicine Institutional
Review Board. All participants signed their fully informed
consent.

2.2. MRI Protocol and Image Analysis
High resolution 3D magnetization-prepared rapid acquisition of
gradient echoes (MPRAGE; acquired resolution: 1.1 × 1.1 × 1.1
mm; TR:∼10 ms; TE: 6 ms; TI = 835 ms; flip angle: 8◦; SENSE
factor:2; averages:1) were acquired on a 3.0 T MRI scanner
(Intera, Philips Medical Systems).

In the processing, the follow-up images are affinely registered
to their baselines via FMRIB’s Linear Image Registration Tool
(Jenkinson et al., 2002). All T1 images were segmented into
GM, WM, VN, and lesions with Lesion-TOADS (Shiee et al.,
2010) that was specifically designed for tissue and MS lesion
segmentation. In general, as MS progresses, multifocal lesions in
the white matter develop, and newly developed legions can cause
inaccuracies in the registration and RAVENS map computation.

Thus, we masked those lesions in the registration using the
Lesions-TOADS software. After segmentation, the final tissue
maps of GM, WM, and VN were normalized using HAMMER-
SUITE (Shen and Davatzikos, 2002) to generate RAVENS images.
Finally, the RAVENS maps were separately smoothed with 4 mm
FWHM using SPM8.

2.3. Longitudinal Functional Principal
Component Analysis
In this section, we provide a description of the original LFPCA
approach developed by Greven et al. (2011) and its extension
for high-dimensional data analysis (Zipunnikov et al., 2014).
Throughout this section, we refer to both as LFPCA.

2.3.1. Random Intercept and Random Slope Model

Consider a longitudinal brain imaging study with subjects labeled
by index i with each visit indexed by j and scan time by variable
tij for j = 1, . . . , Ji. Each image is unfolded into a p-dimensional
column vector yij(v); the index v of each entry corresponds
to a particular location in the brain for each subject and visit
in normalized space. A random slope and random intercept
model is commonly used to analyze longitudinal data, and it has
been extended to functional (Greven et al., 2011) and imaging
(Zipunnikov et al., 2014) studies as follows:

yij(v) = η(v, tij)+ xi,0(v)+ xi,1(v)tij +Wij(v), (2.1)

where yij(v) denotes the image intensity at voxel v, η(v, tij) is
a fixed main effect, and xi,0(v) and xi,1(v) denote the random
intercept and random slope for subject i, respectively. The
term Wij(v) is a random subject-visit specific imaging deviation,
which is assumed to be a zero mean, second-order stationary

random process uncorrelated with Xi(v) =
(
xi,0(v), xi,1(v)

)⊤
.

The covariance operators of Xi(v) and Wij(v) are denoted as
KX(v1, v2) and KW(v1, v2), respectively.

While this is a natural and relatively simple model
for longitudinally observed data, the scale of the problem
requires aggressive dimensionality reduction. LFPCA reduces
dimensionality by projecting onto the subspaces which explain
principal directions of variation in the data. In model (2.1), there
are two sources of variation: subject-to-subject, captured by Xi,
and visit-to-visit within a subject, captured byWij and the model
assumption on Xi and Wij in (2.1) allows us to partition the
variation of the data and LFPCA models latent processes Xi and
Wij using a Karhunen-Loeve (K-L) expansion (Karhunen, 1947;
Loève, 1948).

The K-L expansion decomposes the two latent processes as
Xi(v) =

∑∞
k=1 ξikφ

X
k (v) and Wij(v) =

∑∞
l=1 ζijlφ

W
l
(v), where

φX
k =

(
φ
X,0
k

, φ
X,1
k

)
and φW

l
are the eigenfunctions of KX(v1, v2)

and KW(v1, v2), respectively, such that

KX(v1, v2) =

(
KX
00(v1, v2) KX

10(v1, v2)

KX
01(v1, v2) KX

11(v1, v2)

)

=

NX∑

k=1

λXk φX
k (v1)

{
φX
k (v2)

}⊤
.
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LFPCA truncates K-L representations and represents observed
data through a linear mixed-effects model:

yij(v) = η(v, tij)+
NX∑

k=1

ξikφ
X,0
k

(v)+ tij

NX∑

k=1

ξikφ
X,1
k

(v)

+

NW∑

l=1

ζijlφ
W
l (v),

(ξik1 , ξik2 ) ∼ (0, 0, λXk1 , λ
X
k2

, 0); (ζil1 , ζil2 ) ∼ (0, 0, λWl1 , λWl2
, 0),

(2.2)

where “· ∼
(
µ1, µ2; σ

2
1 ; σ

2
2 ; ρ

)
” denotes that a pair of variables

has a distribution with mean (µ1, µ2), variance σ 2
1 , σ 2

2 , and
correlation ρ. We assume that λk1 ≥ λk2 if k1 ≤ k2. Since Xi(v)

and Wij(v) are uncorrelated, the scores {ξik}
∞
k=1 and

{
ζijl
}∞
l=1

are also uncorrelated. A very important characteristic of model
(2.2) is that both NX and NW are expected to be small in most
applications.

For the unfolded vector, (2.2) can be rewritten as yij = η(tij)+

80
Xξ i + tij8

1
Xξ i + 8Wζ ij, where yij =

(
yij(v1), . . . , yij(vp)

)⊤

is a p × 1 dimensional vector; φ
X,0
k

,φX,1
k

, and φW
l are p × 1

eigenvectors; 8s
X =

(
φ
X,s
1 , . . . ,φ

X,s
NX

)
for s = 0, 1; 8W =

(
φW
1 , . . . ,φW

NW

)
; ξ i =

(
ξi1, . . . , ξiNX

)⊤
;ζ i =

(
ζi1, . . . , ζiNW

)⊤
.

In brain imaging data analysis, LFPCA can separate biological
signals from non-biological artifacts. For example, registration
errors due to structural differences between subjects can be
captured by baseline subject-specific components 80

X and
scanner variability can be captured by visit-to-visit components
8W . This will be illustrated via an extensive simulation
experiment in Section 3.1.

The fixed effect η(v, tij) can be estimated in a number of ways
(Greven et al., 2011). The analyses in the later sections simply
use the sample mean across all the image observations. Once
η(v, tij) is estimated by the sample mean η̃(v, tij), the longitudinal
eigenanalysis is applied to the residual images ỹij(v) = yij(v) −
η̃(v, tij) that are modeled as follows:

ỹij = 80
Xξ i + tij8

1
Xξ i + 8Wζ ij. (2.3)

2.3.2. LFPCA Estimation

Zipunnikov et al. (2014) modified the original approach of
Greven et al. (2011) and developed a method of moments
estimator based on quadratics of ỹij. The p× p-covariance of ỹij1
and ỹij2 is given by

E

{
ỹij1 ỹ

⊤
ij2

}
= KX

00 + tij1K
X
10 + tij2K

10
X + tij1 tij2K

11
X + δj1,j2K

W,

j1, j2 = 1, . . . , Ji, (2.4)

where δi,j = 1 if i = j and δi,j = 0 otherwise.
Model (2.4) can be rewritten in terms of unfolded vectors
Kv =

{
vecK00, vecK01, vecK10, vecK11, vecKW

}
and fij1j2 =(

1, tij2 , tij1 , tij1 tij2, δj1,j2
)⊤

such that Evecỹij1 ỹ
⊤
ij2

= Kvfij1j2 . By
concatenating all vectors across all subjects and visits we obtain a

moment matrix identity for the p2 × m matrix Y: EY = KvF,
where m =

∑N
i=1 J

2
i . Then covariance parameters Kv can be

unbiasedly estimated by using ordinary least squares (OLS): K̂
v
=

YF⊤
(
FF⊤

)−1
.

The covariance operators KX and KW are 2p × 2p
and p × p dimensional, respectively. For high-dimensional
functional data, storing or diagonalizing these matrices is not
feasible. Zipunnikov et al. (2014) proposed HD-LFPCA, a novel
estimation approach that takes advantage of an intrinsically
small dimension of the space spanned by high-dimensional data
vectors. First we form a p × Ji dimensional matrix ỹi, where
column j corresponds to a demeaned-RAVENS image obtained
for subject i at visit j. The p × J dimensional data matrix ỹ =(
ỹ1; . . . ; ỹn

)
is formed by column-binding the blocks of data

corresponding to each subject, where J =
∑N

i=1 Ji. The data
matrix can be decomposed as ỹ = VSU⊤ using a singular
value decomposition (SVD) approach. In the RAVENS image
application, J = 148. Equation (2.3) can be rewritten as

ỹij = VSUij = 80
Xξ i + tij8

1
Xξ i + 8Wζ ij. (2.5)

By multiplying with V⊤ to the left, we have

SUij = V⊤80
Xξ i + tijV

⊤81
Xξ i + V⊤8Wζ ij

= A0
Xξ i + A1

Xξ i + AWζ ij. (2.6)

We estimate Â
0
X, Â

1
X , and ÂW as described earlier, and estimate

8̂
0
X = VÂ

0
X , 8̂

1
X = VÂ

1
X , and 8̂W = VÂW . Note that

multiplying byV⊤ in Equation (2.5) reduces the model to its low-
dimensional form (2.6), without losing the original correlation
structure of the data. Once inference is conducted in model (2.6),
then quantities of interest from model (2.5) can be estimated by
pre-multiplying Equation (2.6) by V.

Principal scores ξi and ζij are estimated via Best Linear
Unbiased Predictions (BLUPs) as follows. The stacked vector of

ith subject data, vecỹi =
(
ỹ⊤i1, . . . , ỹ

⊤
iJJi

)⊤
, can be rewritten as

vecỹi = Biωi, where Bi =
(
BX
i ;B

W
i

)
, BX

i = 1Ji ⊗80
X +Ti ⊗81

X ,

BW
i = IJi ⊗ 8W , where Ti =

(
ti1, . . . , tiJi

)⊤
, ωi =

(
ξ⊤i , ζ⊤

i

)⊤
,

the subject level principal scores ζ i =
(
ζ⊤
i1, . . . , ζ

⊤
iJi

)⊤
, and 1Ji

is a Ji × 1 vector of ones. Then the scores can be estimated as

ω̂i =
(
B̂
⊤

i B̂i

)−1
B̂
⊤

i vecỹi. Due to linearity the estimated scores

are the same in both models (2.5) and (2.6). Details of the matrix
calculation and additional theoretical results of HD-LFPCA can
be found in Zipunnikov et al. (2014).

The computed subject-specific principal component scores
ξi are the derived composite scores computed for each linear
trajectories based on the eigenvectors for subject-specific PCs.
These scores can be used as predictors or outcomes in subsequent
regression analyses to evaluate relationships between high-
dimensional longitudinal trajectories and other variables of
interest. Also, we can apply cluster analysis on the scores to
uncover latent structure in the sample.

Frontiers in Neuroscience | www.frontiersin.org 4 October 2015 | Volume 9 | Article 368

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Lee et al. LFPCA-RAVENS

2.4. Classical VBM Analysis using Linear
Mixed Model
First, we applied traditional VBM analysis using a linear mixed
model to find a longitudinal trend. Many previous longitudinal
studies have applied pairwise comparisons between two time
points (Driemeyer et al., 2008). This study attempts to discover
constant longitudinal trends over the time, i.e., focusing on
the atrophy or enlargement rates. This may elucidate disease
progression patterns of the patients. For the ith subject jth visit,
the RAVENS image at voxel v follows the model:

yij(v) = β0(v)+ β1(v)tij + b0i + b1i tij + ǫij(v),

b0i ∼ N(0, σ 2
0 (v)), b1i (v) ∼ N(0, σ 2

1 (v)),

Cov(b0i (v), b
1
i (v)) = σ12, ǫij(v) ∼ N(0, σ 2

ǫ (v)),

(2.7)

where β0(v) and β1(v) are the fixed-effect coefficients, b0i and
b1i (v) are the random-effect coefficients for subject i, ǫij(v) is
the error. The parameters are estimated based on maximum
likelihood estimation and the p-values of the fixed effect
parameters are compuated controlling for false discovery rate
using (Benjamini and Yekutieli, 2001). We perform the statistical
analysis in R (version 2.15.1).

3. RESULTS

3.1. Simulated Images
In this section, we present a simulation study to test
the performance of LFPCA in RAVENS-VBM analysis. We

investigate if LFPCA can identify subject-specific signals from
noise, particularly registration errors, which often dominate
signals in VBM analyses. Also, we identify cross-sectional and
longitudinal variation when they exist.

We design a simulation study to mimic longitudinal analysis
of RAVENS images. For the purpose of illustration, we use 2D
images with 200×200 = 40, 000 pixels.We generate images from
50 subjects (N = 50) with three follow-ups. To replicate RAVENS
processing routine, we assume that all images are registered to
a template space. Figure 2 displays simulated RAVENS images
from 5 randomly chosen subjects. Each column represents four
longitudinally collected images of the same subject.

Each image mimics four canonical brain structures:
background (B), white matter (W), ventricles (V), and gray
matter (G). Those four components are simplified and shown as
a background, a big square, a small square inside the big square,
and a rectangle at the bottom, respectively. Registration errors
are introduced via random rigid shifts of simulated structures as
described below.

In Figure 2, the images from the first subject, which are
displayed at the first column, show the longitudinal patterns. In
the images, the color of V changes from darker gray to brighter
gray, which represents longitudinal enlargements of V. Similarly,
the colors of W and G changed to darker colors, which represent
longitudinal atrophy.

Figure 3 shows the first five pairs of subject-specific
components (8X). The baseline components (80

X) are displayed
in the top row and their corresponding longitudinal components
(81

X) are displayed in the second row. Each image is colored with

FIGURE 2 | Simulated data. The longitudinal images consisting of four time points from five subjects are displayed.
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FIGURE 3 | LFPCA subject-specific components 8X . (A) Baseline (80
X
) and Longitudinal (81

X
) Components. (B) Variation explained by subject-specific

components with ratios of longitudinal and baseline components.

a black(negative)-gray(0)-white(positive) color scheme. The first
subject-specific component (Figure 3A first column) represents
cross-sectional variations of the intensities of the W. The second
component captures subject-specific registration errors, which
only depend on cross-sectional variation. The third and fourth
components represent the size of V and G. The fifth component
shows longitudinal patterns of V and G. For a subject with
positive score, the area V enlarges over the time and that of G
shrinks, matching the truth used in simulation.

One useful feature of LFPCA is that contributions of the
longitudinal and baseline components within each subject-
specific component can be quantified on a [0, 1] scale. A
subject-specific eigenvector is the stacked vector of baseline

and longitudinal components: 8X,k =
{
80

X,k

⊤
,81

X,k

⊤
}⊤

,

such that ‖8X,k‖
2 = ‖80

X,k
‖2 + ‖81

X,k‖
2 = 1. For each

component, the variation or the contribution of the longitudinal

component can be calculated as
‖81

X,j‖
2

‖80
X,k

‖2+‖81
X,k

‖2
. Combined

with the contribution of each subject-specific component to

the total variation, Figure 3B displays variations explained by
the first 10 subject-specific components with the proportion
of the longitudinal components within each subject. Each bar
plot intensity represents the amount of variation explained
by each subject-specific component and is comprised of
variations explained by the longitudinal component (dark)
and the baseline component (bright). The top of each bar
displays numerical values of the variation explained by the
subject-specific component with the variation explained by the
longitudinal component within the subject-specific component
in parenthesis. Note that the fifth principal component has the
highest longitudinal-baseline ratio among all 10 components.
This provides a strong indication that the fifth component
should be essentially treated as a longitudinal component. Using
both visual and quantitative methods, we can conclude that
the first four components represent baseline variation and
registration error and the fifth component reveals longitudinal
variation. In the data set, the longitudinal variation and baseline
variations are independent, which agrees with the simulation
setting.
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An advantage of LFPCA is its ability to couple baseline
and longitudinal variation. The longitudinal component is
added to the baseline with the time used as a multiplicative
weight. Figure 4 illustrates the temporal trajectory of principal
component loadings. We display only the first component,
which does not appear to change over time. This pattern is
replicated in the first four components. This indicates that the
first four components mostly represent baseline variation. The
fifth component loading does appear to change over time, while
the baseline loading has relatively lower intensities compared to
the longitudinal loading.

To summarize, our simulation studies convincingly
demonstrate the power and flexibility of LFPCA to address
some of key challenges of brain imaging. In particular, LFPCA
managed to estimate and separate longitudinal and cross-
sectional variation in a complex imaging simulation design
with registration errors. The main part of the analysis can be

automated and performed robustly with no operator input. We
also applied a classical VBM-linear mixed effect model for the
simulated data. As we expected, the linear mixed effect model
could identify linear trend in the ventricular area (V), but it did
not find significant trend in other areas (W and G) due to low
longitudinal changes in signal and high visit-to-visit variation.

3.2. Classical VBM Analysis using Linear
Mixed Model
In this section, we apply a standard VBM analysis to the
MS cohort described in Section 2. This analysis focuses
on the population mean of the longitudinal trend β1

1 (v).
After an FDR correction (Benjamini and Yekutieli, 2001)
combined with cluster level thresholding, there are significant
clusters with spatial extent more than 20 voxels. Table 1

shows information about the significant clusters, including
cluster size, maximum or minimum t-values within each

FIGURE 4 | First and fifth subject-specific components (8X ) at time 0 (baseline), 1, 2, and 3.

TABLE 1 | Significant clusters of GM/WM/VN VBM results.

Cluster size t-MAXa (or MIN) t-MAX(or MIN)b t-COGc

X Y Z X Y Z

GM Atrophy 112 −6.34 139 86 67 139 90 68.9

79 −6.36 118 158 35 116 158 35.0

40 −5.84 122 166 41 121 166 41.0

28 −6.13 136 148 80 136 149 79.8

15 −5.36 143 167 89 143 166 89.3

VN Enlargement 111 5.59 161 151 70 157 152 72.4

WM Enlargement 154 6.30 118 150 76 117 150 75.6

100 5.75 127 111 85 128 111 84.8

Atrophy 210 −5.97 126 83 59 124 83.7 57.6

157 −5.77 106 98 83 107 98 83.5

31 −5.46 118 154 37 118 154 36.7

All clusters are small (< 250) and spatially scatter.
aMaximum t-value for positive values and minimum t-value for negative values.
bLocation of maximum (minimum) Z-value (Z-MAX(MIN)).
cCentre of gravity (COG) of the cluster.
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cluster and its location, and center of gravity of the clusters.
We do not include an image of VBM results, since the
clusters are very sparse having small cluster sizes. The results
show that the longitudinal patterns do not appear to be
significant for the most of brain regions. We suspect that it
is because of the large variation within and between images
due to real anatomic variation as well as registration error.
We apply HD-LFPCA to uncover more subtle underlying
variation.

3.3. HD-LFPCA Results
We present the LFPCA results for ventricular RAVENS images in
Figure 5. Figures 5A,B display the amount of variation explained
by subject-specific components and subject and visit-specific
components to the total variation, respectively. Figure 5A

displays variation explained by the first 10 subject-specific

components along the proportion of longitudinal variation
represented within each subject-specific component. Each bar’s
height represents the percent of variation explained by each
subject-specific component. It is color coded by the proportion
of the variation explained by the longitudinal component and the
baseline component. The top of each bar displays the variation
explained by the subject-specific component; the fraction of that
variation that is explained by the longitudinal component is given
in parentheses.

The first subject-specific LFPC explains 45% of the overall
variation, almost completely due to the cross-sectional part. The
longitudinal part explains 81% of the variation within the second
subject-specific LFPC. Figure 5B displays variation explained
by the first 10 subject-visit-specific components to the total
variation. The remaining LFPCs explain less than 1% of the total
variation.

FIGURE 5 | Variation explained by (A) subject-specific components 8X , (B) subject-visit-specific components 8W . Ratios of the longitudinal components

to the LFPCs. The longitudinal components of the second LFPC explains 81% of the component, while those of other components have relatively low contributions.
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Most of the subject-specific LFPCs are driven by cross-
sectional variation, which possibly include registration errors.
The longitudinal changes are mainly captured by the second
LFPC, which explains about 8% of the total variation. This
provides an explanation as to why traditional VBM using linear
mixed models did not find meaningful longitudinal patterns.

Figures 6, 7 shows the first two pairs of LFPCs of ventricles.
Figures 6A,B show the baseline and longitudinal components
of the first LFPC. The LFPC loadings are color-coded with a
red-yellow color scheme for positive values and blue-cyan for
negative values. The first components reveal baseline ventricular
morphometric variation, while the longitudinal component has
relatively lower intensities. To investigate the characteristics of
the first component, we fit the linear regression with covariates of
interest and volumes of 6 ROIs obtained by the Lesion-TOADS
segmentation algorithm. Figure 7C displays scatter plots of the
LFPC scores with covariates, baseline age, baseline Expanded
Disability Status Scale (EDSS) score, and volumes of 6 ROIs
(thalamus, ventricle, cortical gray matter volume, caudate, sulcal
CSF, putamen). The dashed lines overlaid on the scatter plots are
the linear regression lines and are colored as red when the linear
trend is significant and colored as green otherwise.

The significant correlation between the first subject-specific
score and baseline VN volume (first row, fourth column)
confirms that the first component represents baseline variation
(R2: 0.9684), i.e., a subject with a positive score has larger
ventricles at the baseline. The scores are significantly correlated
to the subject’s baseline age (R2: 0.1402) and three gray matter
ROIs (thalamus, caudate, and putamen).

Figures 7A,B display the baseline and longitudinal
components of the second subject-specific component,
respectively. A subject with a positive score tends to have a
larger regional volume at the baseline (yellow-red colored voxels
in Figure 7A) and longitudinal enlargement. The second subject-
specific scores have significant correlations with the baseline age,
EDSS, thalamus volume, VN volumes, sulcal CSF volume and
putamen volume. The second component scores have higher
correlation with baseline age (R2: 0.2371) and EDSS (R2: 0.2053)
than the first component scores that represent cross-sectional
variation. This indicates that the spatial patterns of longitudinal
enlargement in ventricles are superior for modeling disease
progression and age compared to simple ventricular volume
measures.

We have applied a similar analysis to gray matter and white
matter RAVENS images. Figure 8 shows variation explained by
first 10 subject-specific LFPCs in gray matter and white matter
RAVENS images. In gray matter, around 20% variation comes
from the longitudinal part across all subject-specific LFPCs.
Lower proportions of variation, around 15%, are explained by
the longitudinal part in white matter. Unlike the ventricles,
any subject-specific component of gray and white matter is not
dominated by the longitudinal part. We speculate it is due to
spatial heterogeneity of longitudinal brain atrophy, which may
depend on subject-specific disease progression. In the correlation
analyses with age and EDSS scores, the first LFPC component of
the gray matter was significantly associated with age (r = −0.48,
p < 0.001) and EDSS (r = −0.57, p < 0.001) indicating gray

matter thinning is highly associated with age andMS progression,
while other components were not significantly associated with
age or EDSS. For white matter, LFPC1 was not significantly
associated with age (r = −0.07, p = 0.63) but with EDSS
(r = −0.32, p = 0.03). LFPC2 was significantly associated with
both age (r = −0.36, p = 0.01) and EDSS (r = −0.34, p = 0.02).
Although those LFPC components did not contain substantial
longitudinal changes, the results indicate that local atrophy in the
white matter can inform disease progression.

As described above, LFPCA is a useful dimension reduction
tool for high-dimenstional longitudinal data. In this section, we
illustrated how the LFPC scores an be used in the correlation
analyses. Further, LFPCA scores can be used as predictors or
outcomes in regression analyses, classification or cluster analysis.

4. DISCUSSION

In this manuscript, we described and evaluated a coherent
methodology for the study of longitudinal RAVENS—or other
methodological—volumetric imaging studies. Our simulation
studies demonstrate that LFPCA tightly links the analysis
methodology with the morphometric image processing stream.
We demonstrated that LFPCA can uncover interesting, yet
subtle, directions of longitudinal variation in a case where
independent voxel-level investigations fail. Of note, this study
represents the first application of the high dimensional variation
of LFPCA to voxel-based morphometric analysis. Related work
includes Zipunnikov et al. (2014), who investigated DTI imaging
data and Zipunnikov et al. (2011a) and Zipunnikov et al. (2011b),
who studied RAVENS images with cross-sectional and clustered
(but not longitudinal) settings. Moreover, this manuscript
represents the first application of LFPCA to morphometric
imaging in multiple sclerosis.

A key insight from the simulation studies is the ability of
LFPCA to uncover interesting directions of variation in the
presence of errors from registration to a template. Previously,
registration errors were handled via either extremely aggressive
smoothing during post-registration processing or by improved
normalization algorithms. While improved algorithms are
certainly a desirable goal, all normalization algorithms must be
tuned and suffer from trade offs (such as bias and variance).
Our results suggest the possibility of employing less aggressive
normalization.

The performance of LFPCA depends on the number of
subjects, the number of time points, and time span over which
data is collected. In designing imaging studies for LFPCA, having
both a large number of subjects and a large number of visits may
be challenging to obtain. Simulation studies we have conducted
during the process of examining LFPCA showed that LFPCA
performed well as long as we have either many subjects with
smaller number of visits or smaller number of subjects with many
visits. It is recommended to make the time span over which data
is collected roughly similar across subjects, and long enough to
observe longitudinal changes.

In our study of MS, we found that the majority of variation
is focused in cross-sectional components. This will likely be
true in any study of adults, as variation in head size, brain
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FIGURE 6 | The first subject-specific LFPC and scores. (A) The baseline map, (B) the longitudinal map, (C) the first subject-specific LFPC scores and covariates

of interest. The baseline map represents cross-sectional variation while the longitudinal map has lower loadings. The LFPC scores have higher correlations with

baseline age, EDSS, volumes of GM substructures (thalamus, caudate, putamen), ventricle, and sulcal CSF. The correlation with ventricluar volume is very high, which

confirms that the first LFPC represents cross-sectional ventricle size.
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FIGURE 7 | The second subject-specific LFPC and scores. (A) The baseline map, (B) the longitudinal map, (C) the second subject-specific LFPC scores and

covariates of interest. The baseline map has relatively lower loadings while the longitudinal map shows an enlargement pattern in the ventricles. The LFPC scores have

higher correlations with baseline age, EDSS, volumes of gray matter substructures (thalamus, putamen), ventricle, and sulcal CSF. The correlations with baseline age

and EDSS scores are higher than those of the first LFPC scores.
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FIGURE 8 | Variation explained by first 10 subject-specific LFPCs in RAVENS maps. (A) Gray matter, (B) white matter.

size and intracranial volume will vary far more substantially
than longitudinal decline, not unlike if one were to study adult
cross-sectional and longitudinal trends in heights. It would be
of interest to apply LFPCA to developmental populations or
populations with severe progressive brain disorders significantly
after disease onset.

The correlation between subject-specific LFPC scores of
ventricles and EDSS indicates that EDSS is better associated with
longitudinal ventricular enlargement than baseline ventricular
size. This implies ventricular enlargement is a sensitive
measurement of disease progression. Some cross-sectional MS
patient studies have reported that brain atrophy is related
to irreversible clinical disability in (MS) and ventricular
enlargement may be a sensitive marker of this tissue loss that is
seen at all stages of MS (Turner et al., 2001; Benedict et al., 2005;
Hildebrandt et al., 2006; Tekok-Kilic et al., 2007). In existing
longitudinal studies, longitudinal ventricular enlargement and
gray matter atrophy have been detected in both ROI and VBM
with paired t-test or factor models (Simon et al., 1999; Dalton
et al., 2002, 2006; Kalkers et al., 2002; Sepulcre et al., 2006;
Lukas et al., 2010; Bendfeldt et al., 2009), which agrees with our
finding. Unlike other methods, LFPCA is able to show spatially
heterogeneous patterns of longitudinal enlargement, which ROI
based methods cannot provide.

In the manuscript, we employed a registration strategy similar
to Ashburner and Ridgway (2012). Recent developments in
longitudinal registration algorithms (e.g., 4DHammer: Shen
et al., 2003, CLASSIC: Shen et al., 2005, GLIRT: Wu et al.,
2010, Quarc: Holland et al., 2011) are potentially capable
of providing higher accuracy in tracking within subject
anatomical changes. Improvements in registration would likely
increase the sensitivity of LFPCA to subject-specific signals.
However, visit-to-visit variation caused by image acquisition
inconsistencies or large anatomical differences between subjects
often cannot be corrected by registration. An advantage of the
proposed method is that it can simultaneously quantify and
characterize both cross-sectional and longitudinal signals of

interest in the presence of potentially large amounts of visit-to-
visit variation.

As demonstrated previously for longitudinal diffusion
imaging analysis, and here for longitudinal voxel-based
morphometry, LFPCA is a compelling alternative to linear mixed
model analysis for exploring spatial patterns of anatomical
variation within and across subjects. We emphasize that this
approach is not limited to a specific brain modality. Besides
neuroimaging, we look forward to seeing this method is applied
to many other exciting studies including epigenetics. For
example, genome-wide DNA methylation data collected at
multiple time points could be analyzed to study mechanisms
of epigenetic changes related to certain diseases (Martino et al.,
2014) or environmental exposure (Martino et al., 2013). Another
potential domain of application is for analyzing dynamic
imaging data, such as functional MRI or motion imaging. Such
data often possess much larger numbers of time points, which
would be needed to model the more complex variations in
signal.

The LFPCA method described here is designed to model a
linear trajectory over time. Given a relatively small number of
visits (e.g., three visits on average) it is not feasible to model non-
linear trends. However, if the data are collected over greater than
5 time points, the modeling of non-linear trajectories is possible.
Currently, we are under a preliminary development of a method
to extend LFPCA for non-linear trends modeled using spline
functions. Further investigation on the numerical stability and
performance will be conducted in the near future.
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