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Neuromorphic Vision sensors have improved greatly since the first silicon retina was

presented almost three decades ago. They have recently matured to the point where

they are commercially available and can be operated by laymen. However, despite

improved availability of sensors, there remains a lack of good datasets, while algorithms

for processing spike-based visual data are still in their infancy. On the other hand,

frame-based computer vision algorithms are far more mature, thanks in part to widely

accepted datasets which allow direct comparison between algorithms and encourage

competition. We are presented with a unique opportunity to shape the development of

Neuromorphic Vision benchmarks and challenges by leveraging what has been learnt

from the use of datasets in frame-based computer vision. Taking advantage of this

opportunity, in this paper we review the role that benchmarks and challenges have

played in the advancement of frame-based computer vision, and suggest guidelines

for the creation of Neuromorphic Vision benchmarks and challenges. We also discuss

the unique challenges faced when benchmarking Neuromorphic Vision algorithms,

particularly when attempting to provide direct comparison with frame-based computer

vision.
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1. INTRODUCTION

Benchmarking using widely accepted datasets is important for algorithm development. Such
benchmarking allows quantitative performance evaluation and comparison between algorithms,
promoting competition and providing developers with tangible state-of-the-art targets to beat.
Computer Vision (CV) is an obvious example where open access to good datasets has been integral
in rapid development and maturation of the field (Kotsiantis et al., 2006).

We use the term “Computer Vision” (CV) to denote the conventional approach to visual sensing,
which begins with acquisition of images (photographs), or sequences of images (video). Each image
is a regular grid of pixels, each pixel having an intensity or color value. Such images are a widely
accepted, and largely unquestioned first step in visual sensing.

However, the much younger field of Neuromorphic Vision (NV) takes a radically different
approach, doing away with images completely. The term “Neuromorphic Vision” (NV) denotes
approaches which rely on custom designed bio-inspired vision sensors which capture data in a
non-frame-based manner. The most mature and common of these sensors are the event-based
asynchronous temporal contrast vision sensors. Other NV sensors have not yet reached a level
of maturity where they can be used to reliably capture datasets. Nevertheless, the opinions and
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FIGURE 1 | Comparison of data formats between CV and temporal contrast NV for a rotating black bar stimulus. Left: simulated 30fps recording of a

black spinning bar. Every pixel’s intensity value is captured at constant time intervals. The location of the bar in each frame can be seen, but the location of the bar

between frames must be inferred. Right: Actual recording of a rotating bar captured with a NV sensor. Blue and red points indicate on (increasing intensity) and off

(decreasing intensity) events respectively. Each pixel immediately outputs data when it detects a change in intensity. Middle: Superposition of the NV and CV data.

The NV sensor captures intensity changes occurring between the CV frames (blue and red data points), but does not recapture redundant background pixel intensities

(indicated by transparent frame regions) as is done in the CV format. A video accompanying this figure is available online1.

guidelines stated in this paper extend to benchmarks and datasets
for other NV sensors once they do reach such a level of maturity.

For temporal contrast NV sensors (hereafter referred to
simply as “NV sensors”), each pixel generates an event whenever
its change in log-intensity over time exceeds a programmable
threshold. In these sensors, any pixel can generate an event at
any time, thereby accurately recording when and where scene
changes occur. Figure 1 shows how CV and temporal contrast
NV data formats differ. CV data arrives from every pixel at
regular time intervals (frame intervals), whereas NV data is
received only when and where temporal pixel changes occur
(Posch et al., 2014).

The potential for NV to benefit from datasets similar in quality
to those of CV is well recognized, in part leading to the launch
of this special topic. However, dataset creation for NV poses
unique challenges. In this article we discuss these challenges
(Section 2) and assess the current state of NV datasets (Section 3)
before reviewing the role datasets have played in CV (Section 4),
identifying valuable lessons (Section 5) and how NV can benefit
from these lessons (Section 6).

2. CHALLENGES IN BENCHMARKING
NEUROMORPHIC VISION

The main difficulty in benchmarking NV arises because NV data
differs significantly from CV data (Figure 1) and no accurate
method for converting between data formats exists. NV video is
captured with temporal resolution of a few microseconds (Posch
et al., 2014), while CV video is captured with temporal resolution
of tens of milliseconds. Thus, high temporal frequencies are lost
during frame-based CV sampling and cannot be reconstructed to
simulate NV.

Converting video from NV to CV is also problematic. NV
detects changes in intensity, and attempts to estimate absolute
intensity (as provided by CV sensors) from these changes have
thus far proved largely unsuccessful. However, some recent works
(Kim, 2014) show that it is possible in limited cases (under sensor
rotation but not translation).

For static images, direct comparison between NV and CV
proves even more difficult. A static NV sensor viewing a static

scene will observe no changes, and therefore no data will be
captured (except for some noise). To capture data, the NV sensor
must either be viewing a dynamic scene, or the sensor must be
moving. In biology, this problem is avoided by ensuring that the
sensor (eye or retina) is always moving (Martinez-Conde et al.,
2004).

Even when fixating on a point, fixational eye movements
(drifts and microsacades) continue. Originally, drift was thought
of as an error in the eye’s attempt to fixate, and microsaccades
were thought to be corrections for this error, but more recent
research suggests that fixational eyemovements are important for
perception (Engbert, 2006).

Motion of a NV sensor can similarly be used to generate data
while viewing a static image, providing a means to convert static
image (but not video) datasets from CV to NV. This method
of converting datsets allows comparison between CV and NV,
and allows NV datasets to be created from existing CV datasets,
saving the considerable time required to collect and annotate
data. This conversion process is presented in a separate paper in
this special topic.

Although there are many lucrative applications involving
recognizing objects in static images, this is not the primary
task that evolution has optimized biological vision to solve.
Static organisms have little use for vision (plants sense light, but
cannot “see”). Rather, biological vision has evolved on mobile
embodied agents existing in a dynamic world. The bio-inspired
NV approach is therefore better suited to similar scenarios:
sensing for mobile agents. Such applications require processing
video, not static images.

Directly comparing CV and NV video results requires
simultaneous recording from real world scenes in both formats.
Simultaneous recording prohibits using existing CV videos for
dataset creation, which is how CV datasets are typically created
(Socher, 2009). Recording one’s own video is far more time
consuming, although recent NV sensors (Posch et al., 2011;
Berner et al., 2013) do allow simultaneous grayscale and change
detection recording.

Once such a dataset is created, there remains the problem
of ensuring it is recognized and adopted by both the CV and

1https://youtu.be/up_US4EoD0M.
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FIGURE 2 | Examples of NV data. (A) Publicly available unannotated sequences. From left to right (both rows) dashcam recordings, static surveillance of street

scenes, test stimuli, juggling and first person walking video, high speed eye tracking and dot tracking, and rat and fly behavioral recordings. (B) A small annotated

card pip dataset consisting of 10 examples of each of the 4 card pips (Pérez-Carrasco et al., 2013). (C) Another small annotated dataset, consisting of 2 examples of

each of the 36 characters (Orchard et al., 2015).

NV communities, such that competitive comparisons across
communities can occur. Although not all datasets are intended
to enable comparison between CV and NV, a lack of available NV
recordings still prohibits the gathering of pre-existing data as a
means of dataset creation.

3. CURRENT STATE OF NEUROMORPHIC
VISION DATASETS

Although silicon retinae first appeared over 25 years ago (Mead,
1989), only in the last decade have NV sensors entered the
commercial market. Despite advances in sensor design and
increasing interest in spike-based computation for vision, a lack
of good NV datasets remains. Most NV datasets created thus far
can be assigned to one of three categories.

The first category consists of unannotated recordings
which provide interested researchers with access to NV data.
Examples include data provided with the opensource jAER
software2, which consists of recordings under a various scenarios
(Figure 2A).

The second category consists of small annotated datasets,
each created to showcase performance of a particular algorithm
(Figures 2B,C; Pérez-Carrasco et al., 2013; Orchard et al., 2015).
These datasets are created out of necessity in quantifying
algorithm performance because no prior datasets are adequate.
These datasets are small and near 100% accuracy is soon achieved
using subsequent algorithm improvements, after which a new
dataset must once again be recorded.

The third category consists of large annotated datasets created
specifically for the purpose of providing the NV community
with good datasets. These datasets are the most valuable, but
also the fewest in number. The best known is the MNIST DVS
dataset3 created from the CV MNIST dataset4 using a static
sensor observing a CV video generated from static images. It
therefore suffers from the temporal frequency problem discussed
in Section 2.

Not all researchers investigating spike-based computation
for vision intend for their algorithms to be used with NV

2http://sourceforge.net/projects/jaer/.
3www.imse-cnm.csic.es/caviar/MNISTDVS.html.
4http://yann.lecun.com/exdb/mnist.

sensors. Many works instead make points about biological vision
(Masquelier and Thorpe, 2007), the potential of spike-based
computation (Andreopoulos et al., 2015), or how spike-based
vision can leverage existing methods from CV. In these works,
the spiking input artificially simulated from static images is not
necessarily intended to mimic a NV sensor.

There is a glaring lack of large annotated NV datasets, but
given the rapidly growing interest in NV, it is inevitable that such
datasets will appear soon, and these datasets will heavily influence
NV research for the near future. These datasets should therefore
be created with care and deliberation. Recognizing this unique
opportunity to shape NV, and the potential to benefit from
hindsight in the more mature field of CV, we turn our attention
to analyzing the roles datasets have played in the development
of CV.

4. BRIEF HISTORY AND EVOLUTION OF
FRAME-BASED VISION DATASETS

The impact of datasets on CV research (particularly object
recognition) is perhaps best summarized by Torralba and Efros
(2011):

“They have been the chief reason for the considerable progress in

the field, not just as a source of large amounts of training data,

but also as a means of measuring and comparing performance of

competing algorithms. At the same time, datasets have often been

blamed for narrowing the focus of object recognition research,

reducing it to a single benchmark performance number.”

In this section we focus on datasets for object recognition,
primarily because the impact has been greatest for this area
of CV.

The 1990s saw the start of the era of CV that utilized
techniques from machine learning and statistics to learn from
labeled examples. The MNIST dataset of handwritten digits
contained a total of 70,000 examples of the 10 digits. The Caltech-
5 dataset5 had over 3000 images from 5 categories. However,
these datasets had limited variability. For example, the digits in
MNIST had uniform backgrounds, while the Caltech-5 objects

5http://www.vision.caltech.edu/html-files/archive.html.
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did not have pose variations (e.g., all motorbikes are viewed from
the side).

The next generation of datasets (early-to-mid 2000s) were
characterized by a trade-off between dataset size and real-
world representativeness. Caltech-1016 had almost 10,000 images
from 101 categories, featured complex backgrounds, and had
variations of object instances within their categories. However,
the dataset was criticized as not being representative of natural
images because the objects were all centered in the image. Partly
in reaction to this criticism, the PASCAL VOC 2005 Challenge
dataset7 made a point of including as much variability in object
position, scale, view, etc. as possible, but was smaller in size (3500
images from only 4 categories).

In the late 2000s, massive datasets were created as a result of
advances in dataset collection techniques, as well as concerted
collection efforts once the importance of large, well-designed
datasets was recognized. The Tiny Images dataset8 had almost
80 million images related to 53,464 nouns from the WordNet
ontology (Miller, 1995), although initially only a fraction of the
images were annotated. The ImageNet dataset9, which had 1.4
million images from 1000 categories for its 2010 Challenge, also
used WordNet. Meanwhile, the PASCAL VOC Challenge scaled
up its efforts, while maintaining its focus on image variability
rather than a large number of categories. This trend of larger
and larger datasets continues up to the present time. The Yahoo
Flickr Creative Commons dataset10 is currently the largest with
100 million images. Over 15 years, datasets have grown 10,000
times as large, almost doubling every year.

5. LESSONS LEARNT FROM COMPUTER
VISION DATASETS

5.1. Technical Lessons
The biggest technical lesson is that CV datasets should be as
representative of the “real visual world” as possible (Torralba and
Efros, 2011). This could be the physical world experienced by our
eyes and cameras, or it could also be the world of internet images.
If datasets deviate from the characteristics of the world(s) they are
supposed to represent, then good dataset performance is unlikely
to translate into good real world performance.

In some ways, datasets have evolved along the path
of increasingly realistic representation of the visual world
both quantitatively (number of categories and images) and
qualitatively (more natural, variable, and noisy). For example, the
PASCAL VOC datasets were designed to go beyond Caltech101
images which primarily had a single large, unoccluded, centered
object. Caltech101 itself was created to go beyond the small
number of categories in prior datasets. Moreover, the trend
of increasing variability in the data is also present on the
algorithm side. An increasingly common technique (Van Dyk
and Meng, 2001; Krizhevsky et al., 2012) is to augment a

6http://www.vision.caltech.edu/Image_Datasets/Caltech101.
7http://host.robots.ox.ac.uk/pascal/VOC/.
8http://groups.csail.mit.edu/vision/TinyImages/.
9http://www.image-net.org.
10http://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67.

dataset by applying transformations to it (e.g., noise and color
channel manipulations) in an attempt to increase the input space
explored. Similar approaches can be considered for NV, such as
randomly varying an event’s pixel location or timestamp.

Related to the above is the lesson of being aware of dataset
bias, which includes selection, capture, labeling, and negative
set bias (Torralba and Efros, 2011). One way to reduce effects
of such biases—though not eliminate it—is to include cross-
dataset generalization performance as a performance metric.
Additionally, the flaws in the data can be explicitly considered in
order to tune algorithms during the training phase, to overcome
bias effects (e.g., dealing with unbalanced datasets Kotsiantis
et al., 2006).

5.2. Meta Lessons
In this section, we review some of the “meta lessons” learnt
(those beyond the content of the datasets themselves). The first
lesson is that collecting large bias-minimized datasets requires
giving thorough thought to collection and annotation techniques.
Indeed, the Big Data revolution in object recognition would
not have come about if not for automated techniques for
amassing labeled image collections. Furthermore, such efforts
must be recognized by the community as important, rather than
secondary to algorithm development (Russell et al., 2005; Sapp
et al., 2008).

Another lesson is the importance of avoiding “creeping over-
fitting” which arises when datasets are treated as a world in their
own right, and “too much value [is given] to winning a particular
challenge” (Torralba and Efros, 2011), regardless of whether there
is actually any statistical significance among various competing
algorithms. At the very least, statistical significance should be
taken into account, as is done in PASCAL VOC (Everingham
et al., 2014). However, statistically significantly higher accuracy
on a dataset may still be a result of overfitting to the dataset,
which is not desirable if the algorithm is intended for real-world
application. It may not be fundamentally correct to treat dataset
performance as a competition among individual algorithms, but
perhaps rather as verification that an algorithm possesses some
minimal generalization performance above baseline algorithms.
This relates to a growing issue with dataset-based benchmarking:
as the research becomes overly focused on increasing dataset
performance, the original purposes and constraints may become
forgotten.

Another lesson is the importance of rigorous evaluation
protocols that explicitly specify training and testing conditions,
so that researchers can unambiguously do “apples-to-apples”
comparisons. This does not mean there can only be one
numerical metric. While a single metric has advantages as a
simple direct objective measure, a single number can rarely
capture everything. Most recent papers also include qualitative
descriptions, e.g., common error types, accompanied by a few
typical examples. Furthermore, a performance metric on its own
is not very informative. Performance may be significantly above
chance, but exactly how good is it? A good pool of baseline
methods (for example, a standard reference collection of formerly
state-of-the-art methods) is important for gauging how far the
field has progressed.
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Linked to the above point about good baselinemethods, a final
lesson is the importance of a culture of ensuring that results are
reproducible. There is no better way than to release source code
(instead of just having equations or pseudo-code, or even pre-
compiled executables). In CV, such efforts have been rewarded
by higher citation rates; all other things being equal, authors
will naturally use (and therefore cite) as comparison previous
work that comes with publicly-available code that can be re-run
easily. Instead of re-implementing from scratch these methods,
researchers can concentrate on developing better algorithms,
which in turn will be used for comparison. This virtuous cycle
speeds up research progress for everyone.

6. RECOMMENDATIONS FOR
NEUROMORPHIC VISION

The primate visual system is sometimes simplified down to
a sustained and transient pathway, which respond to static
and changing stimuli respectively. Although different, each
pathway has its own unique strengths and the two operate
in a complementary manner. Similarly, although CV and NV
differ significantly, the two should be seen as complementary
approaches, with each having its own strengths. It is tempting to
quantify the value of NV using existing CV tasks and metrics,
but these have been designed to quantify the value of CV because
it has largely shaped the field of artificial visual sensing thus far.
NV researchers should instead focus on metrics which show the
strengths of NV, while remaining honest about the impressive
capabilities of CV.

NV datasets should be created to aid development of
algorithms and metrics in areas where NV shows the most
promise. These areas include retinal prostheses and visual sensing
for mobile agents, both of which capture data from a first-
person viewpoint. Also, sensing from mobile platforms typically

imposes size, weight, and power consumption constraints, which
performance metrics should take into account in addition to
accuracy, as is done in the DARPA’s Stanford Tower NeoVision2
dataset11. Furthermore, sensing from a mobile platform opens
the possibility of active perception (moving the sensor in a
manner that maximizes the visual information acquired) which
is often overlooked in bio-inspired visual sensing. These are the
areas in which NV datasets should be created.

As learnt from CV, datasets should be representative of the
final application. For the examples above, this means recording
NV video using moving rather than static sensors. When
recording, one should attempt to capture the variability expected
in the final application and avoid using simulators that do not
accurately recreate the noise variability introduced by actual NV
sensors. It will also be beneficial to NV to have comparisons
to CV, which would mean creating simultaneously recorded
datasets of high enough quality to attract CV researchers.

We recognize that recording and annotating NV data,
particularly video, is a difficult and time consuming task
(Section 2). However, the value of good datasets is well-
documented in CV. Given the degree to which NV stands
to benefit from the introduction of similarly good datasets,

the present lack of such datasets should be addressed. Dataset
creation should not be treated as a secondary task only to
showcase the performance of a single algorithm. Rather, similarly
to CV, dataset creation should be prioritized and recognized as a
task of utmost importance to the field for which time and funding
should be specifically allocated.
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