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Chronic heart failure (CHF) affects approximately 5.7 million people in the United

States. Increasing evidence from both clinical and experimental studies indicates that

the sensitivity of arterial baroreflex is blunted in the CHF state, which is a predictive

risk factor for sudden cardiac death. Normally, the arterial baroreflex regulates blood

pressure and heart rate through sensing mechanical alteration of arterial vascular

walls by baroreceptor terminals in the aortic arch and carotid sinus. There are aortic

baroreceptor neurons in the nodose ganglion (NG), which serve as the main afferent

component of the arterial baroreflex. Functional changes of baroreceptor neurons are

involved in the arterial baroreflex dysfunction in CHF. In the CHF state, circulating

angiotensin II (Ang II) and local Ang II concentration in the NG are elevated, and AT1R

mRNA and protein are overexpressed in the NG. Additionally, Ang II-superoxide-NFκB

signaling pathway regulates the neuronal excitability of aortic baroreceptors through

influencing the expression and activation of Nav channels in aortic baroreceptors, and

subsequently causes the impairment of the arterial baroreflex in CHF. These new findings

provide a basis for potential pharmacological interventions for the improvement of the

arterial baroreflex sensitivity in the CHF state. This review summarizes the mechanisms

responsible for the arterial baroreflex dysfunction in CHF.

Keywords: angiotensin II, baroreflex, baroreceptor, heart failure, nodose ganglion, nuclear factor κB, sodium

channel, superoxide

INTRODUCTION

Chronic heart failure (CHF), the most common type of heart diseases, affects approximately 5.7
million people in the United States. During the past several decades, about 870,000 new cases
were diagnosed and more than 58,309 individuals died from CHF in the United States each year
(Mozaffarian et al., 2015). CHF is characterized by autonomic dysfunction, including withdraw of
the parasympathetic tone and overactivation of the sympathetic tone (Creager et al., 1986; Saul
et al., 1988; Porter et al., 1990), which is closely related to mortality in patients with CHF (Gronda
et al., 2014). Impairment of the baroreflex sensitivity is directly associated with this autonomic
dysfunction (Creager, 1992). Many studies have demonstrated that the arterial baroreflex sensitivity
is attenuated in both clinical and experimental CHF (White, 1981; Floras, 1993; Frenneaux, 2004;
Pinna et al., 2005; Ruttanaumpawan et al., 2008), which is a predictive risk factor for sudden
cardiac death (Kleiger et al., 1987) and is associated with mortality of CHF (Nolan et al., 1998;
Cygankiewicz et al., 2008; Boogers et al., 2011; Hauptman et al., 2012). Although the precise
mechanisms responsible for blunted arterial baroreflex in the CHF state are not fully understood,

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00382
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2015.00382&domain=pdf&date_stamp=2015-10-16
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:yulongli@unmc.edu
http://dx.doi.org/10.3389/fnins.2015.00382
http://journal.frontiersin.org/article/10.3389/fnins.2015.00382/abstract
http://loop.frontiersin.org/people/282602/overview
http://loop.frontiersin.org/people/282572/overview
http://loop.frontiersin.org/people/263433/overview


Zhang et al. Baroreceptor and heart failure

activation of the arterial baroreflex (as a long-term therapeutic
approach) has been shown to have numerous beneficial effects
on CHF treatments in both clinical and experimental studies
(Zucker et al., 2007; Sabbah, 2012; Doumas et al., 2014; Gronda
et al., 2014; Halbach et al., 2014; Iliescu et al., 2014; Liao et al.,
2014; Madershahian et al., 2014; Schmidli et al., 2014).

In general, the arterial baroreflex is a homeostatic mechanism
by which arterial blood pressure and heart rate are changed
through sensing the alteration of tension in arterial vascular
walls. The arterial baroreflex arc is composed mainly of an
afferent component, a central neural component, and autonomic
neuroeffector components. Arterial baroreceptors are the main
afferent component of arterial baroreflex arc, which are sensors
located in the arterial blood vessels including aortic baroreceptor
neurons in the NG and carotid baroreceptor neurons in the
petrosal ganglion. They sense the mechanical alteration of
arterial vascular walls through the baroreceptor terminals and
increase the excitation of these afferent baroreceptors. This
excitatory signal is integrated in the baroreceptors by local
endogenous substances, and then the sensory information is
communicated to the dorsal medial nucleus tractus solitary
(NTS). The NTS in the brain recognizes the information from
the baroreceptors and finally evokes the parasympathoexcitatory
and sympathoinhibitory responses (Czachurski et al., 1982; Spyer
et al., 1997; Benarroch, 2008). Each component of the arterial
baroreflex arc might be involved in the impairment of the
baroreflex function in CHF. It has been demonstrated that central
autonomic pathways and neuroeffectors contribute to baroreflex
dysfunction in CHF (Zucker et al., 1995; Zucker and Liu, 2000;
Pan et al., 2007; Schultz, 2009; Wang et al., 2014). However, the
impairment of arterial baroreceptors also is a major obstacle to
influence the arterial baroreflex function in CHF (Dibner-Dunlap
and Thames, 1989; Wang et al., 1990, 1991a,b; Rondon et al.,
2006). Indeed, recent studies have shown that the functional
impairment of aortic baroreceptor neurons located in the NG
is involved in the baroreflex dysfunction in CHF (Tu et al.,
2010; Zhang et al., 2014). In this brief review, therefore, we will
focus mainly on our work to discuss the contribution of aortic
baroreceptors in blunted arterial baroreflex in CHF, especially the
possible cellular and molecular mechanisms responsible for the
alteration of aortic baroreceptors.

VOLTAGE-GATED SODIUM (NaV) CHANNEL
REMODELING IN AORTIC
BARORECEPTORS CONTRIBUTES TO
BLUNTED BAROREFLEX SENSITIVITY
IN CHF

Based on the fact that CHF is a chronic, progressive
cardiovascular disease, it is possible that morphological changes
and/or functional alterations in aortic baroreceptor neurons
might be involved in the impaired baroreflex sensitivity in
CHF. Morphological data from our published study have shown
that both total neuron number and ratio of A-type/C-type
neurons in the NG have no significant difference between CHF
and sham rats (Tu et al., 2010). Using a dog model of CHF,

Wang, et al. also measured the density of A-type and C-type
nerve fibers in the carotid sinus and found that there is no
change in A-/C-fiber ratio and total fiber density in CHF dogs,
compared to sham dogs (Wang et al., 1996). These results from
the morphological measurement support the view that cellular
and molecular changes rather than morphological alterations in
aortic baroreceptors could be involved in the arterial baroreflex
dysfunction in the CHF state.

It is well-established that voltage-gated ion channels (e.g.,
sodium, calcium, and potassium voltage-gated channels)
exist in the transmembrane of excitable cells, and these
types of ion channels can affect cell excitability including
neuronal excitation. Using path-clamp and molecular biological
techniques, all major subtypes of sodium, calcium, and potassium
voltage-gated channels have been functionally characterized in
NG neurons including aortic baroreceptor neurons. These major
subtypes of voltage-gated ion channels include: (1) tetrodotoxin
(TTX)-sensitive and TTX-resistant Nav channels; (2) N-type,
L-type, T-type, and R-type calcium voltage-gated channels; (3)
4-aminopyridine-sensitive, tetraethylammonium-sensitive, and
calcium-activated potassium voltage-gated channels (Li et al.,
1998; Lancaster et al., 2002; Schild and Kunze, 2012; Tatalovic
et al., 2012; Xu et al., 2015).

Nav channels are responsible for initiation and propagation of
the action potential in neurons including primary viscerosensory
neurons (Yu and Catterall, 2003; Ritter et al., 2009). Thus,
far, nine α-subunits (Nav1.1–1.9) of Nav channels have been
functionally characterized. Each Nav channel subunit has
particular tissue localization, consistent with a distinct role for
each Nav channel subunit in mammalian physiology. In general,
Nav channels in primary afferent neurons are separated into
TTX-sensitive Nav channels and TTX-resistant Nav channels.
TTX-sensitive Nav channels are characterized by low activation
threshold, fast activating and inactivating Nav channels, which
include Nav 1.1, Nav 1.2, Nav 1.3, Nav 1.4, Nav 1.6, and
Nav 1.7 channels. TTX resistant Nav channels are characterized
by high activation threshold, slow activating, and inactivating
Nav channels, which include Nav 1.5, Nav 1.8, and Nav 1.9
channels (Waxman et al., 1999; Yu and Catterall, 2003; Catterall
et al., 2005). Based on the sensitivity of neurons to TTX, aortic
baroreceptor neurons in the NG could be separated into A-type
and C-type neurons (Schild and Kunze, 1997). TTX totally
blocks Nav currents in A-type aortic baroreceptor neurons,
whereas TTX partially inhibits Nav currents in C-type aortic
baroreceptor neurons. TTX-blocked Nav currents are defined
as TTX-sensitive Nav currents and remained Nav currents are
defined as TTX-resistant Nav currents. Although Nav 1.7, Nav
1.8, and Nav 1.9 channels are abundantly expressed in the NG
(Waxman et al., 1999; Baker and Wood, 2001; Cummins et al.,
2007; Kwong et al., 2008; Tu et al., 2010), their distribution in the
NG is different. TTX-sensitive Nav 1.7 channels are located in the
cell transmembrane of both A-type and C-type nodose neurons,
while TTX-resistant Nav 1.8 and Nav 1.9 channels are only
expressed in the cell transmembrane of C-type nodose neurons
(Tu et al., 2010).

Although the correlation of voltage-gated Nav channels with
initiation of the action potential and propagation of the neuronal
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discharge in primary sensory neurons has been discussed in
many studies (Schild et al., 1994; Yoshida, 1994; Schild and
Kunze, 1997; Matsutomi et al., 2006; Patrick Harty andWaxman,
2007), there is little known about the role of Nav channels in
determining the activity of baroreceptor neurons and arterial
baroreflex, especially in the CHF state. One study from Shen
et al. has shown that intravenous administration of Nav channel
enhancer restores the blunted baroreflex sensitivity in conscious
dogs with CHF (Shen et al., 2005). Therefore, the alteration
of Nav channels is closely associated with blunted baroreflex
sensitivity in the CHF state. Real-time RT-PCR, western blot, and
immunofluorescent staining data in our study have demonstrated
that the expression (mRNA and protein) of Nav 1.7, Nav 1.8,
and Nav 1.9 channels is decreased in the NG from CHF rats
(Tu et al., 2010). Additionally, patch-clamp data have also
shown that densities of both TTX-sensitive and TTX-resistant
Nav currents recorded in isolated aortic baroreceptor neurons
are reduced in CHF rats. Furthermore, the suppression of cell
excitability is observed in aortic baroreceptor neurons from CHF
rats. When a Nav channel activator, rATX II was administered
in aortic baroreceptor neurons from CHF rats, it significantly
restored CHF-decreased Nav current density and cell excitability
of aortic baroreceptor neurons (Tu et al., 2010). Therefore, the
involvement of reduced Nav channels in the aortic baroreceptor
dysfunction in the CHF state is further evidenced by our study
mentioned above (Tu et al., 2010).

To evaluate the role of aortic baroreceptors in the arterial
baroreflex in the CHF state, we employed two methods. One
method is to examine the changes in blood pressure and heart
rate when the aortic depressor nerve is electrically stimulated.
There are three advantages in this method for measurement
of the baroreflex function. Firstly, rat aortic depressor nerves
do not contain functional chemoreceptor afferent fibers for the
generation of arterial chemoreflex, which means that there are
only baroreceptor afferent fibers in the rat aortic depressor
nerve to convey the electrical signal to the central nervous
system (Sapru et al., 1981; Fan et al., 1996; Kobayashi et al.,
1999). Secondly, a directly electrical stimulation of the rat aortic
depressor nerve can bypass aortic depressor nerve terminals and
aortic arterial vascular walls to induce the arterial baroreflex.
Thirdly, by varying the frequency of electrical stimulus, reflex
responses to activating A-type and C-type afferent fibers can be
differentiated. However, a disadvantage of this technique is that
a physiological substrate for the aortic baroreceptor activation is
not represented. Another method is to measure reflex changes
in heart rate and cardiac sympathetic nerve activity in response
to changes in arterial blood pressure. The advantage for this
method is that a physiological stimulation (changes in arterial
blood pressure) is used to activate the arterial baroreflex. A
major limitation in this approach is that possible alterations
in the mechanotransduction process at the barosensory nerve
terminal and the arterial vascular elasticity may also play a role
in the arterial baroreflex function. Our previous in vivo studies
have demonstrated that the arterial baroreflex is significantly
depressed in CHF rats whatever electrical stimulation of the
aortic depressor nerve or change in the arterial blood pressure is
used to induce the arterial baroreflex (Tu et al., 2010; Zhang et al.,

2014). Additionally, baroreceptor nerve stimulation-induced
baroreflex sensitivity was markedly improved in CHF rats when
the NG was treated by rATX II (a Nav channel activator) (Tu
et al., 2010). However, the local treatment of rATX II did not
normalize the Nav current density and neuronal excitability of
aortic baroreceptors, and arterial baroreflex sensitivity in CHF
rats toward the level seen in sham rats, suggesting that other
mechanisms might be involved in this process. In physiological
and pathophysiological conditions, acute changes of the ion
channel kinetics and chronic alterations of the ion channel
expression are two major factors to modulate the ion channel
function. Based on the inability of rATX to improve the
expression of Nav channels, we consider that low level of Nav
channel expression in the NG from CHF rats might explain
the above results. So far we cannot identify the contribution
of each Nav channel subunit to the cell excitability of aortic
baroreceptor neurons and baroreflex sensitivity, because no
specific Nav channel activators are available for Nav 1.7, Nav 1.8,
and Nav 1.9 channels. These experimental results indicate that
the remodeling of Nav channels including the lower expression of
Nav channels and the decrease of Nav currents could reduce the
neuronal excitability of aortic baroreceptors and induce resultant
impairment of the arterial baroreflex sensitivity in the CHF state.

Currently, there is no information available about the changes
of voltage gated-calcium channels and potassium channels in
aortic baroreceptor neurons in the CHF state. Therefore, we
cannot rule out the involvement of these ion channels in the
alteration of aortic baroreceptors and the arterial baroreflex
dysfunction in CHF.

MITOCHONDRIA-DERIVED SUPEROXIDE
OVERPRODUCTION MEDIATES THE
DECREASED NaV CURRENTS AND CELL
EXCITABILITY IN BARORECEPTOR
NEURONS IN CHF

The mitochondrial electron transport chain contains several
mitochondrial complex enzymes, which constitutes the main
source of superoxide in physiological and pathophysiological
conditions (McCord, 1993; Cadenas and Davies, 2000; Turrens,
2003; Balaban et al., 2005; Adam-Vizi and Chinopoulos,
2006; Murphy, 2009). Under physiological conditions, the
mitochondrial electron transport chain transfers electrons to
molecular oxygen for ATP production. Only a tiny leakage of
electrons (1–2%) from the mitochondrial electron transport
chain produces a low level of superoxide (McCord, 1993;
Cadenas and Davies, 2000). The low level of superoxide is
essential for normal cellular metabolism (Fattman et al., 2003).
However, in pathophysiological conditions, the inhibition of
mitochondrial complex enzymes (mitochondrial oxidative
system) and/or the reduction of manganese superoxide
dismutase (MnSOD, mitochondrial antioxidative system) can
elevate the mitochondria-derived superoxide level (Robinson,
1998; Cadenas and Davies, 2000; Wallace, 2001; Murphy, 2009).
Previous studies demonstrated that superoxide overproduction
was primarily a consequence of the reduction in cellular
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mitochondrial complex I activity in patients with inherited
mitochondrial complex I deficiency (Pitkanen and Robinson,
1996; Verkaart et al., 2007).

Our previous study has shown that CHF significantly reduces
the protein expression and activity of mitochondrial complex
enzymes (complex I, II, and III) andMnSOD in the NG including
aortic baroreceptors (Tu et al., 2012). At the same time, the
mitochondrial superoxide production in the NG from CHF rats
was also increased. These results demonstrate the association
of mitochondrial complex enzyme and MnSOD dysfunctions
with elevation of the mitochondria-derived superoxide in NG
neurons from CHF rats. To analyze the correlation between
elevation of the mitochondrial-derived superoxide and reduced
Nav channel activation and cell excitability in baroreceptor
neurons from CHF rats, adenoviral MnSOD (Ad.MnSOD) gene
was transfected into the NG in our study (Tu et al., 2012).
Our data demonstrated that transfection of the Ad.MnSOD
gene into the NG restored the protein expression of MnSOD,
reduced the mitochondria-derived superoxide, and reversed
the expression and current density of Nav channels and the
cell excitability in aortic baroreceptor neurons from CHF rats.
These data strongly suggest that elevation of the mitochondria-
derived superoxide contributes to the reduced Nav currents
and the suppression of neuronal excitability in CHF aortic
baroreceptor neurons. Although transfection of the Ad.MnSOD
gene completely restored expression of the MnSOD protein, it
did not normalize the mitochondrial-derived superoxide, and
the protein expression and activation of Nav channels in CHF
aortic baroreceptor neurons toward the level seen in sham
neurons. This inconsistency might be explained by following
possibilities. Firstly, as mentioned above, both oxidative and
antioxidative systems in the mitochondria could affect the
mitochondria-derived superoxide. Recovering the ability of
scavenging mitochondrial superoxide through Ad.MnSOD gene-
induced overexpression of the MnSOD protein is insufficient
to scavenge mitochondrial oxidative system-derived superoxide
overproduction, because the function of mitochondrial complex
enzymes is not improved in our study. Secondly, the cytosolic
superoxide production system (such as NADPH oxidase
components) also exists in the NG (Li and Zheng, 2011).
Cytosolic superoxide and other endogenous factors might also
mediate CHF-reducedNav channel activity in aortic baroreceptor
neurons. Additionally, transfection of the Ad.MnSOD gene
into the NG also significantly restored CHF-blunted arterial
baroreflex function, measured by responses of blood pressure and
heart rate to electrical stimulation of the aortic depressor nerve,
and reflex changes of heart rate and cardiac sympathetic nerve
activity in response to changes of arterial blood pressure (Zhang
et al., 2014). These data clearly indicate that the mitochondria-
derived superoxide overproduction in aortic baroreceptors
contributes to the impairment of the arterial baroreflex sensitivity
in CHF.

Overall, elevation of the endogenous mitochondria-derived
superoxide is involved in the reduced Nav current density
and cell excitability in CHF aortic baroreceptor neurons
through acutely decreasing the activation of Nav channels and
chronically reducing the protein expression of Nav channels.

Subsequently, the mitochondrial superoxide overproduction is
further associated with the impairment of the arterial baroreflex
function in the CHF state. Thus, far, there have been very few
studies explored how superoxide modulates electrophysiological
properties and expression of ion channels, especially no report
focusing on the mitochondria-derived superoxide. Usually
an inside-out or outside-out single-channel patch-clamp
recording is used to measure the direct regulatory effect of
superoxide on the single-channel open probability. However,
loss of the mitochondria in a single-channel recording prevents
us from measuring the direct effect of the mitochondria-
derived superoxide on Nav channels. Therefore, exploring
the mechanisms underlying the acute modulation of the
mitochondrial superoxide in Nav channels will require
the development of advanced techniques. As regards the
mechanism(s) responsible for modulation of the mitochondrial
superoxide in expression of Nav channels, we discuss the details
below.

REGULATORY EFFECT OF NUCLEAR
FACTOR κB (NFκB) p65 ON NaV CHANNEL
EXPRESSION AND CELL EXCITABILITY IN
AORTIC BARORECEPTOR NEURONS
IN CHF

NFκB, a transcription factor, can regulate the expression of a
number of genes involved in pathophysiological states, such as
inflammatory disease and heart failure (Frantz et al., 2003; Valen,
2004; Israël, 2010; Van der Heiden et al., 2010). NFκB consists of
five structurally related proteins, namely RelA (p65), RelB, c-Rel,
p50, and p52. The p65/p50 heterodimer is themost abundant and
widely expressed form of NFκB (Hoffmann and Baltimore, 2006).
In the resting state, NFκB presents a silent form in the cytosol
through tight binding to the specific inhibitor of κBα (IκBα)
(Hoffmann and Baltimore, 2006; Israël, 2010). In response to
multiple stimuli in pathophysiological conditions, IκB molecules
are phosphorylated on Ser32 and Ser36 residues by activation of
IKKβ kinases (Kabe et al., 2005; Häcker and Karin, 2006). The
serine-phosphorylated IκB is ubiquitinated and degraded (Karin
and Ben-Neriah, 2000; Kabe et al., 2005). As a consequence,
NFκB binds to specific sites on DNA, and induces transcription
of numerous target genes after NFκB is activated and translocated
from the cytoplasm to the nucleus (Israël, 2010).

Although many studies have discovered the role of NFκB
in target gene transcription, very few studies focus on
the involvement of NFκB in regulating ion channel gene
transcription. Shang et al. found that NFκB could directly bind
to the SCN5A promoter, which was involved in angiotensin
II/hydrogen peroxide-induced down-transcription of Nav1.5
channels (Shang et al., 2008). Therefore, NFκB may be involved
in mitochondrial superoxide-lowered activation and expression
of Nav channels in baroreceptor neurons in the CHF state.
Our recent study has shown that the IKK–IκB–NFκB signaling
pathway exists in rat NG (Zhang et al., 2014). We also found
that CHF increased the phosphorylated IKK, degraded the IκBα,
and enhanced the phosphorylated NFκB p65 in the NG. More
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importantly, our study further confirmed that CHF enhanced the
ability of NFκB p65 binding to the Nav 1.7 promoter in the NG.
These results provide the molecular evidence that the activation
of NFκB p65 is associated with the change of Nav 1.7 channels
in nodose neurons from CHF rats. Additionally, to further
clarify whether the activation of NFκB p65 is involved in CHF-
decreased Nav channels and neuronal excitability in baroreceptor
neurons, NFκB p65 shRNA gene was in vivo transfected into
CHF nodose neurons in our study. Transfection of NFκB p65
shRNA into the NG not only normalized the phosphorylated
NFκB p65 protein, but also significantly increased the protein
expression and current density of Nav channels in CHF rats
(Zhang et al., 2014), which indicates that NFκB p65 shRNA
gene upregulates the protein expression of Nav channels in
the NG from CHF rats through inhibiting the phosphorylated
NFκB p65 protein. Although current studies do not unveil the
detail molecular mechanisms of how NFκB p65 shRNA increases
the protein expression of Nav channels in the NG from CHF
rats, hyperactivation of NFκB is considered to downregulate the
protein expression and current density of Nav channels in nodose
neurons from CHF rats, which is inconsistent with the common
conception that NFκB binding with target gene activates the
gene transcription (Ghosh et al., 1998; Valen et al., 2001; Frantz
et al., 2003; McKenna and Wright, 2015). Furthermore, we also
observed that transfection of NFκB p65 shRNA into the NG
significantly improved the cell excitability of aortic baroreceptor
neurons and resultant arterial baroreflex sensitivity in CHF rats
(Zhang et al., 2014). These data suggest that activation of the
NFκB signaling is involved in CHF-induced downregulation
of the Nav 1.7 channel, suppression of the aortic baroreceptor
neuronal excitability, and impairment of the arterial baroreflex
function.

As mentioned above, transfection of Ad.MnSOD gene
into nodose neurons reduces CHF-induced elevation of the
mitochondrial superoxide, reverses CHF-decreased activation of
the Nav channel and neuronal excitability in aortic baroreceptors
(Tu et al., 2012), and improves CHF-impaired arterial baroreflex
sensitivity (Zhang et al., 2014). Additionally, transfection of
Ad.MnSOD gene also inhibits CHF-induced augmentation of
the phosphorylated NFκB p65 in the NG tissue (Zhang et al.,
2014). However, transfection of NFκB p65 shRNA does not
affect the superoxide level in the NG from CHF rats (Zhang
et al., 2014). From these data, we can deduce that inhibition
of NFκB p65 improves the aortic baroreceptor function and
arterial baroreflex sensitivity even if a high level of superoxide
is preserved in the NG from CHF rats. Based on these results, we
consider that superoxide overproduction-induced impairment of
the aortic baroreceptor neuron and abnormality of the arterial
baroreflex function in CHF rats is attributed to activation of
the NFκB p65 in the NG. However, the exact mechanisms
by which superoxide induces activation of the NFκB p65 in
nodose neurons from CHF rats are yet unclear. In human
endothelial cells, protein kinase C is involved in superoxide-
induced NFκB activation (Ogata et al., 2000). It has also been
reported that superoxide mediates interleukin-1β–induced IκBα

degradation and consequent NFκB activation in bovine articular
chondrocytes (Mendes et al., 2003). the IKK pathway also links

superoxide with NFκB activation (Kabe et al., 2005). In our
study, CHF increased the phosphorylated IKKβ, decreased the
total IκBα, and enhanced the phosphorylated NFκB p65 in
nodose neurons (Zhang et al., 2014). Therefore, it is possible
that superoxide regulates activation of the NFκB p65 in nodose
neurons from CHF rats through multiple signal-transduction
pathways.

In our study, we only measured the modulatory role of
superoxide-NFκB signaling in Nav 1.7 channels in rat nodose
neurons, because Nav 1.7 channels are expressed in all nodose
neurons (A-type and C-type nodose neurons) as a predominant
Nav channel α-subunit, but Nav 1.8 and Nav 1.9 channels are
located only in C-type nodose neurons (Tu et al., 2010). Thus,
far there is no report regarding NFκB binding sites on rat Nav 1.8
and Nav 1.9 channel promoters. However, we realize that future
studies addressing the influence of superoxide-NFκB signaling on
Nav 1.8 and Nav 1.9 channels in the CHF state are absolutely
needed because Nav 1.8 and Nav 1.9 channels also have an
important role in the baroreceptor function (Tu et al., 2010).

ANGIOTENSIN II SIGNALING PATHWAY
AND REDUCED ACTIVATION OF THE NaV
CHANNELS IN THE AORTIC
BARORECEPTOR NEURONS IN CHF

Angiotensin (Ang) II has been recognized as a physiologically
active peptide in multiple tissues including the NG (Allen et al.,
1988a; Touyz, 2005). The physiological effects of Ang II including
the maintenance of fluid homeostasis and blood pressure have
been reported (Peach, 1977; Harris and Navar, 1985; Navar et al.,
1996). Normally, Ang II receptors located on the cell membranes
mediate these physiological actions of Ang II (Mehta and
Griendling, 2007). It has been well-documented that circulating
and tissue Ang II levels are increased in CHF patients and animal
models of CHF (Liu et al., 2000; Roig et al., 2000; Cardin et al.,
2003; van de Wal et al., 2006). Allen, et al. found that Ang II
receptor binding sites exist in somata of nodose neurons and
transport to terminals of nodose neurons (Allen et al., 1988a,b).
Electrophysiological study also revealed that exogenous Ang II
has the direct neuronal effect on nodose neurons through AT1R
(Widdop et al., 1992). Moreover, some studies have demonstrated
that Ang II down-regulates the arterial baroreflex function (Lee
and Lumbers, 1981; Guo and Abboud, 1984; Garner et al., 1987).

Our recent study has also confirmed the involvement of
Ang II in CHF-induced arterial baroreflex abnormality (Zhang
et al., 2015). In our study, overexpression of the AT1R mRNA
and protein and elevation of the local Ang II concentration
in the NG from CHF rats were observed (Zhang et al.,
2015). Additionally, local microinjection of losartan into the
NG significantly improved CHF-attenuated arterial baroreflex
sensitivity, whereas this drug did not change the arterial
baroreflex sensitivity in sham rats. Furthermore, local application
of exogenous Ang II in the NG from sham rats mimicked CHF to
depress the arterial baroreflex function (Zhang et al., 2015). These
results suggest that elevation of endogenous Ang II with AT1R
overexpression in the NG contributes to the aortic baroreceptor
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dysfunction and subsequent down-regulation of the arterial
baroreflex sensitivity in CHF rats, although a physiological
level of endogenous Ang II does not affect the baroreceptor
function and arterial baroreflex sensitivity. However, the local
microinjection of losartan into theNGdid not fully normalize the
arterial baroreflex sensitivity in CHF rats toward the level seen in
sham rats. We understand that the mechanism(s) responsible for
CHF-blunted arterial baroreflex sensitivity are very complicated.
The influence of endogenous Ang II on other cardiovascular
reflex afferents [i.e., muscle reflex afferents, cardiac sympathetic
afferents, and chemoreflex afferents (Khan and Sinoway, 2000;
Li et al., 2006; Wang et al., 2007, 2008; Michelini et al.,
2015)] and the interaction of these cardiovascular reflex afferents
with baroreceptor afferents at the level of the NTS might also
be potential factors to contribute to the arterial baroreflex
dysfunction in the CHF state. Additionally, the effect of Ang II
on central regions might be also accounted for the impairment
of the arterial baroreflex function in CHF. Llewellyn et al. have
reported that a high level of Ang II is detected in the plasma of
CHF rats (Llewellyn et al., 2014). In particular, some studies have
found that CHF induces overexpression of the AT1R in several
central regions including rostral ventrolateral medulla, nucleus
tractus solitarius, paraventricular nucleus, and subfornical organ,

etc (Liu et al., 2006; Wang et al., 2008; Zheng et al., 2009; Zucker
et al., 2009; Llewellyn et al., 2014). It has also been shown that Ang
II also plays an important role in regulation of the cardiovascular
system through these central regions (Casto and Phillips, 1984,
1986; Zhu et al., 2004; Liu et al., 2006; Wang et al., 2008; Zheng
et al., 2009; Zucker et al., 2009; Llewellyn et al., 2014).

As mentioned above, reduced expression and activation of
Nav channels are involved in attenuation of the baroreceptor
neuronal excitability and resultant impairment of the arterial
baroreflex sensitivity in CHF rats. Therefore, it is possible
that the Nav channel is a potential target associated with the
regulatory effect of Ang II on the aortic baroreceptor function. In
isolated aortic baroreceptor neurons of sham rats, application of
exogenous Ang II acutely inhibits Nav currents, and pretreatment
of losartan totally abolishes the inhibitory effect of Ang II on
Nav currents (Zhang et al., 2015), which supports the view that
the acute inhibitory effect of Ang II on Nav currents mediates
Ang II-attenuated arterial baroreflex function. However, losartan
alone did not change Nav currents in isolated aortic baroreceptor
neurons of CHF rats although this drug markedly improved
the arterial baroreflex function in anesthetized CHF rats (Zhang
et al., 2015). This discrepancy is explained by the fact that
isolated aortic baroreceptor neurons of CHF rats loss the in vivo

FIGURE 1 | A schematic diagram illustrating the mechanisms responsible for impairment of the arterial baroreceptor function in chronic heart failure.

CHF-elevated endogenous Ang II (plasma Ang II and tissue Ang II in the nodose ganglion) with overexpression of AT1R in baroreceptor neurons might induce the

mitochondrial superoxide overproduction and the latter upregulates expression of the phosphorylated IKK, phosphorylated IκBα, and phosphorylated NFκB p65. The

phosphorylated NFκB p65 translocates to the nucleus, and down-regulates the mRNA and protein expression of Nav channels. Additionally, endogenous Ang II with

AT1R also directly inhibits the activation of Nav channels. As a consequence, reduced expression, and activation of Nav channels in baroreceptor neurons contribute

to the impairment of aortic baroreceptors and the arterial baroreflex dysfunction in the CHF state. Briefly, Ang II-superoxide-NFκB signaling pathway down-regulates

the aortic baroreceptor function through influencing the expression and activation of Nav channels in CHF. CHF, chronic heart failure; Ang II, Angiotensin II; AT1R,

Angiotensin II type 1 receptor; Nav, voltage-gated sodium channel.
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environment in which circulating (plasma) Ang II and paracrine
release of Ang II from local tissue (the NG) are elevated in
CHF rats (Llewellyn et al., 2014; Zhang et al., 2015). Based
on these results, we consider that CHF-elevated endogenous
Ang II with overexpression of AT1R inhibits activation of Nav
channels in aortic baroreceptor neurons and further contributes
to attenuated arterial baroreflex sensitivity in CHF rats.

Previous study has shown that Ang II binds with AT1
receptors to cause superoxide production mainly through
activation of NADPH oxidase (Touyz and Berry, 2002).
However, there are no previous reports of how Ang II
mediates CHF-induced hypoactivation of Nav channels in
aortic baroreceptors. In most cells including neurons, the
mitochondria serve as the main source of superoxide production
(Turrens, 2003). Ang II significantly elevated the mitochondria-
derived superoxide in neurons (Yin et al., 2010; Case et al.,
2013), leading to a series of downstream effects including
modulation of the ion channel activation and neuronal firing
rate (Zhu et al., 1999; Sun et al., 2005; Zimmerman et al.,
2005; Yin et al., 2010). In particular, the mitochondria-
derived superoxide overproduction mediates decreased Nav
currents and neuronal excitability in aortic baroreceptors
from CHF rats (Tu et al., 2012). Based on these studies, it
is reasonable to conclude that Ang II-induced inactivation

of the Nav channel might be linked to the mitochondrial
superoxide overproduction in aortic baroreceptor neurons in
CHF.

CONCLUSION

This review summarizes the mechanisms responsible for
attenuated baroreceptor function and impaired arterial
baroreflex in the CHF state. The information presented in
this review suggests that Ang II-superoxide-NFκB signaling
pathway down-regulates the neuronal excitability of aortic
baroreceptors through influencing the expression and activation
of Nav channels on the cell transmembrane and subsequently
causes the impairment of the arterial baroreflex in the CHF
state (Figure 1). These new findings also reveal potential
pharmacological targets for improving the arterial baroreflex
function in the CHF state.
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