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Human brain functional system has been viewed as a complex network. To accurately

characterize this brain network, it is important to estimate the functional connectivity

between separate brain regions (i.e., association matrix). One common approach to

evaluating the connectivity is the pairwise Pearson correlation. However, this bivariate

method completely ignores the influence of other regions when computing the pairwise

association. Another intractable issue existed in many approaches to further analyzing

the network structure is the requirement of applying a threshold to the association matrix.

To address these issues, we develop a novel scheme to investigate the brain functional

networks. Specifically, we first establish a global functional connection network by using

the Adaptive Sparse Representation (ASR), adaptively integrating the sparsity of ℓ1-norm

and the grouping effect of ℓ2-norm for linear representation and then identify connectivity

patterns with Affinity Propagation (AP) clustering algorithm. Results on both simulated

and real data indicate that the proposed scheme is superior to the Pearson correlation

in connectivity quality and clustering quality. Our findings suggest that the proposed

scheme is an accurate and useful technique to delineate functional network structure for

functionally parsimonious and correlated fMRI data with a large number of brain regions.

Keywords: adaptive sparse representation, affinity propagation, functional connectivity, association matrix,

resting-state fMRI

1. INTRODUCTION

Recently, it has been widely accepted that brain functional system is a complex network due to
the features such as small-worldness, highly connected hubs and modularity (Watts and Strogatz,
1998; Bullmore and Sporns, 2009). Functional magnetic resonance imaging (fMRI), as a useful
technique in the brain mapping realm, provides valuable data resource for investigating human
neural functional network architecture. Even resting-state fMRI data, acquired when participants
are in rest without performing any particular task, can provide meaningful information. Analyzing
fMRI data from the viewpoint of network has been carried out in many studies that investigate
various problems such as gender (Tian et al., 2011), intelligence (van den Heuvel et al., 2009; Song
et al., 2014; Vakhtin et al., 2014), age (Meunier et al., 2009;Wang et al., 2010), memory (Ginestet and
Simmons, 2011; Cao et al., 2014), and neuropsychiatric disorders such as schizophrenia (Bassett
et al., 2008; van den Heuvel and Fornito, 2014) and Alzheimer’s disease (Supekar et al., 2008;
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Zhao et al., 2012; Liu et al., 2014). Generally, the scheme
first constructs an association matrix (i.e., the global functional
connection network), decomposes it into sub-networks, and
possibly extracts some connection-based features, such as
network measures, for further analysis. Therefore, a core issue is
to correctly model the functional network, which is the basis for
functional brain analysis.

The functional connectivity is defined as the temporal
dependency between spatially separated brain regions (Friston
et al., 1993), and is conveniently represented by the association
matrix when the direction of connections is not of concern.
Correlation-based methods, such as pairwise Pearson correlation
and partial correlation, are largely used to calculate the functional
connectivity. These correlation-based methods usually achieve
encouraging performance in network modeling, which may
suggest that important information lies in variance as mentioned
in Smith et al. (2011). The Pearson correlation is especially
popular to compute the functional connectivity for its efficiency.
However, onemajor limitation of the Pearson correlationmethod
is that it computes the pairwise association between nodes
without considering the contribution of other nodes. It may
happen that some weak connections in terms of the Pearson
correlation take effect if they work collectively. They constitute
an intrinsic part of the brain network. Moreover, the pairwise
analysis is likely to produce spuriously high values of correlation
in the situation that they are actually related with multiple
responded regions. The presence of the large number of faked
connections could lead to over-fitting when decoding fMRI data
(Liu et al., 2009).

Given the association matrix, one succedent analysis is to
identify the intrinsic sub-networks by applying a threshold
to the entries of the association matrix. By removing the
relatively small values from the association matrix, we expect
to reveal regions that have some underlying common function.
It is then convenient to calculate network measures such
as small-worldness, clustering coefficient, and path length,
etc... (Bullmore and Sporns, 2009). However, there is not a
generally agreed criterion to select an appropriate threshold,
which is critical to correctly reflecting the network structure.
Besides, one single value of threshold may not be suitable for
the whole brain. In other words, the threshold method is not
adaptive. Alternative ways of identifying sub-networks have
been developed in literature. The representative methods include
clustering approaches like InfoMap (Rosvall and Bergstrom,
2008; Power et al., 2011) and Normalized Cuts (NCuts) (van
den Heuvel et al., 2008), and matrix factorization approaches like
Independent Component Analysis (ICA) (Beckmann et al., 2005)
and Principal Component Analysis (PCA) (Friston, 1998). Some
of these approaches are applied either directly to fMRI time series
or to similarity measures of fMRI series without taking advantage
of functional connectivity information, and some still could not
circumvent the problem of threshold setting.

We thus seek a novel scheme to overcome the limitations
lying in the construction of the association matrix and the
identification of the intrinsic sub-networks (connectivity
patterns) for fMRI data. Firstly, the Adaptive Sparse
Representation (ASR) (Grave et al., 2011; Lu et al., 2013;

Wang et al., 2014) is introduced to construct the association
matrix. In contrast with the pairwise Pearson correlation, the
ASR simultaneously considers the linear relationship of one
certain node with all the other nodes. It is well-known that the
technique of sparse representation has been extensively used in
the domain of image processing (Wright et al., 2009). Recently,
the sparse representation has drawn increasing attention in the
context of brain imaging and decoding (Ganesh et al., 2008; Li
et al., 2009, 2014), which is beneficial to model the topological
efficiency of the brain network and meanwhile lower the
connection cost (Bullmore and Sporns, 2012). A few researches
have studied the sparse connectivity (Haufe et al., 2010; Ryali
et al., 2012) and some provide valuable information in the aspect
of neurological diseases (Zhao et al., 2012; Lee et al., 2013; Wee
et al., 2014). The sparsity characteristic of brain activities has
been supported by some neurophysiological findings (Olshausen
and Field, 1996; Quiroga et al., 2005, 2008), which are the basis
for applying sparse representation-based method for neural
imaging data. These findings suggest that information is encoded
by a sparse set of neurons that response to a specific input
stimulus (Lee et al., 2011).

To pursue a sparse solution for the sparse representation of
high fMRI data, the ℓ1-norm regularization (Tibshirani, 1996),
also known as LASSO, is a common choice in related studies
(Ganesh et al., 2008; Li et al., 2009). Although the ℓ1-norm
provides great sparsity in revealing significant connections in a
functional network, it has poor stability. That is, given correlated
variables, the resulted variables with the ℓ1-norm solution may
be randomly selected (Grave et al., 2011). However, fMRI data
is usually in such a case where spatially adjacent regions are
likely to be highly correlated. Consequently, the utilization of
the ℓ1-norm regularization in fMRI data deserves to be deeply
studied. In the context of statistics, some remedies have been
proposed to address this problem. Specifically, by combining
the ℓ1-norm with the ℓ2-norm which has grouping effect on
correlated data, the elastic net (Zou and Hastie, 2005) and group
LASSO (Yuan and Lin, 2006) have been developed. However,
the elastic net involves two tuning parameters and the group
LASSO needs prior grouping information. Recently, a trace
norm that seamlessly interpolates the ℓ1-norm and the ℓ2-
norm, called trace LASSO, has been newly established as an
ideal regularizer (Grave et al., 2011). Depending on the data
at hand, the trace LASSO regularization achieves a balance
between the sparsity provided by the ℓ1-norm and the grouping
effect by the ℓ2-norm adaptively with only one regularization
parameter. The ASR uses the trace LASSO regularizer in the
linear representation, and has demonstrated good performance
in subspace segmentation (Lu et al., 2013) and face recognition
(Wang et al., 2014). Considering the highly correlated fMRI
data of spatially adjacent brain regions, we are thus motivated
to use the ASR to establish the global functional connection
network in our study. Note that the anatomical connectivity of
the macaque (Felleman and Van Essen, 1991; Markov et al., 2012)
suggests that the connectivities between different brain areas of
the macaque are highly dense. The point is that there are non-
zero (albeit) weak connections among many pairs of regions.
Besides, the modular and rich-club-like network architecture of
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the human brain remain valid (Park and Friston, 2013). This may
imply that the human brain is heavily connected within the same
sub-networks while sparsely connected between different sub-
networks. Accordingly, we employ the trace LASSO to discover
collective correlations among many regions rather than paired
correlations. Unlike the Pearson correlation, the trace LASSO
takes weak connections into account if they jointly contribute
with others. In fact, the global linear representation modeled
via the trace LASSO could be viewed as a generalization of the
Pearson correlation in the sense that the Pearson correlation
coefficient is the linear representation coefficient between two
variables according to the regression theory. Besides, different
from the ℓ1-norm, the trace LASSO does not pursue the sparsity
greedily. Rather, it has the adaptive property and results in
structured (modularity) correlation.

Secondly, we apply the Affinity Propagation (AP) clustering
algorithm (Frey and Dueck, 2007) to the obtained association
matrix. As a result, we identify the intrinsic network structure by
clustering all nodes into non-overlapping sub-networks, avoiding
the problem of threshold setting mentioned earlier. The AP
clustering algorithm directly operates on the association matrix
of fMRI data and takes the connection strength as a measure of
similarity. More importantly, the number of clusters of AP is not
required to be predetermined and can be controlled by adjusting
the value of preference. The AP clustering algorithm has been
used in several researches to identify brain networks in voxel-
wise analysis for fMRI data, where the measure of similarity is
defined by using the Euclidean distance (Zhang et al., 2011) or
the Pearson correlation (Li et al., 2010). In this study, we use the
ASR coefficients as the measure of similarity between regions of
interest (ROIs) in applying the AP clustering algorithm.

In short, we propose a novel scheme to analyze resting state
fMRI by constructing the global functional connection network
via ASR and identifying sub-networks via AP. It is worthwhile
to highlight the following features of the proposed scheme:
(a) Compared with the conventional bivariate analysis, ASR
is a multivariate method which relates one single node with
all the other nodes. As a result, it simultaneously considers
the influence of all nodes in constructing a global connection
network represented by the association matrix. The adaptivity
of ASR provided by the trace LASSO regularizer makes ASR
a suitable approach for dealing with highly correlated and
sparse fMRI data. (b) It uses AP to group the obtained global
network into several non-overlapping sub-networks, identifying
the connectivity patterns for fMRI data. It obviates the need of
setting a threshold on the association matrix.

The rest of this paper is organized as follows. In Section 2,
we present the approach to constructing the association matrix
via ASR and identifying sub-networks via AP, followed by
the experimental setting and description. In Section 3, the
experimental results are reported. For testing the proposed
scheme, both simulated and real fMRI data are used in the
experiment. The Pearson correlation and the ASR technique
are compared on both the levels of constructing the association
matrix and identifying sub-networks based on AP. Besides, the
reliability of ASR and the Pearson correlation is investigated.
Then, we discuss the experiment, including limitations and

potential usage of the proposed scheme in Section 4. Finally,
Section 5 concludes the paper.

2. MATERIALS AND METHODS

2.1. Notations
Matrices and vectors are represented by upper-case and lower-
case letters, respectively. For a vector v ∈ R

d, Diag(v) ∈ R
d×d is

a diagonal matrix with v as its diagonal elements. For a matrix
M ∈ R

d×n, ‖M‖∗ denotes the trace norm that sums up the
singular values of M, and ‖M‖op denotes the operator norm that
is the maximum singular value of M.

2.2. Adaptive Sparse Representation
Generally, a sparse representation problem is to represent a d-
dimensional sample y using all samples in a dictionary X ∈ R

d×n

with an n-dimensional sparse solution w. For data with noise,
given a tolerance ε > 0, the problem can be formulated as
(Wright et al., 2009)

min ‖w‖0, s.t. ‖y − Xw‖2 ≤ ε. (1)

However, such ℓ0-norm minimization problem is NP-hard
(Amaldi and Kann, 1998). In practice, it could be relaxed by
replacing the ℓ0-norm with the ℓ1-norm, given by

min ‖w‖1, s.t. ‖y − Xw‖2 ≤ ε. (2)

However, the ℓ1-norm suffers from instability when dealing with
highly correlated data, since it is prone to randomly choose one
sample from all the correlated ones Grave et al. (2011). This
suggests that such ℓ1-norm-based sparse representation is not
very suitable for fMRI data which are often highly correlated
between spatially neighboring brain regions. In contrast to the ℓ1-
norm that pursues parsimonious representation, the ℓ2-norm, on
the other hand, uses all the samples for the linear representation,
which leads to blindness to the exact correlation structure. It is
desired to automatically model the correlation structure. In other
words, it is beneficial to combine the advantage of the ℓ1-norm
in variable selection and the advantage of the ℓ2-norm in stable
behavior for correlated variables. The trace LASSO is therefore
developed, which is defined as

‖XDiag(w)‖∗. (3)

It has been proved that the ℓ1-norm and the ℓ2-norm are two
extreme cases of the trace LASSO in the sense (Grave et al., 2011)

‖w‖2 ≤ ‖XDiag(w)‖∗ ≤ ‖w‖1, (4)

where each column of X is normalized to unit norm. Specifically,
when column samples in X are identical (i.e., the extreme case of
highly correlated data), the trace LASSO becomes the ℓ2-norm,
while when samples in X are orthogonal (i.e., the extreme case
of uncorrelated data), the trace LASSO turns out to be the ℓ1-
norm. Trace LASSO brings both the sparsity of the ℓ1-norm and
the grouping effect of the ℓ2-norm.
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By using the trace LASSO as regularizer in the linear
representation, the ASR is formulated as

min
w

‖XDiag(w)‖∗, s.t. ‖y − Xw‖2 ≤ ε. (5)

The trace LASSO adaptively mediates between the ℓ1-norm and
the ℓ2-norm. It behaves like the ℓ1-norm for almost uncorrelated
variables and like the ℓ2-norm for strongly correlated variables.
The optimization (Equation 5) can be converted into

min
w

1

2
‖y − Xw‖22 + λ‖XDiag(w)‖∗, (6)

where λ > 0 is a regularization parameter. For the choice of λ,
the initial value giving the upper bound of λ can be obtained
according to the formula given by Grave et al. (2011), i.e.,

λ = ‖X‖op‖XTy‖∞. (7)

When λ achieves this upper bound, the most sparse solution
0 will be obtained. As λ decreases, the solution will become
less sparse. Thus, to search for an appropriate λ, we could start
from this upper bound and then decrease its values gradually.
That is, the solution becomes denser gradually from the trivial
zero solution until reaching optimality (Grave et al., 2011). This
optimization problem (Equation 6) can be solved by Alternating
Direction Method (ADM), where a globally optimal solution
is achieved, as used by Lu et al. (2013) in studying subspace
segmentation.

2.3. Association Matrix Construction with
ASR
Let X = [x1, . . . , xn] ∈ R

d×n be the fMRI data matrix,
where n denotes the number of nodes and d the number of
time points. Suppose that xi has been normalized. For the
vector xi, its corresponding dictionary for sparse representation
consists of all the nodes except for itself, i.e., Xi =

[x1, . . . , xi−1, xi+1, . . . , xn] ∈ R
d×(n−1). Then the calculation of

the association of xi with all other nodes by ASR boils down to

min
wi

1

2
‖xi − Xiwi‖

2
2 + λ‖XiDiag(wi)‖∗, (8)

where wi ∈ R
n−1 is a coding coefficient vector corresponding

to xi. We pad wi with a zero in the ith position, denoted by
w̃i ∈ R

n, which means the association between xi and itself.
The jth element of w̃i represents the association between xi and
xj. Stacking all the coefficient vectors w̃i results in the coefficient

matrix W̃ = [w̃1, . . . , w̃n] ∈ R
n×n.

We usually prefer a symmetry and non-negative association
matrix A for fMRI functional connectivity. For such purpose, we
could replace W̃ with A = (|W̃| + |W̃|T)/2. Each element aij in
A represents the connection strength between node i and node j,
and all diagonal elements aii = 0.

Actually, correlation-based methods and sparse
representation-based methods are two distinct ways to
construct association matrices of fMRI data, as shown in

Figure 1. The Pearson correlation calculates the pairwise
association between nodes without considering other nodes’
influence. The correlation coefficients are taken as connection
strengths. By contrast, sparse representation-based methods
obtain the association between one node and all other nodes
simultaneously. The sparse coefficients obtained represent
connection strengths.

2.4. Clustering Analysis with AP
After computing the association matrix, the AP clustering
algorithm is then employed to identify connectivity patterns
by grouping all nodes into distinct sub-networks. The recently
developed AP clustering algorithm has attractive advantages over
many classical clustering methods (Frey and Dueck, 2007). For
example, it does not require prespecifying the number of clusters
and initializing clustering centers, and the input to AP could
be a general non-metric similarities. Moreover, AP could be
simply implemented. In fact, it includes all data points as possible
exemplars and controls the number of clusters by adjusting the
value of preference for each data point. The input of AP is a
similarity matrix with preference values as its diagonal elements,
which is usually measured by the Euclidean distance or the
Pearson correlation in brain data mapping. In our proposed
scheme, the association matrix computed by ASR or the Pearson
correlation is taken as the similarity matrix, and are input into the
AP algorithm directly. Here, for each individual computation, a
common preference value is assigned to all nodes, which means
all data points are equally treated as exemplars without using any
prior knowledge.

2.5. fMRI Data Sets
To test our proposed scheme, we perform experiments
on both simulated and real resting state fMRI data sets.
The simulated data sets, generously provided by Smith
et al. (2011), are made available from http://www.fmrib.ox.
ac.uk/analysis/netsim/correction.html, where the data set Sim4 is
used in our experiment. This data set contains simulated resting
state fMRI data of 50 subjects, each with 50 nodes and 200
time points (TR is set as 3 s). The underlying network structure
consists of 10 linked clusters with each cluster being a five-node
ring, as described in Smith et al. (2011). These data are generated
by using dynamic causal modeling (DCM; Friston et al., 2003),
and noises are added on both neural andmean signal levels. More
detailed information about the simulated data sets can be found
in Smith et al. (2011).

The real resting state fMRI data set for experiment is
from the Neuroimaging Informatics Tools and Resources
Clearinghouse (NITRC) 1000 functional connectomes project
(Biswal et al., 2010). A subset of 20 subjects from the data
set Beijing_Zang containing 198 subjects are downloaded from
the 1000 Functional Connectomes Project online database.
Detailed information about this data set can be found in
http://fcon_1000.projects.nitrc.org.

Besides, another public real resting state fMRI data set
provided by (Mao et al., 2015) is used to investigate the
test-retest reliability of connectivity metrics. Ten subjects
out of 21 healthy adults from the data set are used, each
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FIGURE 1 | Different ways of ASR and the Pearson correlation to compute association matrices. (A) On the left panel, each column represents time series of

each node, while on the right panel, each grid represents an element of an association matrix. The Pearson correlation computes the association between pairwise

nodes as shown by the green arrows, while ASR considers the association between one node and all other nodes simultaneously as shown by the red arrow. (B) The

left panel is an illustration of one typical column of the association matrix (i.e., the association of one node with all other nodes) derived by ASR, while the right panel

derived by the Pearson correlation.

containing two sessions. Details of this data set are available at
http://datadryad.org/resource/doi:10.5061/dryad.4kb75.

2.6. Data Preprocessing
The real fMRI data are preprocessed by using the Statistical
Parametric Mapping package (SPM8) with the Data Processing
Assistant for Resting-State fMRI (DPARSF; Yan and Zang, 2010)
toolbox implemented in MATLAB R2011b. The first 10 volumes
of each subject are discarded. The preprocessing steps for the
remaining 215 volumes include the following items: (a) slice
timing, (b) realignment, (c) regressing out of the six motion
parameters, whole brain, cerebrospinal fluid and white matter
signals, (d) spatial normalization to MNI space by DARTEL
procedure and resampling them to the voxel size of 3×3×3 mm,
and (e) spatial smoothing with a 4 mm full width half maximum
(FWHM) Gaussian kernel and filtering using a bandpass filter
(0.01–0.1 Hz). The data set for testing reliability is preprocessed
in the same way, except that the step of spatial normalization
to MNI space is carried out by using EPI templates due to
the absence of T1 images. For both data sets, no subject is
excluded under the criteria that head motion is less than 2 mm
of translation or 2◦ of rotation in any direction. Then for each
session of each subject, time series of 90 ROIs are extracted by

using the AAL (Tzourio-Mazoyer et al., 2002) template, resulting
in a data matrix of 215 (225 for the reliability data set) time points
by 90 brain ROIs. Here, with the aim to ensure comparability, the
AAL template is used to define nodes, as adopted in most studies
(Liu et al., 2008; Ferrarini et al., 2009; He et al., 2009; Braun et al.,
2012; Ryali et al., 2012).

2.7. Data Analysis
For simulated and the first real fMRI data sets, the scheme of
data analysis mainly contains two parts, as shown in Figure 2.
Firstly, we extract time series of each node. Then, for each
individual, the association matrix is computed via the ASR or
the Pearson correlation based on the normalized fMRI time
series. Consequently, for each individual, we obtain ASR- and
correlation-driven global networks. Secondly, the AP clustering
algorithm is used to group these global networks into smaller
distinct sub-networks, thus identifying connectivity patterns for
each individual. The initial value of λ is calculated according to
Equation (7), and a wide range of λ values are tested for the
both data sets. Specifically, the optimal λ is selected for each
subject based on their performance evaluation metrics as well as
convergence criteria. The initial values of λ for all samples are
around 1. So, λ is initially set to vary from 1 to 10−4 with the step
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FIGURE 2 | The scheme of identifying brain functional networks. (A) Extract time series of each node defined by the AAL template. (B) Use ASR or the Pearson

correlation to compute the association matrix. (C) Identify sub-networks by using the AP clustering algorithm based on the association matrix.

of the logarithm values being −1. We then refine the search in a
narrowed range from 0.3 to 0.1 with a step size of −0.01. As will
be seen, most of the optimal λ values are around 0.2. Likewise, for
the real fMRI data set, the initial values of lambda are around 5.
So, it is initially set to vary from 5 to 5× 10−4 with the step of the
logarithm values being −1, and then is refined to the range from
1 to 0.1 with a step size of −0.1. Based on this search, the final
value of λ is set as 0.5 for all subjects.

On the data set for testing reliability, both ASR and the
Pearson correlation are used to obtain associationmatrices, based
on which a reliability measure is computed. For a comprehensive
investigation of the test-retest reliability of ASR, six ASR-driven
associationmatrices for each session of each subject are estimated
with λ being 1, 0.5, 0.1, 0.01, 0.001, and 0.0001 where the initial
value of λ is set around 5.

2.8. Evaluation Metrics
An advantage of the experiment on the simulated data set is that
we could compare the experimental results with the ground truth
(known beforehand) of both the global connection matrix and
the network structure after clustering. Because the ground truth
of the global connection matrix given in Smith et al. (2011) is
directed while the association matrix obtained in our experiment
by either the ASR or the Pearson correlation does not contain any
direction information, a sensitivity measure is used to evaluate
the ability of different approaches to separating true positive (TP)
connections from false positive (FP) connections. The sensitivity
measure is defined as

sen =
#{TP > 95th%(FP)}

#{TC}
, (9)

which calculates the proportion of the number of the TP
connection strengths that are larger than the 95th percentile

of the FP connection strengths. Here, #{TC} denotes the
number of all true connections as in the ground truth. That
is, #{TC} = #{TP} + #{FN}, where FN denotes false negative
connections. Equation (9) is evaluated on the simulated data
set, where the estimated global functional connections are
reflected in the association matrix. The non-zero values of the
association matrix indicate connections between corresponding
nodes. Then, the discovered connections are compared with the
ground of truth. The TP mean that the discovered connections
are truly existed while the FP connections are in fact not existed
according to the ground truth. Note that Equation (9) is the
same as the measure “c-sensitivity” in Smith et al. (2011), and
we use the same approach to measure sensitivity, TP and FP as
in Smith et al. (2011). For evaluating the clustering performance,
after clustering all ASR and the Pearson correlation matrices into
around 10 clusters by AP, the Hungarian algorithm (Lovász and
Plummer, 1986) is then used to match the clustering labels with
the ground truth labels. Then the clustering accuracy is computed
as (Zheng et al., 2004)

acc =

∑n
i=1 δ(gi, ci)

n
, (10)

where gi and ci are the labels of the ith node of the ground
truth and the clustering result after matched by the Hungarian
algorithm, respectively. Note that δ(gi, ci) equals to one if and
only if gi = ci, and zero elsewhere. Simply put, it counts the
number of nodes that have the same labels with the ground truth
labels.

For the first real fMRI data set, two quantifiable indexes are
used as evaluation criteria without knowing the ground truth.
By using the Brain Connectivity Toolbox (BCT; Rubinov and
Sporns, 2010), a network measure, modularity, is computed to
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investigate the community structure of the global functional
connection network for each association matrix. The modularity
index measures the quality of the division of nodes. It favors
the division that has highly connected nodes within sub-groups
but sparsely connected nodes between sub-group networks
(Newman, 2006). The number of sub-groups (i.e., communities)
obtained by such division is also recorded for each association
matrix. Another index, Silhouette, is used to measure the quality
of clustering (Zhang et al., 2011), where different levels of
clustering (i.e., different numbers of clusters) are tested. The
Silhouette value of a node is computed by using the following
formula (Rousseeuw, 1987)

s(i) =
a(i)− b(i)

max {a(i), b(i)}
, (11)

where a(i) denotes the average similarity between node i and
the other nodes that are in the same cluster with node i, and
b(i) represents the biggest one of all the average similarities
between node i and the nodes of another clusters. In this
scenario, similarities are defined as the association between
nodes computed by either ASR or the Pearson correlation. The
average Silhouette value s over all nodes can be used as an
index measuring the quality of a clustering result. The higher
the value s, the better the clustering quality. Since Equation (11)
is variant with translation, for fair comparison, we perform
a preprocessing of the association matrices before applying
Equation (11). Specifically, we require the association matrices
produced by ASR and the Pearson correlation to have the
same level of magnitude. For this purpose, we translate the
entries of the association matrices such that they have the same
value of the global mean (i.e., the average of all the entries of
each association matrix). Note that Equation (11) is invariant
with rescaling.

On the data set for evaluating the test-retest reliability, a
measure for comparing ASR and the Pearson correlation is
quantified by the intra-class correlation coefficient (ICC; Shrout
and Fleiss, 1979), as used in many researches (Zuo et al., 2010;
Braun et al., 2012; Cao et al., 2014; Zuo and Xing, 2014). The
ICC index used in this paper adopts the two-way mixed model
for single consistency, given by

ICC(C, 1) =
MSB −MSE

MSB + (k− 1) ∗ MSE
, (12)

where MSB, MSE, and k denote the between-subjects mean
square, the error mean square, and the number of repeated
sessions, respectively.

3. RESULTS

3.1. Results on Simulated Data Set
We test the proposed scheme on the simulated data set of 50
subjects. The performance is evaluated in terms of sensitivity
and clustering accuracy. Figure 3 shows the association
matrices produced by ASR, the Pearson correlation, and the
partial correction, as well as the ground truth matrix, and the

distributions of the sensitivity and clustering accuracy. The
clustering results delineated in Figure 3H are obtained on this
simulated data with the known ground truth of 10 clusters. To
compare the clustering accuracies of the three methods, in this
experiment, we adjust the preference value in the AP algorithm
and expect to obtain 10 clusters (for only a few subjects, the
AP algorithm may not converge to 10 clusters, but it will result
in a very close number around 10, say 9 or 11). We point it
out that, given the initial parameters of the AP algorithm, the
cluster membership is determined automatically and can not
be manipulated subjectively. Then the Hungarian algorithm is
used to match the clustering labels with the ground truth labels.
Finally, the clustering accuracy is calculated by Equation (10).
In this sense, the clustering results delineated in Figure 3H are
comparable.

It is observed from Figure 3H that the partial correlation
yields rather poor performance in terms of the measures of
sensitivity and accuracy with the mean reaching 78.43 and
55.00%, respectively. The partial correlation still estimates the
dependency between a pair of nodes, even though it removes
possible linear influence of other nodes. In the following
experiments, we only investigate the performances of ASR and
the Pearson correlation. The reasons we choose the Pearson
correlation for comparison is that it is one of the most widely
used methods of estimating functional connectivity due to its
simplicity and efficiency and it could be served as a representative
of bivariate methods.

Two-sample t-tests show that both the sensitivity and the
clustering accuracy of ASR are significantly higher than those
of the Pearson correlation (p < 0.001). It is seen that both
ASR and the Pearson correlation demonstrate good performance
in terms of the sensitivity, with the mean sensitivity reaching
90.59 and 88.82%, respectively. However, the ASR approach is
significantly more capable of identifying TP connections and
separating them from FP ones than the Pearson correlation. The
mean clustering accuracy of ASR and the Pearson correlation are
74.84 and 71.56%, respectively. Still, ASR performs significantly
better than the Pearson correlation in capturing the underlying
network structure delineated by connection strengths.

3.2. Results of Estimating Global
Functional Connection Network
The Pearson correlation and the proposed ASR schemes are then
applied to the real resting state fMRI data set. Some examples of
the 90-node association matrices obtained by the two methods
are illustrated in Figure 4. It is observed from Figure 4 that ASR
achieves better sparsity than the Pearson correlation in both
individual matrices and the mean matrix. In other words, ASR
leads to amore sparsely connected functional network in contrast
to the Pearson correlation.

The quality of community structure, as measured by the
modularity index, of these global functional networks are also
investigated for each subject. A two-sample t-test for the
modularity of all the 20 subjects shows that the modularity driven
by ASR (mean = 0.50 ± 0.12) is significantly higher than that
of the Pearson correlation (mean = 0.13 ± 0.06; p < 0.001). In
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FIGURE 3 | Results on the simulated data set. (A) Mean association matrix averaged over 50 subjects by using ASR. Panels (B,C) are association matrices

derived from ASR on two randomly selected subjects. (D) Mean association matrix averaged over 50 subjects by using the Pearson correlation. Panels (E,F) are the

corresponding association matrices derived from the Pearson correlation on the two randomly selected subjects. (G) Mean association matrix averaged over 50

subjects by using the partial correlation. Panels (H,I) are the corresponding association matrices derived from the partial correlation on the two randomly selected

subjects. (J) Ground truth of connection matrix. (K) Sensitivity (drawn in blue) and clustering accuracy (drawn in orange) distributions (with width denoting frequency)

of ASR, the Pearson correlation, and the partial correlation over 50 subjects, where red dots and black blocks represent the mean and the median respectively.

other words, compared with the Pearson correlation, the ASR-
driven networks achieve better quality of community structure.
The number of communities also yields a big difference between
ASR (median= 7) and the Pearson correlation (median= 3).

Figure 5 shows the community structure of a functional
network obtained by ASR and the Pearson correlation on
a randomly chosen subject. As shown in Figure 5, seven
communities are revealed by ASR, including cortices of ventral
visual, sensory-motor, default mode network (DMN), thalamus,
fronto-parietal, basal ganglia with peri-sylvian and orbitofrontal
with limbic. One notable feature suggested by these findings is
that the functional network structure delineated by ASR is tightly
connected within a community while sparsely connected between

communities. By contrast, the network obtained by the Pearson
correlation consists of three large communities consisting of
fronto-parietal, occipital and fronto-temporal networks, all of
which involve many brain areas with different functions. Thus,
the community structure is difficult to be interpreted.

3.3. Results of AP Clustering Analysis
To identify functional connectivity patterns, the AP clustering
algorithm is then applied to the obtained association matrices
for each individual. The AP algorithm does not prespecify the
number of clusters explicitly. Rather, the number of identified
clusters is controlled by the input values of preferences for the
data points and the iterative procedure of message-exchanging.
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FIGURE 4 | Examples of association matrices computed by using ASR and the Pearson correlation. (A) Mean matrix averaged over 20 subjects by using

ASR. Panels (B–D) are association matrices derived from ASR on three randomly selected subjects. (E) Mean matrix averaged over 20 subjects by using the Pearson

correlation. Panels (F–H) are corresponding association matrices derived from the Pearson correlation on the above three subjects respectively.

In our experiments, we adjust the preference values for both
ASR and Pearson’s correlations such that they obtain comparable
numbers of clusters. For example, we group ASR and correlation
matrices for all subjects into 10 clusters by assigning different
preference values with the AP algorithm. So, the parameters
used for ASR and Pearson’s correlations can be different. We
investigate the number of clusters, denoted by K, through 7 to 20
(when K reaches above 20, the AP algorithm does not converge
or groups one single node into a cluster). This is worked as setting
the preference value. In the following, for simplicity, we use ASR
to represent ASR plus AP procedures, and so is the Pearson
correlation. The quantifiable index, Silhouette value, is computed
to assess the resulting clustering quality for each subject. Figure 6
compares the Silhouette values of both ASR and the Pearson
correlation with different clustering levels. As can be seen, the
mean Silhouette value of ASR is always much higher than that
of the Pearson correlation for any clustering number. Note that
with the AP clustering algorithm the resulting number of clusters
on a specific subject may differ from the initially set number.
The mean Silhouette value is calculated over the clustering
results with the same number of clusters. We also in Figure 6

demonstrate the Silhouette values on five randomly selected
subjects. It clearly shows that the Silhouette values of ASR are
much higher than that of the Pearson correlation for all the
selected subjects. Two-sample t-tests reveal that the Silhouette
values of ASR are significantly higher than that of the Pearson
correlation (p < 0.001) regardless of the number of clusters.
It indicates that on the same level of clustering (i.e., the same
clustering numbers), the clustering quality of ASR is substantially
and stably better than that of the Pearson correlation.

We proceed to analyze the connectivity patterns identified by
AP from the viewpoint of neurophysiology. We first compare
the connectivity patterns driven by ASR (followed by AP) and
resting state networks (RSNs) commonly reported in previous

studies (van den Heuvel and Pol, 2010, and references therein).
Figure 7 shows some examples of clustering results on three
randomly chosen subjects, where six main networks out of fifteen
are drawn. As shown in Figure 7, although regions within each
sub-network are not exactly matched between different subjects,
key regions for a specific function are grouped into a same
sub-network. For example, the DMN mainly includes precuneus
and posterior cingulate cortex (PCC), which are two main parts
of DMN (Fransson and Marrelec, 2008). The frontal-parietal
network mainly includes superior frontal regions and superior
parietal regions (Mantini et al., 2007). Figure 8 displays the
frequency of each sub-network reported in the results of all the
20 subjects for both ASR and the Pearson correlation. As shown
in Figure 8, most subjects report the six networks mentioned
above, and ASR yields slightly more networks than the Pearson
correlation in general. The RSNs extracted by ASR are more
consistent with RSNs reported in previous studies, implying that
ASR is a reasonable method for analyzing resting state fMRI data.

Then for each subject, we compare ASR and the Pearson
correlation from the perspective of the details of sub-networks.
The most significant difference is that, for each subject at each
clustering level, ASR often tends to achieve a better parcellation
which is easier to be interpreted. Figure 9 shows examples
of some sub-networks that embody salient difference between
ASR and the Pearson correlation on one randomly selected
subject. Specifically, Figure 9A mainly shows two sub-networks
including DMN and the visual network, where the parcellation is
relatively fine-grained. Compared with the Pearson correlation,
ASR divides larger networks into smaller and meaningful
ones in which regions are functionally tightly correlated. For
example, DMN in ASR is divided into two parts: one part
is the core regions of DMN including precuneus and PCC
and the other part includes angular. While in the Pearson
correlation, precuneus and PCC are scattered into two different
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FIGURE 5 | Community structure of a functional network obtained by ASR and the Pearson correlation on a randomly chosen subject. (A) ASR with

nodes shown. (B) ASR with ROIs shown. (C) Pearson correlation with nodes shown. (D) Pearson correlation with ROIs shown. We show the views of axial, coronal

and sagittal for left and right hemispheres. Ninety nodes are shown, where each node represents a ROI in AAL template and nodes of the same color form one

community. This figure is generated by using BrainNet Viewer (Xia et al., 2013).

sub-networks. Furthermore, ASR divides the visual network
into three parts including the primary visual cortex, the dorsal
pathway and the ventral pathway while the Pearson correlation
fails to capture this feature. Figure 9B mainly shows three
sub-networks including DMN, the visual network and the

sensorimotor network, where the parcellation is relatively coarse.
In this situation, ASR still performs better than the Pearson
correlation. DMN in ASR includes precuneus, PCC, angular and
part of medial prefrontal cortex, while in the Pearson correlation
it only includes precuneus, PCC and the right angular. Besides,
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ASR divides the visual network into the primary visual cortex and
the extra striate visual cortex, while in the Pearson correlation the
primary visual cortex is grouped into the sensorimotor network.
Although the obtained sub-networks vary from subject to subject,
they all suggest that ASR achieves a better clustering quality than
the Pearson correlation, which is also consistent with the results
of the Silhouette values.

3.4. Results of Reliability Analysis
The resting state fMRI data set of 10 subjects each containing
two repeated sessions are used to investigate the reliability of

ASR and the Pearson correlation. The values of the ICC index
of ASR (under six conditions with different values of λ) and
the Pearson correlation are computed in terms of the global
mean of the association matrix and the modularity measure,
as shown in Figure 10. We do not compute the ICC index in
terms of the Silhouette value which involves the AP algorithm.
By contrast, the global mean of the association matrix and the
modularity measure are directly based on the association matrix,
and therefore are more essential in assessing the reliability.

For the global mean of the association matrix, as used in
Braun et al. (2012), ASR under all six conditions results in a

FIGURE 6 | Silhouette values of ASR and the Pearson correlation with varying numbers of clusters. Each colored line represents the results of one subject.

The solid lines illustrate the Silhouette performance of the AP clustering results based on ASR while the dashed lines based on the Pearson correlation. (A) Mean

Silhouette values. (B) Examples of Silhouette values on five randomly selected subjects.

FIGURE 7 | Examples of six RSNs on three randomly selected subjects. (A) Basal ganglia. (B) Main parts of DMN including precuneus and PCC. (C)

Sensorimotor cortex. (D) Limbic. (E) Frontal-parietal network. (F) Visual cortex including ventral visual and dorsal visual sub-networks. Regions marked in the same

color belong to the same network.
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significantly higher ICC than the Pearson correlation. The ICC
value of ASR ranges from 0.569 (λ = 1) to 0.793 (λ = 0.1). The
average ICC value over six conditions of ASR reaches 0.676 ±

0.08 while the Pearson correlation yields a relatively lower value
of 0.443. For the modularity index, ASR outperforms the Pearson
correlation in the cases of λ being 0.5, 0.1, 0.01, and 0.0001.
Under the other two conditions with λ being 1 or 0.001, ASR
shows lower reliability. The ICC value of ASR ranges from 0.389
(λ = 0.1) to 0.648 (λ = 0.01). The average ICC value over six
conditions of ASR reaches 0.383± 0.180, which is slightly higher
than that of the Pearson correlation with the ICC value being
0.368.

4. DISCUSSION

In this paper, we develop a novel scheme to construct the
association matrix by ASR instead of the typical Pearson
correlation method, and identify connectivity patterns by the AP
clustering algorithm. In theory, ASR has two main advantages:
(a) ASR is a multivariate method and able to take all nodes
into consideration when computing the association, while the
Pearson correlation is a bivariate method that can only compute
the pairwise association thus ignoring the possible influence from
other nodes. (b) The trace LASSO regularizer helps ASR stand
out from other existing sparse representation methods, since it
can achieve a sparse solution as the ℓ1-norm and select correlated
nodes as the grouping effect of the ℓ2-norm. These advantages
make ASR a suitable method to estimate the association matrix
of fMRI data. The AP clustering algorithm carries out further
analysis by efficiently identifying connectivity patterns based
on the obtained global network without setting a threshold
to the association matrix. Taken together, the novel scheme
provides a new insight into the functional connectivity of human
brain.

4.1. Performance of Estimating Global
Functional Connection Network
ASR is evaluated on both the simulated and the real fMRI data
sets in constructing the association matrix. As illustrated in
Figures 3, 4, ASR obtains a substantially sparser solution than
the Pearson correlation. That is, unlike the Pearson correlation,
most connection strengths obtained by ASR are driven to near
zero (e.g., 10−7, not exactly zero due to the computational
precision). As a result, the essential connections are automatically
revealed.

Furthermore, the great sparsity of ASR does not jeopardize
its performance of delineating functional connectivity. Indeed,
as shown in Figure 3A, ASR successfully captures the underlying
network structure of 10 five-node rings. Besides, the t-test for the
real fMRI data shows that the modularity of ASR is significantly
higher than that of the Pearson correlation. Compared with the
Pearson correlation, these modules are easier to be interpreted
from the perspective of neurophysiology, as shown in Figure 5.
This high modularity can be partly due to the grouping
effect of ASR, which can select functionally correlated regions
altogether.

FIGURE 8 | Number of subjects reporting the presence of the above 6

RSNs. The digits “1” through “6” denote Basal ganglia, DMN, sensorimotor

cortex, limbic, frontal-parietal network, and visual cortex respectively. Results

of ASR and the Pearson correlation are marked in blue and green respectively.

4.2. Comparison of AP Clustering Results
The traditional strategy to analyze the functional network
involves the step of thresholding the associationmatrix. However,
such analysis is heavily dependent on the choice of the threshold
value (Zalesky et al., 2010). In this paper, we used the AP
clustering algorithm to identify functional network structure
without the requirement of applying a threshold. It directly takes
the association matrix as input and assigns each node into one
cluster.

The quantifiable indexes for both the simulated data
(clustering accuracy) and the real fMRI data (Silhouette) clearly
indicate that ASR achieves a better clustering quality in terms
of accuracy and compactness of clusters. The obtained sub-
networks on the real fMRI data suggest that ASR yields a
better division of networks that are easier to be interpreted
than the Pearson correlation. In a word, the nodes are tightly
connected within a cluster while sparsely connected between
clusters. The quantifiable index of ASR is significantly higher
than the Pearson correlation, although, for visual perception,
most networks obtained by the two methods are similar, as
illustrated in Figure 7. The choice of the AAL template as the
atlas of nodes may partly account for this result, for 90 nodes
may not be enough to find subtle difference of details of clusters.
Using a more refined atlas or using voxel-wised nodes may find
more information.

Results in Figures 7, 8 reveal that RSNs identified by
ASR are in accordance with results of some previous studies
(van den Heuvel and Pol, 2010, and references therein).
Although details within each sub-network are different between
subjects due to the inter-subject variability, most subjects
report the presence of basal ganglia, DMN, sensorimotor,
limbic, frontal-parietal and visual network. The proposed ASR
scheme succeeds in identifying RSNs with the AP clustering
algorithm, suggesting that ASR is reasonable and feasible to
accurately discover functional network structure and underlying
connectivity patterns.
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FIGURE 9 | Examples of saliently different sub-networks between ASR and the Pearson correlation on one randomly selected subject. In each panel,

the results of ASR are drawn on the left side and the Pearson correlation the right side. (A) The clustering number K is 15. (B) The clustering number K is 10. Each

color represents a sub-network. (C,D) are the corresponding 2D rendering of (A,B), respectively.

4.3. Comparison of Reliability Results
As Figure 10 suggests, ASR achieves a higher ICC value of the
global mean than the Pearson correlation under all six different
conditions. Note that λ has an explicit impact on the sparsity
and thus the ICC value in the reliability analysis. It is interesting
that ASR performs better in terms of the ICC value of the global

mean than the Pearson correlation regardless of which value

of λ is applied. However, the ICC value of modularity tells a
slightly different story. ASR achieves a relatively high reliability
(ICC= 0.648) only when λ takes 0.01. In other cases, it performs
moderately. It may suggest that the reliability of modularity is
sensitive to the degree of the sparsity of the association matrix.
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FIGURE 10 | Comparison of ICC in terms of the global mean and the modularity for association matrices obtained by ASR and the Pearson

correlation. (A) Reliability (ICC) in terms of the global mean. (B) Reliability (ICC) in terms of modularity. The digits “1” through “6” denote the condition of λ being 1,

0.5, 0.1, 0.01, 0.001, and 0.0001 for ASR respectively. The digits “7” and “8’ show the average ICC value for ASR over all six conditions and the ICC value of the

Pearson correlation respectively.

Nevertheless, the average ICC value of ASR is still slightly
higher than that of the Pearson correlation. Generally speaking,
ASR is a reliable and stable method to estimate the functional
connectivity.

4.4. Limitation and Future Work
Firstly, although ASR exhibits better performance than the
Pearson correlation, ASR is a time-consuming method, since
hundreds of iterations are usually needed to resolve ASR.
Thus, a trade-off between efficiency and accuracy should be
considered based on practical problems. Smith et al. (2011)
have compared several different approaches to estimating
connectivity. Thus, further studies may be undertaken to provide
a more comprehensive evaluation of ASR by comparing with
more connectivity methods. Secondly, the definition of nodes
plays an important role in the delineation of brain networks
(Zalesky et al., 2010). In the present work, we only use the
AAL template to define nodes, which is a large-scale parcelation
and may not be enough to discover subtle differences between
subjects. The AAL templatemay suffer from the low homogeneity
of resting state functional signals within each parcel of the AAL
template because of the structure-function distinction. The ASR
should be further investigated on a voxel-wise level (Zuo et al.,
2012) or using nodes defined by some functional parcelation
algorithms (Yeo et al., 2011; Betzel et al., 2014). Thirdly, to
investigate the connectivity patterns, the AP clustering algorithm
is employed following ASR. However, AP, as many other
clustering algorithms, can only assign a node to one cluster.
Thus, regions that may be involved in multiple networks can
only be assigned to one network. Some techniques that take
overlapping sub-networks into account (Eavani et al., 2015)
may be incorporated with some adjustments to investigate
the connectivity patterns in combination with ASR. Finally,
We would considering extracting discriminative features based

on the connectivity patterns to conduct some classification
problems. For example, we could study clinical data and shed new
light on the classification of neurologic disorders. In the current
experiment we only test our scheme on resting state fMRI data.

In the future, we will applying the scheme on some task-related
fMRI data.

5. CONCLUSION

In this paper, we develop a novel scheme to estimate brain
global functional connection network by using ASR and identify
connectivity patterns by the AP clustering algorithm, inspired
by recent advances in mathematics and image processing. ASR
considers the association between one node and all other nodes
simultaneously, where the trace LASSO regularizer ensures the
sparsity and grouping effect of the solution controlled by only
one parameter. Then the AP clustering algorithm identifies
functional sub-networks without the requirement of setting a
threshold. Experimental results on both the simulated and the
real fMRI data sets show that the proposed scheme is effective and
useful to estimate functional connection networks and identify
connectivity patterns of human brain. In all, the promising
scheme of ASR with AP provide a new insight into investigating
the problem of functional connectivity.
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