
ORIGINAL RESEARCH
published: 20 October 2015

doi: 10.3389/fnins.2015.00386

Frontiers in Neuroscience | www.frontiersin.org 1 October 2015 | Volume 9 | Article 386

Edited by:

Michael Pfeiffer,

University of Zurich and ETH Zurich,

Switzerland

Reviewed by:

Guillaume Garreau,

Johns Hopkins University, USA

Andrew David Brown,

University of Southampton, UK

Runchun Mark Wang,

University of Western Sydney,

Australia

*Correspondence:

Johannes Partzsch

johannes.partzsch@tu-dresden.de

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 16 June 2015

Accepted: 05 October 2015

Published: 20 October 2015

Citation:

Partzsch J and Schüffny R (2015)

Network-driven design principles for

neuromorphic systems.

Front. Neurosci. 9:386.

doi: 10.3389/fnins.2015.00386

Network-driven design principles for
neuromorphic systems
Johannes Partzsch* and Rene Schüffny

Chair for Highly Parallel VLSI Systems and Neuromorphic Circuits, Department of Electrical Engineering and Information

Technology, Technische Universität Dresden, Dresden, Germany

Synaptic connectivity is typically the most resource-demanding part of neuromorphic

systems. Commonly, the architecture of these systems is chosen mainly on technical

considerations. As a consequence, the potential for optimization arising from the inherent

constraints of connectivity models is left unused. In this article, we develop an alternative,

network-driven approach to neuromorphic architecture design. We describe methods

to analyse performance of existing neuromorphic architectures in emulating certain

connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic

architecture from a given connectivity model. For this, we introduce a generalized

description for architectures with a synapse matrix, which takes into account shared

use of circuit components for reducing total silicon area. Architectures designed with this

approach are fitted to a connectivity model, essentially adapting to its connection density.

They are guaranteeing faithful reproduction of the model on chip, while requiring less

total silicon area. In total, our methods allow designers to implement more area-efficient

neuromorphic systems and verify usability of the connectivity resources in these systems.

Keywords: neuromorphic architectures, synaptic connectivity, system design, Rent’s rule, mapping quality

1. INTRODUCTION

With neuromorphic systems growing in size (Schemmel et al., 2010; Benjamin et al., 2014; Furber
et al., 2014; Merolla et al., 2014b), efficient realization of synaptic connectivity becomes an ever
more important part of the design. Sufficiently many configurable synaptic connections are crucial
for applicability of these systems, while typically dominating overall silicon area. Thus, the main
challenge is to decrease the mean area per synapse, while retaining enough flexibility to be able to
map all relevant application-specific connectivity models onto the hardware.

Several chip architectures and implementation approaches have been proposed, spanning a wide
range of this trade-off between flexibility and area consumption. Classic architectures utilize a
synapse matrix, differing mainly in their access to single synapses. Synapses may be addressed
individually using xy-decoders, as employed e.g., in Chicca et al. (2004) and in the FLANN
chip (Giulioni et al., 2008). Alternatively, they may be accessed column-wise, forming a crossbar
architecture, as implemented in the Spikey (Schemmel et al., 2006) and TrueNorth (Merolla et al.,
2014b) systems. Additional source selection may be stored in individual synapses, as done in the
BrainScaleS waferscale system (Schemmel et al., 2010) and in the MAPLE chip (Noack et al., 2010).
Qiao et al. (2015) employ the same principle to switch between individual and column-wise access,
combining advantages of both architectures. As an alternative to synapse matrices, neuron arrays
have been implemented (Choi et al., 2004; Yu et al., 2012), being especially suited for nearest-
neighbor synaptic connectivity. A more fine-grained control on individual neuron structure is
gained by field-programmable neural arrays (FPNA) (Farquhar et al., 2006), enabling to mimick

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00386
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2015.00386&domain=pdf&date_stamp=2015-10-20
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:johannes.partzsch@tu-dresden.de
http://dx.doi.org/10.3389/fnins.2015.00386
http://journal.frontiersin.org/article/10.3389/fnins.2015.00386/abstract
http://loop.frontiersin.org/people/27149/overview
http://loop.frontiersin.org/people/89842/overview

Partzsch and Schüffny Network-driven design principles

detailed dendritic structure. In a more high-level approach,
neuron and synapsemodels may be emulated on general-purpose
processors, as done in the SpiNNaker system (Furber et al., 2014),
trading higher flexibility against potentially less energy efficiency.

Another common option is to utilize multi-synapse circuits,
which allow to calculate the joint effect of multiple synapses in
one circuit. This approach was used for example by Vogelstein
et al. (2007) and in the NeuroGrid system (Benjamin et al., 2014).
Multi-synapse circuits typically do not include storage of synaptic
weights, but weight values are stored separately, often off-chip
in an FPGA. This is a fundamental difference to systems with a
synapse matrix, where each synapse circuit performs both weight
storage and weight effect calculation. Also, long-term learning,
i.e., modification of synaptic weights, is not included in themulti-
synapse circuit, but implemented separately. As a consequence,
systems with multi-synapses often allow to integrate significantly
more neurons per chip, by removing the area-intensive synaptic
weight storage and weight modification circuitry from the chip.
This, however, comes at the price of more complexity off-chip,
e.g., implementing the latter functions in an FPGA. Therefore,
meaningful comparisons to other approaches can only be made
on system level.

While the decision for one of the above implementation
approaches is often model-driven, the design process typically
focuses on technical aspects, choosing element count and
configurability mainly on the overall area budget. Several works
investigate architectures concerning their technical complexity,
either on chip level (Benjamin et al., 2014) or inter-chip level
(Culurciello and Andreou, 2003; Park et al., 2012; Merolla
et al., 2014a). In contrast, verification and optimization of the
chip architecture with respect to connectivity models is done
only in a later stage of the design (Fieres et al., 2008). After
implementation, several works optimize neuron placement and
connection routing for improving mapping of specific networks
to the finished system (Navaridas et al., 2009; Brüderle et al.,
2011). While these works shed some light into the relationship
between connectivity models and neuromorphic architectures,
they provide only incomplete guidance during design. A
systematic method for architecture design is missing, which
would allow to tailor the architecture to a set of given connectivity
models, utilizing the models’ constraints for optimization, for
example reducing area and power consumption.

In this paper, we provide first steps toward such a method. We
demonstrate how to use Rent’s Rule (Landman and Russo, 1971;
Christie and Stroobandt, 2000; Partzsch and Schüffny, 2012) for
characterizing synaptic connectivity. This tool allows to extract
a specification for the amount of connectivity in a hierarchical
neuromorphic system. Having derived the required number of
synapses and inputs for a single chip with this method, we
move to designing the chip architecture. For this, we introduce
a generalized synapse matrix architecture that unifies description
of state-of-the-art designs. This architecture inherently enables
shared use of circuit components for minimizing total silicon
area. We demonstrate how to parameterize the generalized
architecture such that it faithfully reproduces a given connectivity
model, adapting the architecture to the model’s local connection
density. Finally, we show how to find the most area-efficient
architecture dependent on the sizes of individual circuit

components. The whole set of methods enables a fully top-down
approach, guaranteeing faithful reproduction of a connectivity
model and providing an informed decision about the most area-
efficient architecture for a given use case.

The article is structured as follows: Sections 2.1 and 2.2
classify existing neuromorphic architectures. Sections 2.3 and 2.4
introduce the generalized synapse matrix architecture and show
how to evaluate it. Rent’s Rule is described in Section 2.5. Section
3.1 characterizes two existing architectures with the introduced
methods. Sections 3.2 and 3.3 introduce the top-down design
approach, with a special case handled in Section 3.4. Finally,
Section 3.5 provides an architecture comparison concerning total
silicon area.

2. MATERIALS AND METHODS

2.1. Classification of Model Components
In an abstract view, neuron and synapse models may be separated
into parts with differing data dependencies, which directly
influences the choice of an architecture (Benjamin et al., 2014).
Figure 1 shows one such partitioning, assuming point neurons
(Gerstner and Kistler, 2002).

The synapse model may be split into a pre-synaptic, a post-
synaptic, and a combined pre-synaptic–post-synaptic (pre/post)
part. The pre-synaptic part contains all model components that
are only dependent on input spikes. In consequence, it can
be shared by all synapses with the same pre-synaptic input.
Short-term plasticity models (Markram et al., 1998) typically
fall within this part. In turn, the post-synaptic part contains all
model components that are only dependent on variables from the
connected post-synaptic neuron. This part may be implemented
only once for all synapses of that neuron. Generation of
exponentially decaying post-synaptic currents or conductances is
a typical example of this part (Schemmel et al., 2010). Only the
pre/post part is individual to each synapse, typically containing
the synaptic weight and some form of long-term plasticity
(Mayr and Partzsch, 2010; Azghadi et al., 2014). Often, long-
term plasticity models themselves can be separated in pre-
and post-synaptic parts, implementing traces of pre- and post-
synaptic activity, and a pre/post part that combines these traces.
This separation reduces complexity in single synapses (Mayr
et al., 2010). It also enables plasticity implementation possible
in memristive crossbars, reducing single memristive elements to
integrators of differences between pre- and post-synaptic voltage
traces (Mayr et al., 2012; Saighi et al., 2015).

The neuron typically consists of a summation over all
connected synapses and the neuron model itself, possibly
including some form of adaptation (Naud et al., 2008). The
output spikes of the neuron are transmitted via some connection
fabric on- and off-chip to the targeted synapses. Properties of
the connection fabric are greatly influenced by the arrangement
of synapses and neurons into chip architectures, which are
introduced in the next section.

2.2. State-of-the-art Neuromorphic Chip
Architectures
The diversity of existing neuromorphic chip architectures is high,
reflecting the different approaches to implementing neurons

Frontiers in Neuroscience | www.frontiersin.org 2 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

FIGURE 1 | Separation of synapse and neuron model components into parts and data dependencies (Partzsch, 2014). A single synapse and neuron are

shown. Multiple synapses connect to a neuron, which is indicated by the arrows to the summation block. From this single-element view, neuromorphic system

architectures fall within the black-box module “connectivity.”

and synapses, as was discussed in the Introduction. For this
article, we restrict ourselves on architectures with a synapse
matrix, implementing an individual circuit for each synapse in
the network.

Using a synapse matrix may seem inefficient and inflexible
at first sight, given alternatives such as multi-synapses or multi-
processor systems. However, synapse matrices are advantageous
for long-term synaptic learning, which is regarded as an
essential part of neural processing (Azghadi et al., 2014),
while typically dominating computational effort of the system,
because calculations have to be carried out individually for
each synapse. In Figure 1, this is reflected by the pre/post
part of the synapse, whose data dependencies prevent joint
calculations between synapses. As a consequence, long-term
learning can not be implemented with multi-synapses, which
represent joint synaptic activity in a single circuit. While multi-
synapses allow for an efficient separation between forward
operation of a neural network, i.e., calculating the expression of
synaptic weights, and storage of synaptic weights, for example
in an area-efficient external dynamic random-access memory
(DRAM), long-term learning would require separate circuitry.
Multi-processor systems allow for implementing almost arbitrary
synaptic learning rules, at the expense of reading and writing
synaptic weights to an external RAM at each weight update.
This read/write procedure constitutes a potential bottleneck in
terms of throughput, and it puts a lower limit on the achievable
energy efficiency, given by the energy to communicate a synaptic
weight between processor and RAM. In comparison, synapse
matrix architectures at least conceptually offer a significantly
more energy-efficient solution by performing calculations on
synaptic weights as close as possible to their storage, combining
processing and storage in the individual synapse circuit.

The general structure of a neuromorphic chip or block with
synapse matrix is shown in Figure 2. It can be characterized by
the number of neurons Nc, the number of synapses per neuron
S, and the number of inputs to the block, Nin. The number
of synapses, calculated as Nc · S, typically dominates the total
silicon area and thus often limits the size of the block. From the

FIGURE 2 | General structure of a neuromorphic chip or block with

synapse matrix. A decoder forwards inputs and locally fed-back neuron

outputs to the synapses in the matrix. Each neuron has the same number of

synapses S, allowing for the matrix layout.

viewpoint of Figure 2, differences in architectures mainly arise
from the type of input decoder, forwarding inputs to selected
synapses.

When using an xy-decoder, a single synapse is activated for
each input spike, using a column and row enable line (Chicca
et al., 2004; Giulioni et al., 2008). This architecture gives the
most flexible control over synaptic connectivity, and is therefore
named fully addressable matrix in the following. As a downside
of the flexible access, no sharing of the pre-synaptic circuit part
between synapses is possible, because each synapse may receive
a different pre-synaptic input (cf. Figure 1). Also, the decoder
does not realize any fan-out, so that one spike packet has to
be transmitted for each synaptic connection, resulting in higher
input packet rate compared to the other architectures.

In a crossbar architecture, each input spike drives a complete
synapse column (Schemmel et al., 2006; Merolla et al., 2014b).
Compared to a fully addressable matrix, the number of inputs is
lowered by a factor of Nc for the same matrix size, accompanied
by a significant reduction in flexibility, as we show in Section

Frontiers in Neuroscience | www.frontiersin.org 3 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

3.1. However, all synapses of one column share the same pre-
synaptic input, so that the pre-synaptic part of the synapse has
to be implemented only once per column. Also, as one input
fans out to the whole column, part of the synaptic fan-out is
realized by the crossbar itself, which significantly reduces input
bandwidth.

Other architectures with synapse matrix constitute
intermediate solutions between fully addressable matrix
and crossbar. The BrainScaleS waferscale system described in
Schemmel et al. (2010) equips each synapse with a 4 bit source
configuration, allowing it to select from 16 inputs. This strategy
still allows to partially share circuitry among synapses, while
gaining significantly more flexibility compared to a crossbar
architecture. Further input selection is performed at the side of
the synapse matrix and via switchable routing channels on-chip.
Additionally, neighboring neuron circuits may be connected
together, forming neurons with more synapses.

The implementation by Qiao et al. (2015) demonstrates how
to overlay a fully addressable matrix and a crossbar architecture
by adding a 1 bit configuration in each synapse. With this
extension, all activated synapses in one column may be triggered
by a single input spike, while the other synapses may still be
accessed individually as in the fully addressable matrix. This
reduces input bandwidth, while keeping the architecture flexible.
Like for the BrainScaleS system, neuron circuits may be joined
for realizing neurons with higher synapse count.

Another architecture was implemented in the MAPLE chip
(Noack et al., 2010; Mayr et al., 2013). In this design, pre-
synaptic driver circuits are placed on both sides of the synapse
matrix. Each synapse contains 1 bit input configuration, letting
it choose from one of two driver circuits at the two sides. This
doubles the number of inputs to the matrix compared to a
crossbar, at low area overhead in the single synapse. We use
this chip as example implementation for the analyses in Sections
3.4 and 3.5.

All the above architectures are configurable to implement
multiple networks after fabrication. This configurability is
realized in different forms. The crossbar architecture implements
all-to-all connectivity by default, but arbitrary other connectivity
can be realized by switching synapses off. However, these
synapses are not utilized in this case, so that this architecture may
become inefficient at low connection densities, where only a small
fraction of the synapses is actually used for a specific network.
In the fully addressable matrix, individual synapses are directly
addressed from the input pulse packets, so that all connectivity
information is stored externally. Switching off synapses is not
required in this case; unused synapses simply do not receive
input pulses. The other synapse matrix architectures introduced
above store part of the routing information in single synapses,
for example a part of the source selection. Additionally, synapses
may be switched off, while the remainder of the source selection
is realized outside of the synapse matrix.

Each of the introduced architectures can be designed such
that, after fabrication, an arbitrary set of networks may be
configured on it. Then, the question arises, which architecture
is the most efficient for a certain set of networks. In order to
tackle this question, we first introduce a generalized architecture

description that allows to investigate all the above architectures
within the same framework.

2.3. Generalized Architecture
As basis for a more systematic architecture design, a general
architecture description is required that can be easily fitted
to different connectivity structures, and that contains existing
architectures as special cases. Additionally, it should assist area-
efficient implementations, maximally sharing circuit components
among synapses, and it should exhibit a regular structure for
easing layout design.

Figure 3 shows a generic synapse matrix architecture that
fulfills these requirements (Partzsch, 2014). Inputs and synapses
are divided into equally sized groups, with each group having
Nin,g inputs. Each input is fed into a separate circuit block that
realizes the pre-synaptic part of the synapse model (cf. Section
2.1). A fixed number of Sg synapses is used per group for each
neuron. Connected to these synapses is a decoder that chooses
a maximum count of Sg from the Nin,g available inputs of the
group. Please note that in an actual implementation, a better
choice may be to use one decoder per synapse. However, from
a connectivity point of view, this would add redundancy, as
multiple synapses could be configured for one input, realizing
one synaptic connection multiple times. Each of the Sg synapses
implements the pre/post part of the synapse model. It is
connected to one neuron, which in turn contains the post-
synaptic part of the synapse and the neuron model.

The number of groups Ng determines how many synapses per
neuron are implemented, S = Ng · Sg , and how many inputs
the block can handle, Nin = Ng · Nin,g . The ratio of synapses
per input, Sg/Nin,g , indicates the typical connection density for
which the architecture is designed. Arbitrary higher connection
densities can be realized with the architecture by feeding the same

FIGURE 3 | Generalized matrix architecture, consisting of groups with

equal structure. Each group contains Nin,g pre-synaptic circuits that are

connected to Sg synapse columns. Forwarding of inputs to synapses is done

by decoders, where each group has its own decoder for each neuron. This

arrangement is motivated by the potential to describe different architectures in

the same way. Practical implementations would likely use other arrangements,

which, however, could still be described in an abstract way using the above

architecture.

Frontiers in Neuroscience | www.frontiersin.org 4 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

input into several groups or by not using some of the inputs of a
group. This, however, reduces the number of unique inputs fed
into the block.

Each combination of Sg and Nin,g results in a different
architecture that can be scaled by the number of groups Ng . The
existing architectures described in Section 2.2 can be regarded
as special cases of the generalized architecture. The crossbar
is represented by the values Nin,g = Sg = 1, which makes
the synapse decoder obsolete in this case. The fully addressable
matrix is effectively generated by having one group of sizeNin,g =

S · Nc and Sg = S. With this setting, each synapse can be fed with
an individual input. As the number of inputs equals the number
of synapses, sharing of pre-synaptic circuits becomes obsolete
in this case. The waferscale neuromorphic system of Schemmel
et al. (2010) is represented by the values Nin,g = 16 and
Sg = 1, as each synapse can choose from 16 inputs. The special
feature of connecting neighboring neurons effectively allows to
vary Sg between neurons. The architecture of the MAPLE chip
constitutes the values Nin,g = 2 and Sg = 1.

The values of Nin,g and Sg influence how well a connectivity
model can be replicated on the neuromorphic architecture. This
so-called mapping quality (Brüderle et al., 2011) is evaluated in
the next section for the generalized architecture.

2.4. Evaluation of Mapping Quality
A crucial quality measure for a given architecture is how well
it can realize certain connectivity models, probably those that
it was designed for. Previous works have called this measure
mapping quality and investigated it for existing system designs
(Fieres et al., 2008; Brüderle et al., 2011; Petrovici et al., 2014).
Apart from technological criteria like integration density and
bandwidth considerations, this is the main quality criterion for
an architecture. In this article, we use synapse loss as measure of
mapping quality. Synapse loss denotes the number of synaptic
connections for a realization of a connectivity model that can
not be implemented on the architecture due to missing hardware
resources or limitations on configurability. Mapping quality in
that sense is dependent on the connectivity model to be realized,
the hardware architecture and the algorithms used for neuron
placement and connection routing (Brüderle et al., 2011). Here,
we want to analyse the mapping quality during architecture
design, using it as indicator for selecting suitable values for
Nin,g and Sg . Thus, we try to minimize the influence of neuron
placement and connection routing.

We choose uniform random connectivity as benchmark
model, where each possible connection between two neurons
exists with constant probability p, being independent from other
connections. In several aspects, thismodel is themost challenging
one for a hardware realization. It is completely unstructured
and thus exhibits the highest entropy, in terms of configuration
effort, of all networks with the same connection density (Partzsch
and Schüffny, 2011). Furthermore, as all neurons are statistically
identical, neuron placement has only limited effect on mapping
quality. Placement optimization algorithms may only utilize
statistical variations, which diminish with network size.

As a side effect of this, uniform random connectivity allows
for analytical calculation of synapse loss, avoiding averaging

over a high number of network realizations. With each synaptic
connection being statistically identical and independent, it is
sufficient to do this calculation for one neuron and one synapse
group. The number of synapses s that are actually required
in a synapse group with Nin,g potential synapses is binomially
distributed. We thus denote the probability of having s out of
Nin,g synapses at connection probability p with B(Nin,g, p, s) in
the following. If a hardware architecture provides Sg < Nin,g

synapses for this group, the expected fraction of synapses that can
not be mapped to this architecture, i.e., the expected synapse loss
ploss,group, can be calculated as

ploss,group =

∑Nin,g

s=Sg+1(s− Sg) · B(Nin,g, p, s)

Nin,g · p
, (1)

with the expected synapse countNin,g · p being used to normalize
the result. For crossbar architectures, characterized by the setting
Nin,g = Sg = 1, the synapse loss according to this formula is
always zero.

The above formula expresses the expected synapse loss
inside the matrix. However, synaptic connections may also be
unroutable if the number of inputs Nin to the matrix is lower
than the required number of inputs Nreq. For uniform random
connectivity, Nreq is approximately equal to the total number
of neurons in the network, N, as discussed in Section 2.5. The
expected number of unroutable synapses per neuron in this case
is (N − Nin) · p, resulting in an expected synapse loss ploss,in of:

ploss,in =
(N − Nin) · p

N · p
=

N − Nin

N
. (2)

Both loss values can be combined by regarding them as
loss probabilities and calculating the probability for the
complementary event that a connection is routable:

ploss = 1− (1− ploss,group) · (1− ploss,in) . (3)

The analytical loss values calculated above are valid for one-
to-one or random neuron placement and input mapping. For
the crossbar architecture and the architecture of the MAPLE
chip (cf. Section 2.3), optimal mappings can be calculated for
single realizations of uniform random networks, using statistical
variations for minimizing synapse loss, as described in Noack
et al. (2010). In Sections 3.1 and 3.4, we show results for these
cases as well.

2.5. Rent’s Rule
In a neuromorphic system, a single chip is often representing only
a partition of the overall network. In this case, the question arises
on how many external input connections such a partition needs
to provide. This issue may be investigated using Rent’s rule, an
empirical relation between the size of a system’s partition and
its number of connections with the remainder of the system,
first investigated in digital system design (Landman and Russo,
1971; Christie and Stroobandt, 2000). The rule states a power-law
relationship between these two quantities, with a characteristic
exponent for different system architectures, called Rent exponent.

Frontiers in Neuroscience | www.frontiersin.org 5 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

In the original definition, each connection between two
basic elements across the partition boundary is counted as
a separate connection. However, this does not take the fan-
out of connections from the same sender into account. If an
external source connects to several targets inside one partition,
a connection to each target is counted separately, ignoring the
more efficient solution of forming only one external connection
to the partition and splitting it locally. While fan-out is typically
low for most of connections in conventional digital systems
and can be treated by approximation techniques (Stroobandt
and Kurdahi, 1998), it has to be taken into account for neural
networks. The solution here is to count all connections from the
same sender as one external connection, representing a unique
input to the partition (Partzsch and Schüffny, 2012).

Figure 4 illustrates the typical procedure for extracting Rent’s
rule from a given network (Landman and Russo, 1971; Hagen
et al., 1994; Partzsch and Schüffny, 2009; Partzsch, 2014). The
network is recursively split into partitions, counting for each
of them the number of basic elements G (also named partition
size) and the number of external inputs T, as depicted in the
left plot. Values for all partitions are plotted in a log-log diagram
of inputs over partition size, each partition representing a single
point (see right plot). Fitting a straight line to the data in the
logarithmic domain then yields Rent’s rule. However, a single
power-law relationship may not hold over all partition sizes.
This is especially true when counting unique inputs instead of
single connections, as the number of inputs is limited by the
number of possible senders in the network. Therefore, as an
alternative description, averaging over partitions of the same size
gives a mean relationship between partition size and number of
inputs, which we call Rent characteristic (Partzsch and Schüffny,
2012).

The slope of the Rent characteristic, expressed in the exponent
of Rent’s rule, determines how the number of inputs scales with
the partition size. It can be regarded as a measure of scaling
complexity. In geometrical systems, this slope is determined by
the system’s dimensionality (Bassett et al., 2010).

For some connectivity models, the expected Rent
characteristic can be calculated or estimated analytically.
For uniform random networks, it increases with maximum
possible slope of 1, saturating at the number of senders in
the network (Partzsch and Schüffny, 2012). For geometrically
localized connectivity, the slope is lower, being 1/2 in the two-
dimensional and 2/3 in the three-dimensional case, reflecting the
dimensionality of the underlying element placement (Landman
and Russo, 1971; Bassett et al., 2010).

Figure 5 shows two examples of Rent characteristics,
demonstrating the different slopes for uniform random and
localized connectivity. For uniform random connectivity, the
number of inputs saturates at the number of neurons in the
network for a wide range of partitions, starting at a partition size
of approximately G = 1/p. The negative slope of the curve at
big partitions is a side effect of the partition size itself, due to the
decreasing number of possible senders outside the partition in
this case. The effect of the different slopes is clearly visible from
the diagram. While for single elements, i.e., partition size 1, both
networks have roughly the same number of inputs, the difference
in the number of inputs soon grows to more than an order
of magnitude. In a hardware realization, these inputs must be
transmitted and handled. Thus, it is likely that the requirements
on throughput and address space would differ by an order of
magnitude as well in this case.

As introduced in Partzsch and Schüffny (2012), when input
counts to partitions of a technical or biological system are known

FIGURE 4 | Generation of Rent’s rule and the Rent characteristic. (Left) Connection matrix of an example network with highlighted single partition. The partition

has a size of G = 10. Its internal connections are located in a square around the main diagonal, marked in black. All other connections in the same rows have their

source outside and their target inside the partition. The number of inputs T then is the number of unique outside sources, corresponding to the number of columns

with at least one red dot in the figure. (Right) Rent characteristic and Rent’s rule extracted from a hierarchical partitioning of the network shown in the left plot. The

partitioning was created according to Partzsch and Schüffny (2009), using the partitioning algorithm introduced by Hagen et al. (1994). Each point denotes one

partition, with the red dot showing the example partition from the plot on the left. The resulting Rent characteristic and Rent’s rule are extracted from this data, see text.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

FIGURE 5 | Rent characteristics for networks with uniform random and

local connectivity and 10,000 neurons at approximately the same mean

connection density. Connection probability for uniform random connectivity

is p = 0.01, Rent characteristic is calculated analytically (see Partzsch and

Schüffny, 2012). Connection probability for local connectivity is taken from a

Gaussian profile, according to Hellwig (2000), with neurons placed uniformly

on a two-dimensional grid, and width of Gaussian scaled to match mean

connection density. The Rent characteristic was extracted from one instance,

adapting the method described in Partzsch and Schüffny (2009), as the

analytical derivation in Partzsch and Schüffny (2012) only results in a rough

upper bound.

TABLE 1 | Main symbols used in the article.

Symbol Meaning

A Silicon area

G Size of a system partition

N Number of neurons

Nc Number of neurons per chip

Ng Number of groups in generalized matrix

Nin Number of inputs

p Connection probability

ploss Relative synapse loss

S Number of synapses per neuron

Sg Synapses per group in generalized matrix

T Number of inputs per partition

for different partition sizes, these values can be compiled into
a limiting Rent characteristic. This characteristic states for each
partition size the maximum number of inputs that the system can
handle. Thus, comparing the Rent characteristic of a network to
the limiting Rent characteristic indicates whether the network fits
into the system. If the network’s Rent characteristic exceeds the
limit, some of the synaptic connections are definitely lost when
mapping the network onto the system.

In the next sections, we show limiting Rent characteristics
for different neuromorphic architectures, and we describe
how to utilize the Rent characteristic for designing efficient
neuromorphic architectures. For the reader’s orientation,
Table 1 summarizes the main symbols used throughout the
article.

3. RESULTS

3.1. Characterization of Common
Neuromorphic Architectures
Each of the different state-of-the-art architecture (for an
overview, see Section 2.2) results in different restrictions on
connectivity, which can be conveniently visualized in their Rent
characteristics. In the following, we do this for the two most
common synapse matrix architectures, the crossbar and the fully
addressable matrix. The main difference between the two is
that for the fully addressable matrix, each input drives a single
synapse, whereas for the crossbar, it drives a complete synapse
column (see also Section 2.2).

As a minimal example for visualizing the impact of the
architecture on the realizable connectivity, we use a uniform
random network of 200 neurons that are mapped onto two
synapse matrices with each 100 neurons and 100 synapses per
neuron.

The fully addressable matrix allows to feed each individual
synapse with a different input. As a consequence, the number
of possible inputs to a partition of neurons grows linearly with
the partition size. This results in a Rent characteristic with
the maximum possible slope of 1, as shown in the left plot
of Figure 6. Thus, the Rent characteristic restricts a network
essentially only at its starting point, i.e., at single-neuron
partitions (see blue line). In other words, the connectivity is
only restricted by the number of synapses per neuron that are
provided in the matrix. Consequently in the example network,
when increasing connection probability, the relative synapse loss
(cf. Section 2.4) increases steadily when the expected number of
synapses per neuron in the network exceeds those available in the
matrix.

In a crossbar architecture, the inputs that are available to a
single neuron are the same as the inputs to the whole matrix.
In effect, the Rent characteristic stays constant for partition sizes
up to the number of neurons in the matrix, as shown in the
top left plot in Figure 7. Its further progression depends on
how the single synapse matrices are connected. Because Rent
characteristics of networks typically increase constantly with
partition size, the most restrictive point of the crossbar’s Rent
characteristic is usually at a whole-matrix partition. This also
means that the Rent characteristic and thus the architecture
becomesmore restrictive when increasing the number of neurons
in the matrix. In our example, the number of inputs to the
matrix, equalling the number of synapses per neuron, is only
half the number of neurons, so that the Rent characteristic
of the uniform random network exceeds that of the crossbar
(see blue line in the top left plot). Therefore, when mapping a
realization of the network onto the architecture, expected synapse
loss is 0.5, irrespective of the connection probability, as shown in
the top right plot in Figure 7. For a single realization, synapse
loss may be minimized by choosing from the sender neurons
those 100 that form the most synapses with the neurons placed
on the matrix. This reduces synapse loss for low connection
probabilities, but not to an acceptable level. In essence, uniform
random connectivity can only be faithfully mapped onto crossbar

Frontiers in Neuroscience | www.frontiersin.org 7 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

FIGURE 6 | Characterization of fully addressable synapse matrix. (Left) Rent characteristic of a fully addressable matrix with S = 100 synapses per neuron

(black line), and expected Rent characteristic of a uniform random network with N = 200 neurons and connection probability p = 0.75 (blue line). The network’s Rent

characteristic exceeds that of the fully addressable matrix, indicating synapse loss. This is because the expected number of synapses p · N = 150 is too high (left end

of Rent characteristic). (Right) expected synapse loss with respect to mean number of synapses per neuron for the example network with 200 neurons, equally

distributed on two chips, and uniform random connectivity. Label “A” denotes the network whose Rent characteristic is shown in the left plot, resulting in a synapse

loss of approximately 34%.

FIGURE 7 | Characterization of crossbar synapse matrix. (Top left) Rent characteristic of a crossbar with S = 100 synapses per neuron (black line), and

expected Rent characteristic of a uniform random network with N = 200 neurons and connection probability p = 0.3. Like for the example in Figure 6, the network’s

Rent characteristic exceeds that of the crossbar, caused by the number of synapses per neuron in the crossbar being smaller than the number of neurons in the

network (visible as saturation level of the blue curve). (Top right) expected synapse loss with respect to mean number of synapses per neuron, for random and

optimized neuron-to-input mapping (see text for details). (Bottom) expected synapse loss over network size. Label “B” in the top right and bottom plots denotes the

network whose Rent characteristic is shown in the top left plot.

Frontiers in Neuroscience | www.frontiersin.org 8 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

architectures as long as the network size does not exceed the
number of synapses per neuron. The lower plot of Figure 7

illustrates this: Synapse loss sharply increases with network size
once that size reaches the number of synapses per neuron in the
matrix, with only minor dependence on connection probability.

The above analysis introduced the Rent characteristic as
a tool for verifying compatibility of an architecture with a
network model. The next section shows how to utilize the Rent
characteristic during system design.

3.2. Neuromorphic System Design
Our approach to neuromorphic system design starts from a given
connectivity model, deriving the system architecture and its basic
specifications from it. This is done in two steps, following a top-
down approach. First, the system hierarchy is fixed and basic
numbers for single modules derived. Second, the architecture of
a single chip or block is designed.

The design of the system hierarchy is dependent on a
multitude of factors, with connectivity being only one of them.
The granularity of the hierarchy, i.e., the number of sub-modules
on each hierarchy level, is therefore a trade-off to be defined at the
beginning of the design process. Once these numbers are defined,
the number of required connections between sub-modules on
different levels of the hierarchy may be derived with the Rent
characteristic.

For this, a Rent characteristic needs to be defined that covers
the classes of networks that are to be implemented on the
hardware. The Rent characteristic of a single network typically
constitutes amean over all partitions, cf. Section 2.5. In contrast, a
Rent characteristic used for system design has to cover variations
between partitions as well, so that some safety margin may have
to be added.

The Rent characteristic T(G) directly relates to the basic
numbers of a single chip that are described in Section 2.2, i.e.,
the number of neurons Nc, the number of synapses per neuron S
and the number of external inputs to the chip Nin. The number
of synapses per neuron corresponds to the number of inputs to a
single-neuron partition, i.e., S = T(1). The number of neurons
per chip Nc is not only defined by the connectivity, but also
depends on the total chip area and the circuit areas per neuron
and synapse. Once this number has been chosen, the required
number of inputs to the chip can be extracted from the Rent
characteristic at the partition size Nc: Nin = T(Nc).

The same relation is present also on higher levels of the system
hierarchy, as shown in Figure 8. In general, the number of inputs
on each level equals the value of the Rent characteristic at the
partition size of the total number of neurons inside that level.
In other words, if the number of neurons on level 1 is N1 and
the number of level-1 modules inside a level-2 module is N2, the
number of inputs for a level-1 module is T(N1), whereas it is
T(N1 · N2) for a level-2 module.

Figure 9 shows an abstract structure of a hierarchical
neuromorphic system that is defined only by the numbers in
Figure 8. On each hierarchy level, inputs from outside and
outputs of all neurons from inside the level form the set of
connection sources that have to be distributed to the sub-
modules. As the number of sources is typically bigger than the

FIGURE 8 | Relation of the Rent characteristic and basic numbers of a

hierarchical neuromorphic system with three hierarchy levels. As

example Rent characteristic, a single power law was chosen. N1 denotes the

number of neurons inside one level-1 module, N2 the number of level-1

modules inside one level-2 module, and N3 the number of level-2 modules

inside one level-3 module. Nin,1, Nin,2, and Nin,3 are the number of inputs of

one module on level 1, 2, and 3.

FIGURE 9 | Generic connectivity structure of a hierarchical

neuromorphic system with three hierarchy levels, as it would be

constructed from the Rent characteristic in Figure 8 (Partzsch, 2014).

Single neurons are depicted as circles and all S synapses of a neuron are

joined in one block. On each level, a module contains a number of

sub-modules and one decoder per sub-module, which chooses the inputs of

the sub-module from all sources available to the module. Available sources are

the external inputs and the outputs of all neurons inside the module. On the

lowest level, this resembles the generic chip structure shown in Figure 2.

number of inputs to one sub-module, a decoder is needed for
each sub-module, choosing the inputs from the available sources.
A single neuron-to-neuron connection passes one or multiple
decoders, dependent on the location of the neurons in the
system. The set of all decoders defines the available configuration
space for connectivity, which can be quantified as minimally
required configuration memory (Partzsch and Schüffny, 2011).
If the decoders do not have any further restrictions, i.e., they
can be configured to choose any subset of their inputs, the
Rent characteristic completely represents the restrictions on
connectivity: Any network can be realized with the architecture,

Frontiers in Neuroscience | www.frontiersin.org 9 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

as long as input counts of the network on all partition sizes do not
exceed the architecture’s Rent characteristic.

3.3. Design of the Synapse Matrix
Architecture
Having defined the basic numbers of a neuromorphic chip
according to Section 3.2, i.e., knowing the number of neurons
Nc, the number of synapses per neuron S and the number of
inputs to the chip Nin, the question arises on how to design
a synapse matrix architecture that is fitted to these numbers.
The generalized matrix architecture (see Section 2.3) can be
utilized for this task. The basic building block of this architecture
is one group with Nin,g inputs and Sg synapses per neuron.
With Ng groups in the matrix, the total number of synapses per
neuron and the number of inputs calculate as S = Ng · Sg and
Nin = Ng · Nin,g . Thus, in principle, the synapse-to-input ratios
of group and chip equalize, S/Nin = Sg/Nin,g . This ratio can
be regarded as local synapse density, i.e., the fraction of available
connections from all possible input-to-neuron connections.

For deriving suitable values for Nin,g and Sg , we make
the assumption of uniform random connectivity, i.e., equal
probability for all possible input-to-neuron connections (for a
motivation of this choice, see Section 2.4). We set the connection
probability equal to the synapse density: p = S/Nin. For a given
group size Nin,g , we can then calculate the minimum value for

Sg , such that networks with the given connection probability
p can be mapped to the architecture with a certain minimum
mapping quality. That is, the expected synapse loss stays below
a pre-defined maximum value. For the following results, we
use analytical calculations of synapse loss, as introduced in
Section 2.4.

Results for different configurations are summarized in
Figure 10. Looking at synapse loss with respect to connection
probability (top left and top right plot), there is always a region
of probability values for which the synapse loss stays close to
zero, except for Sg = 1, where it rises approximately linearly
at small connection probabilities. The region of low synapse
loss effectively defines the operating regime of the respective
architecture. For a fixed synapse-to-input ratio (top right plot),
this region extends with increasing number of inputs Nin,g .
While this speaks in favor of groups with high input count,
decoder implementations become more complex with more
inputs, counterbalancing this advantage in practice.

For an actual architecture design, connection probability,
and maximum acceptable synapse loss are given, and suitable
combinations of Nin,g and Sg have to be found under these
constraints. The isoline plots in the bottom row of Figure 10
may be utilized for this task. Suitable values for Nin,g and Sg
may be taken directly along or below the isoline with the desired
maximum synapse loss. In general, choosing a combination with

FIGURE 10 | Expected synapse loss for different group configurations. (Top left) progression of synapse loss with connection probability for different number

of synapses per group at a constant group size of Nin,g = 8. (Top right) same as top left, but group size is always twice the number of synapses, Nin,g = 2 · Sg.

(Bottom row) isoline plots of synapse loss with respect to group size and synapses per group, for a constant connection probability of p = 0.1 (bottom left) and

p = 0.3 (bottom right).

Frontiers in Neuroscience | www.frontiersin.org 10 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

a low synapse-to-input ratio, i.e., a point toward the top left
corner in the plots, is preferable, as it results in a comparatively
low total number of synapses per neuron S, which calculates as
S = Sg · Ng = Sg · Nin/Nin,g . The plots also show that a choice
according to the expected value, i.e., Sg = p · Nin,g , results in a
relatively high synapse loss of 20% ormore. This is a consequence
of local statistical variations, requiring an increased synapse
count Sg for compensation. The effect is more pronounced at
lower connection probabilities.

In the next section, we investigate the special case Nin,g = 2,
Sg = 1 in more detail, which yields additional potential for
reducing synapse loss.

3.4. Example Architecture: the MAPLE Chip
As an example architecture, we now further investigate the case
Ng = 2, Sg = 1, which has been implemented in the MAPLE
chip (Mayr et al., 2013). As described in Noack et al. (2010),
this parameter choice allows for implementation as an extended
crossbar, where input driver circuits are placed on both sides of
the synapse matrix and a switch is added to each synapse for
choosing between the two input drivers per column. Compared
to a crossbar, this retains the advantages of shared input circuits
between synapses and simple layout, while doubling the number
of inputs to the matrix at no additional synapses.

At first sight, the MAPLE architecture is not a sensible choice,
because expected synapse loss increases linearly with connection
probability, as shown in the top right plot of Figure 10. However,
this architecture allows for explicit calculation of an optimal
input-to-group configuration, significantly reducing synapse loss
compared to a random placement (Noack et al., 2010). In fact,
the MAPLE architecture is the only case of a generalized matrix
architecture, except for the crossbar (cf. Section 3.1), for which
such an explicit calculation is currently possible. For all other
configurations of Ng and Sg , improving mapping quality by
changing input-to-group configuration has to resort to heuristic
methods.

Results for the optimized input-to-group configuration are
shown in Figure 11. The effectiveness of the optimization is
dependent on the number of neurons in the matrix. It is less
pronounced at higher neuron count, because the optimization
utilizes local statistical variations that are reducing with the
number of neurons. The optimized result always exhibits a region
with synapse loss close to zero, like for configurations with
more inputs and synapses per group (cf. Figure 10). In effect,
this optimization makes the MAPLE architecture a simple, yet
attractive, alternative to other variants of the generalized matrix
architecture.

3.5. Area Comparison
The considerations so far were concerned with the assessment of
mapping quality (i.e., synapse loss) for a given type of network.
As a result, each synapse matrix architecture can be designed
for ensuring a certain mapping quality, by providing a sufficient
number of synapses.

However, the final goal of a system design is to arrive at an
efficient architecture, using minimum resources on silicon area
and power (Hasler andMarr, 2013). As a first step in investigating

FIGURE 11 | Synapse loss of generalized architecture with Ng = 2 and

Sg = 1 for different number of neurons per matrix with optimized

input-to-group configuration. Like for the examples in Section 3.1, the

optimization was performed for a two-chip setup, so that the network size is

twice the number of neurons per chip.

efficiency, we provide an area comparison for the architectures
analyzed above.

For calculating the total area of an architecture, circuit areas
of the single components have to be known. Following Figure 1,
we separate here between the individual synapse circuit (pre/post
part), occupying area Asyn, and the pre-synaptic part with Apre,
which can be shared between synapses having the same pre-
synaptic input. The investigated architectures do not differ in the
arrangement of the post-synaptic part and the neuron circuit.
Therefore, we leave these parts out for the area comparison. For
all variants of the generalized matrix architecture except crossbar
and fully addressable matrix, individual synapses need to be
extended by a decoder for choosing one input from their group.
We denote the corresponding additional area per synapse asAdec.

The architecturesmainly differ in the total number of synapses
that are required to achieve a certain mapping quality. For the
following example, we require relative synapse loss to be below
5%. Then, for the crossbar architecture, the number of synapses
per neuron has to be the same as the number of inputs: Scb = Nin,
cf. Section 3.1. In principle, the number could be reduced by
5%, but this would not save much. Due to more configurability,
the synapse count typically is smaller for other choices of the
generalized architectures, and can be extracted from isoline plots
as those in Figure 10. We denote it as Sgen in the following. As
a special case, the fully addressable matrix is only constrained by
the number of synapses per neuron. The required synapse count
Sfa can be directly derived from the synapse count distribution of
the network, which is binomial for uniform random connectivity.

The total areas for the crossbar, fully addressable matrix and
generalized matrix architecture then calculate as follows:

crossbar: Acb = Nin · Nc · Asyn + Nin · Apre (4)

fully addr.: Afa = Sfa · Nc · (Asyn + Apre) (5)

generalized: Agen = Sgen · Nc · (Asyn + Adec)+ Nin · Apre (6)

Frontiers in Neuroscience | www.frontiersin.org 11 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

For better comparability between different implementations, all
areasmay be normalized by the area of a single synapse. Then, the
remaining area contributions are the relative pre-synaptic area
Apre/Asyn and the relative decoder area Adec/Asyn.

As an illustrative example, we take the same network as in
Section 3.1, i.e., 200 neurons divided evenly onto two chips, and
fix the connection probability at p = 0.1. Due to the uniform
random connectivity, the number of inputs per chip equals the
number of neurons, Nin = 200. For the fully addressable matrix,
a synapse count of Sfa = 27 is required for achieving less than
5% relative synapse loss. As example of the generalized matrix
architecture, we use the MAPLE architecture, whose mapping
quality is sufficient for the given network as well, cf. Figure 11.
Thus, we set Sgen = 100. With these synapse counts, areas can
be calculated and compared dependent on the relative sizes of
pre-synaptic and decoder circuit.

Results of this calculation are shown in Figure 12. A fully
addressable matrix architecture is most area-efficient if the pre-
synaptic circuit is small. Then, sharing of pre-synaptic circuits
between synapses, as done by the other architectures, has only
little area advantage. In contrast, minimizing the number of
synapse circuits is crucial in this case. The crossbar architecture
is most efficient if the pre-synaptic circuit is comparatively big
and decoders in individual synapses would cause a significant
area overhead. In other words, a single synapse circuit is cheap
in terms of area. This is the case for memristive devices, where
driver circuits have to contain the complete synaptic waveform
generation (Zamarreno-Ramos et al., 2011; Mayr et al., 2012;
Saighi et al., 2015) and integration of decoders in synapses would
result in a high area penalty.

The generalizedmatrix architecture is best for big pre-synaptic
circuits, but small area overhead for synaptic decoders. This is the
typical case for CMOS implementations that include short-term
plasticity or implement long-term plasticity rules that allow to
move parts of the plasticity calculation to the pre-synaptic circuit.
The MAPLE chip is a typical example of this case (Noack et al.,
2010; Mayr et al., 2013). Its core synapse circuits require a silicon

FIGURE 12 | Area comparison for crossbar, fully addressable matrix,

and MAPLE (i.e., generalized) architecture, implementing the example

network. Color indicates the best architecture, while color intensity denotes

percentage area saving compared to the next-best architecture.

area of 660µm2 each.With decoder, a synapse occupies 750µm2,
resulting in relative decoder overhead of 14%. The size of the pre-
synaptic circuit, including pre-synaptic waveform generation for
the local correlation plasticity rule (Mayr and Partzsch, 2010),
takes 6900 µm2 silicon area, which is a factor of 10.5 bigger than
the core synapse circuit. In Figure 12, this point lies deep inside
the area where the generalizedmatrix is most area-efficient. Thus,
the MAPLE architecture is indeed the most area-efficient choice
in this case.

In summary, a comparing diagram such as Figure 12 can
be generated from dimensioning the different architectures
according to a given network. It is thus independent of
technology or circuit design. However, together with rough
estimates on circuit sizes, it allows for an informed decision on
the most area-efficient architecture.

4. DISCUSSION

In this article, we have introduced methods for analysing
neuromorphic hardware architectures, building on previous
work (Partzsch and Schüffny, 2011, 2012; Partzsch, 2014). We
have also shown how to systematically design architectures from
a pre-defined network model, and demonstrated how to find the
most area-efficient architecture for a given use case.

Using the Rent characteristic for summarizing the
connectivity of a neuromorphic system is a useful tool,
being relatively simple to derive, yet highly descriptive when
comparing to concrete network examples. It can be used as a
benchmark indicator, comparing performance of neuromorphic
systems in emulating synaptic connectivity. It furthermore allows
to start the system design from a network model, and can be
utilized in major design decisions. This enables a network-driven
design process, which is an important advantage compared to
previous, trial-and-error based works on architecture design
(Fieres et al., 2008; Navaridas et al., 2009). Along these lines,
we also introduced a generalized matrix architecture that is
a practical tool for analysing and designing neuromorphic
architectures with a synapse matrix.

While the general, network-driven design approach
is applicable to a wide range of network structures, our
investigations in this paper were restricted to uniform random
connectivity. We chose this model because of simplicity and
the possibility for analytical calculations. Other connectivity
models could principally be characterized by connection density
changing over the network. In the Rent characteristic, this may
result in partitions of the same size with highly variable number
of inputs. That would require calculating a maximum Rent
characteristic that covers all partitions, instead of using the mean
and some safety margin to account for statistical variations.
However, if changes in connection density are caused by some
underlying geometrical restrictions, the Rent characteristic is
likely to cover them well (Partzsch and Schüffny, 2012), allowing
to employ them in the system design.

In the generalized matrix architecture, an increased local
connection density can be supported by feeding one external
input to several groups, at the expense of less different inputs.
The same can be done neuron-wise by connecting two or more

Frontiers in Neuroscience | www.frontiersin.org 12 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

neuron circuits together to form a single neuron with more
synapses, as already employed by Schemmel et al. (2010) and
Qiao et al. (2015). As a result, arbitrary fan-in and fan-out
distributions could be realized, following a similar approach
as for generalized random graphs (Chung and Lu, 2002). In
effect, a design fitted for low connection density and reserves
in the number of inputs allows for adaptation to locally
changing connection densities. However, this approach does
not necessarily capture specific, non-random connectivity, like
nearest-neighbor connections, which are better implemented
with specialized architectures (Choi et al., 2004).

While our investigations on synapse matrix architectures
have no straightforward link to other implementation
approaches, some of the methods can be utilized to characterize
connectivity constraints in these systems as well. Multi-
synapses, implementing one synapse circuit for multiple
synaptic connections with superimposing activation functions
(Vogelstein et al., 2007; Benjamin et al., 2014), pose no hard
limits on synapse count and network architecture on chip level.
However, they are limited by the input bandwidth, which can be
analyzed with the Rent characteristic, given some mean spiking
activity per connection. The same is true for inter-core and
inter-chip bandwidth in multi-processor systems like SpiNNaker
(Furber et al., 2014). Dimensioning of the routing resources in
FPNAs (Farquhar et al., 2006) may utilize the Rent characteristic
as well.

Our approach explicitly evaluates architectures for their
mapping quality, expressed as synapse loss when realizing
a certain network on the architecture. Synapse loss causes
deviations in connectivity, which in turn may have consequences
on network behavior, as investigated for example by Brüderle
et al. (2011) and Petrovici et al. (2014). Dependent on the cause
of the synapse loss, network dynamics may be affected differently.
If the maximum available number of synapses per neuron is
too low, neurons receive less input than expected. This effect
is strongest for those neurons with the most synapses. As a
consequence, both the mean of spiking activity and its variance

between neurons may reduce. If the number of inputs to a group
of neurons is restricted, for example due to a limited number of
inputs per chip, connections from additionally required source
neurons can not be realized. This reduces the variety of inputs
and may result in more correlated activity. How these deviations
affect the overall performance of a network has to be analyzed
individually. Results of this investigation can in turn be utilized in
architecture design, because a higher tolerable synapse loss often
reduces the number of synapses to be implemented, as our results
show.

In terms of resource efficiency, we have limited our
investigations in this article to silicon area. However,
architectural choices also have great impact on energy efficiency.
The crossbar and generalized matrix architectures inherently
allow for sending one input event to several target synapses,
realizing part of the axonal fan-out. In contrast, in the limit
case of a fully addressable matrix, one input event stimulates
one individual synapse, so that the axonal fan-out has to be
performed completely off-chip. In other words, the same spike
event has to be transmitted several times to form all desired
connections with the neurons on the chip. As a result, both
required input bandwidth and total energy per event distribution
are multiplied. The same applies to multi-synapse architectures.
This example shows that a suited architecture design is also vital
for pushing neuromorphic systems to better energy efficiency
(Hasler and Marr, 2013), which is both the main promise and
challenge of neuromorphic engineering.

ACKNOWLEDGMENTS

The authors would like to thank Bernhard Vogginger for helpful
discussions on the manuscript. This research was supported
by the European Union Seventh Framework Programme (FP7)
under Grant Agreements No. 604102 (Human Brain Project)
and 269459 (CORONET). Its publication was supported by the
German Research Foundation and the Open Access Publication
Funds of the TU Dresden.

REFERENCES

Azghadi, M., Iannella, N., Al-Sarawi, S., Indiveri, G., and Abbott, D. (2014). Spike-

based synaptic plasticity in silicon: Design, implementation, application, and

challenges. Proc. IEEE 102, 717–737. doi: 10.1109/JPROC.2014.2314454

Bassett, D., Greenfield, D., Meyer-Lindenberg, A., Weinberger, D., Moore, S., and

Bullmore, E. (2010). Efficient physical embedding of topologically complex

information processing networks in brains and computer circuits. PLoS

Comput. Biol. 6:e1000748. doi: 10.1371/journal.pcbi.1000748

Benjamin, B., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A.,

Bussat, J., et al. (2014). Neurogrid: a mixed-analog-digital multichip

system for large-scale neural simulations. Proc. IEEE 102, 699–716. doi:

10.1109/JPROC.2014.2313565

Brüderle, D., Petrovici, M., Vogginger, B., Ehrlich, M., Pfeil, T., Millner, S.,

et al. (2011). A comprehensive workflow for general-purpose neural modeling

with highly configurable neuromorphic hardware systems. Biol. Cybern. 104,

263–296. doi: 10.1007/s00422-011-0435-9

Chicca, E., Indiveri, G., and Douglas, R. (2004). “An event-based VLSI network of

integrate-and-fire neurons,” in IEEE International Symposium on Circuits and

Systems (ISCAS) (Vancouver, BC), 357–360.

Choi, T., Shi, B., and Boahen, K. (2004). An ON-OFF orientation selective address

event representation image transceiver chip. IEEE Trans. Circ. Syst. I 51,

342–353. doi: 10.1109/TCSI.2003.822551

Christie, P., and Stroobandt, D. (2000). The interpretation and application of Rent’s

Rule. IEEE Trans. VLSI Syst. 8, 639–648. doi: 10.1109/92.902258

Chung, F., and Lu, L. (2002). The average distances in random graphs with

given expected degrees. Proc. Natl. Acad. Sci. U.S.A. 99, 15879–15882. doi:

10.1073/pnas.252631999

Culurciello, E., and Andreou, G. (2003). A comparative study of access topologies

for chip-level address-event communication channels. IEEE Trans. Neural

Netw. 14, 1266–1277. doi: 10.1109/TNN.2003.816385

Farquhar, E., Gordon, C., and Hasler, P. (2006). “A field programmable neural

array,” in IEEE International Symposium on Circuits and Systems (ISCAS) (Kos),

4114–4117.

Fieres, J., Schemmel, J., and Meier, K. (2008). “Realizing biological spiking

network models in a configurable wafer-scale hardware system,” in

International Joint Conference on Neural Networks (IJCNN) (Hong Kong),

969–976.

Furber, S., Galluppi, F., Temple, S., and Plana, L. (2014). The spinnaker project.

Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Frontiers in Neuroscience | www.frontiersin.org 13 October 2015 | Volume 9 | Article 386

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Partzsch and Schüffny Network-driven design principles

Gerstner, W., and Kistler, W. (2002). Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge, UK: Cambridge University Press.

Giulioni, M., Camilleri, P., Dante, V., Badoni, D., Indiveri, G., Braun, J., et al.

(2008). “A VLSI network of spiking neurons with plastic fully configurable

stop-learning synapses,” in International Conference on Electronics, Circuits and

Systems (St. Julian’s), 678–681.

Hagen, L., Kahng, A., Fadi, J., and Ramachandran, C. (1994). On the intrinsic rent

parameter and spectra-based partitioning methodologies. IEEE Trans. Comput.

Aided Des. Integr. Circuits Syst. 13, 27–37.

Hasler, J., and Marr, B. (2013). Finding a roadmap to achieve large neuromorphic

hardware systems. Front. Neurosci. 7:118. doi: 10.3389/fnins.2013.00118

Hellwig, B. (2000). A quantitative analysis of the local connectivity between

pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82,

111–121. doi: 10.1007/PL00007964

Landman, B., and Russo, R. (1971). On a pin versus block relationship for

partitions of logic graphs. IEEE Trans. Comput. 20, 1469–1479.

Markram, H., Wang, Y., and Tsodyks, M. (1998). Differential signaling via the

same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. U.S.A. 95,

5323–5328.

Mayr, C., and Partzsch, J. (2010). Rate and pulse based plasticity governed

by local synaptic state variables. Front. Synaptic Neurosci. 2:33. doi:

10.3389/fnsyn.2010.00033

Mayr, C., Noack, M., Partzsch, J., and Schüffny, R. (2010). “Replicating

experimental spike and rate based neural learning in CMOS,” in IEEE

International Symposium on Circuits and Systems (ISCAS) (Paris), 105–108.

Mayr, C., Stärke, P., Partzsch, J., Cederstroem, L., Schüffny, R., Shuai, Y. et al.

(2012). “Waveform driven plasticity in BiFeO3 memristive devices: model

and implementation,” in Advances in Neural Information Processing Systems,

Vol. 25, eds F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Lake

Tahoe: Curran Associates, Inc.), 1700–1708.

Mayr, C., Partzsch, J., Noack, M., and Schüffny, R. (2013). “Live demonstration:

multiple-timescale plasticity in a neuromorphic system,” in IEEE International

Symposium on Circuits and Systems (ISCAS) (Beijing), 666–670.

Merolla, P., Arthur, J., Alvarez, R., Bussat, J., and Boahen, K. (2014a). A multicast

tree router for multichip neuromorphic systems. IEEE Trans. Circuits Syst. I 61,

820–833. doi: 10.1109/TCSI.2013.2284184

Merolla, P., Arthur, J., Alvarez-Icaza, R., Cassidy, A., Sawada, J., Akopyan,

F., et al. (2014b). A million spiking-neuron integrated circuit with a

scalable communication network and interface. Science 345, 668–673. doi:

10.1126/science.1254642

Naud, R., Marcille, N., Clopath, C., and Gerstner, W. (2008). Firing patterns in the

adaptive exponential integrate-and-fire model. Biol. Cybern. 99, 335–347. doi:

10.1007/s00422-008-0264-7

Navaridas, J., Lujan, M., Miguel-Alonso, J., Plana, L. A., and Furber, S. (2009).

“Understanding the interconnection network of SpiNNaker,” in Proceedings of

the 23rd International Conference on Supercomputing (Yorktown Heights, NY:

ACM), 286–295.

Noack, M., Partzsch, J., Mayr, C., Henker, S., and Schüffny, R. (2010).

“Biology-derived synaptic dynamics and optimized system architecture for

neuromorphic hardware,” in Mixed Design of Integrated Circuits and Systems

(MIXDES) 2010 (Wrocław), 219–224.

Park, J., Yu, T., Maier, C., Joshi, S., and Cauwenberghs, G. (2012). “Live

demonstration: hierarchical address-event routing architecture for

reconfigurable large scale neuromorphic systems,” in IEEE International

Symposium on Circuits and Systems (ISCAS), 707–711.

Partzsch, J., and Schüffny, R. (2009). “On the routing complexity of neural network

models - rent’s rule revisited,” in European Symposium on Artificial Neural

Networks (ESANN) (Bruges), 595–600.

Partzsch, J., and Schüffny, R. (2011). Analysing the scaling of connectivity

in neuromorphic hardware and in models of neural networks.

IEEE Trans. Neural Netw. 22, 919–935. doi: 10.1109/TNN.2011.

2134109

Partzsch, J., and Schüffny, R. (2012). Developing structural constraints on

connectivity for biologically embedded neural networks. Biol. Cybern. 106,

191–200. doi: 10.1007/s00422-012-0489-3

Partzsch, J. (2014). Analyse- und Entwurfsmethoden für Verbindungsarchitekturen

Neuromorpher Systeme. Ph.D. thesis, TU Dresden, Germany.

Petrovici, M., Vogginger, B., Müller, P., Breitwieser, O., Lundqvist, M., Muller, L.,

et al. (2014). Characterization and compensation of network-level anomalies

in mixed-signal neuromorphic modeling platforms. PLoS ONE 9:e108590. doi:

10.1371/journal.pone.0108590

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Saighi, S., Mayr, C., Serrano-Gotarredona, T., Schmidt, H., Lecerf, G., Tomas, J.,

et al. (2015). Plasticity inmemristive devices for spiking neural networks. Front.

Neurosci. 9:51. doi: 10.3389/fnins.2015.00051

Schemmel, J., Gruebl, A., Meier, K., and Mueller, E. (2006). “Implementing

synaptic plasticity in a VLSI spiking neural network model,” in International

Joint Conference on Neural Networks (IJCNN) (Vancouver, BC), 1–6.

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in IEEE International Symposium on Circuits and Systems (ISCAS)

(Paris), 1947–1950.

Stroobandt, D., and Kurdahi, F. (1998). “On the characterization of multi-point

nets in electronic designs,” in Proceedings of the 8th Great Lakes Symposium on

VLSI (Lafayette, LA), 344–350.

Vogelstein, R., Mallik, U., Vogelstein, J., and Cauwenberghs, G. (2007).

Dynamically reconfigurable silicon array of spiking neurons with

conductance-based synapses. IEEE Trans. Neural Netw. 18, 253–265. doi:

10.1109/TNN.2006.883007

Yu, T., Park, J., Joshi, S., Maier, C., and Cauwenberghs, G. (2012). “65k-neuron

integrate-and-fire array transceiver with address-event reconfigurable synaptic

routing,” in Biomedical Circuits and Systems (BioCAS), 21–24.

Zamarreño-Ramos, C., Camuñas-Mesa, L., Perez-Carrasco, J., Masquelier, T.,

Serrano-Gotarredona, T., and Linares-Barranco, B. (2011). On spike-timing-

dependent-plasticity, memristive devices, and building a self-learning visual

cortex. Front. Neurosci. 5:26. doi: 10.3389/fnins.2011.00026

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Partzsch and Schüffny. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 October 2015 | Volume 9 | Article 386

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Network-driven design principles for neuromorphic systems
	1. Introduction
	2. Materials and Methods
	2.1. Classification of Model Components
	2.2. State-of-the-art Neuromorphic Chip Architectures
	2.3. Generalized Architecture
	2.4. Evaluation of Mapping Quality
	2.5. Rent's Rule

	3. Results
	3.1. Characterization of Common Neuromorphic Architectures
	3.2. Neuromorphic System Design
	3.3. Design of the Synapse Matrix Architecture
	3.4. Example Architecture: the MAPLE Chip
	3.5. Area Comparison

	4. Discussion
	Acknowledgments
	References

