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Increasing evidence suggests that noncoding RNAs play key roles in cellular processes,

particularly in the brain. The present study used RNA sequencing to identify the

transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and

ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding

genes were found to account for 54.8 and 57.0% of expressed genes, respectively,

and alignment of RNA sequencing reads revealed that only 25.5–28.1% mapped to

exonic regions of the genome. Differential expression analysis in the two cell lines

identified altered gene expression in both protein coding and noncoding RNAs as

they undergo neural differentiation with 222 differentially expressed genes observed

in SK-N-SH cells and 19 differentially expressed genes in ReNcell CX. Interestingly,

genes showing differential expression in SK-N-SH cells are enriched in genes implicated

in autism spectrum disorder, but not in gene sets related to cancer or Alzheimer’s

disease. Weighted gene co-expression network analysis (WGCNA) was used to detect

modules of co-expressed protein coding and noncoding RNAs in SK-N-SH cells and

found four modules to be associated with neural differentiation. These modules contain

varying levels of noncoding RNAs ranging from 10.7 to 49.7% with gene ontology

suggesting roles in numerous cellular processes important for differentiation. These

results indicate that noncoding RNAs are highly expressed in human neural progenitor

cells and likely hold key regulatory roles in gene networks underlying neural differentiation

and neurodevelopmental disorders.
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INTRODUCTION

Neural differentiation is a complex biological process requiring precise regulation of gene
expression. However, the molecular mechanisms underlying this transcriptional control remain
largely unknown. Recent advances in genomics technology have unveiled the complexities of the
mammalian transcriptome. It is now understood that most of the genome is transcribed with
less than 2% encoding for protein resulting in a vast and largely uncharacterized landscape of
non-protein coding RNAs (Carninci et al., 2005; Birney et al., 2007; Kapranov et al., 2007, 2010;
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Derrien et al., 2012; Djebali et al., 2012; Dunham et al.,
2012). Once thought to be transcriptional noise, these
noncoding RNAs are emerging as key regulatory elements
of gene expression. While several noncoding RNAs have
been shown to be important in various biological processes,
including cell differentiation (Morris and Mattick, 2014),
the functions of most noncoding RNA transcripts are
unknown.

Previous studies investigating the molecular dynamics of
neural differentiation have focused on the role of protein
coding genes while largely ignoring noncoding RNAs (Shin
et al., 2007; Wu et al., 2010; Fathi et al., 2011). Additionally,
many of these studies have used cells generated from smaller
animals such as rodents (Ahn et al., 2004; Gurok et al.,
2004; Aiba et al., 2006; Lee et al., 2006; Suh et al., 2008).
It has been shown that the transcriptional landscape of more
evolutionarily complex organisms contain larger numbers of
noncoding RNAs (Taft et al., 2007). In fact, humans have
been shown to express one of the largest quantities of
noncoding RNAs (Liu et al., 2013) with these transcripts showing
dynamic expression patterns in the developing brain (Lipovich
et al., 2014; Ziats and Rennert, 2014). Therefore, it is likely
that these non-protein coding transcripts play key regulatory
roles in the neurodevelopmental processes contributing to
the complexities observed in the human brain. Additionally,
alterations in the expression patterns of noncoding RNAs
have been suggested to play critical roles in the underlying
pathophysiology of neuropsychiatric disorders (Takahashi et al.,
2003; Kerin et al., 2012; Ziats and Rennert, 2013; Barry et al.,
2014).

Human neural progenitor cells serve as promising
models for investigating the mechanisms underlying early
neurodevelopmental processes such as differentiation. Two such
cell lines are SK-N-SH and ReNcell CX cells. SK-N-SH cells
were derived from human neuroblastoma cells collected from
a 4 year-old female. These cells have the ability to differentiate
into a neuronal phenotype characterized by extensive neurite
outgrowth. ReNcell CX cells were derived from a human
14 week fetal cerebral cortex and immortalized by retroviral
MYC oncogene transduction. ReNcell CX human neural
progenitor cells express high levels of the neural stem cell
markers Nestin and Sox2 and differentiate into TuJ1-positive
neurons. Therefore, these cell lines are ideal for studying the
complex molecular mechanisms underlying human neural
differentiation. The present study used RNA sequencing on
these two neural progenitor cell lines to gain insight into the
transcriptional profile of human neural differentiation. In
order to identify noncoding RNAs possibly regulating this
biological process, a weighted gene co-expression network
was constructed to form clusters (modules) of protein coding
and non-protein coding genes showing highly correlated
expression patterns. Therefore, the gene networks regulated
by noncoding RNAs can then be inferred through the
functional properties of their co-expressed protein coding
genes.

MATERIALS AND METHODS

Cell Culture
The human neural progenitor cell lines, SK-N-SH and ReNcell
CX, were used to measure gene expression as they differentiate
into cortical projection neurons. SK-N-SH cells (American Type
Culture Collection; Manassas, VA, USA) were maintained in
a minimum essential medium supplemented with 10% heat-
inactivated fetal bovine serum, 1% penicillin/streptomycin,
nonessential amino acids, and 1.5 g l−1 sodium bicarbonate in
183 cm flasks at 37◦C and 5% CO2. ReNcell CX cells (Millipore;
Billerica, MA, USA) were maintained in ReNcell Neural Stem
Cell Maintenance Medium supplemented with fibroblast growth
factor (FGF) and epidermal growth factor (EGF) (Millipore)
in laminin-coated T75 flasks at 37◦C and 5% CO2. Both cell
lines were seeded into six 10-cm well plates and grown for
24 h (∼70% confluency). All cells in this study were used as
empty vector controls for other experiments. As such, cells
were then transfected with 2µg of a pIRES2-AcGFP empty
vector (Clontech; Mountain View, CA, USA) using Amaxa
Nucleofector technology (Lonza; Basel, Switzerland) according to
the manufacturer’s protocol. SK-N-SH cells were then allowed to
replicate and undergo differentiation until being harvested either
24 h (n = 8) or 72 h (n = 8) following transfection with the
empty vector. Similarly, ReNcell CX cells were harvested 24 h
(n = 8) and 72 h (n = 8) post empty vector transfection.
Prior to harvesting, cells were imaged using an Olympus CKX41
inverted microscope with an attached Q Imaging QICAM Fast
1394 Digital Camera. Each harvesting of cells was treated as an
individual experiment.

Quantitative PCR
To ensure that transfection with the empty vector did not have
an overall impact on transcription, quantitative PCR (qPCR)
was performed on protein coding and noncoding RNAs either
showing differential expression or with known functional
roles in neuronal development. SK-N-SH and ReNcell CX
cells were processed as described above with the exception
of a subset of cells not exposed to Nucleofector transfection.
Cell pellets of untransfected SK-N-SH (24 h, n = 4; 72 h,
n = 4) and ReNcell CX cells (24 h, n = 4; 72 h, n = 3)
were processed for RNA isolation using Qiagen RNeasy kit
(Qiagen) along with cell pellets of transfected SK-N-SH (24 h,
n = 3; 72 h, n = 3) and ReNcell CX cells (24 h, n = 4; 72 h,
n = 3). Superscript III (Life Technologies; Grand Island, NY,
USA) was used for reverse transcription of cDNA libraries.
Quantitative PCR (qPCR) was performed using the Taqman
Gene Expression qPCR kits (Life Technologies) on a Life
Technologies OneStepPlus real-time PCR machine. Each
sample was run in triplicate along with the housekeeping
gene, GAPDH. Assays (Life Technologies) used in this study
include: ATF3 (Hs00231069_m1), CNTNAP2 (Hs01034283_m1),
GAPDH (Hs99999905_m1), HMOX1 (Hs01110250_m1),
MALAT1 (Hs00273907_s1), MIR137 (Hs04231500_s1), MSN
(AIWR1S8), and PLAUR (Hs00958880_m1). Relative quantity
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of the transcript was determined using the 2−11Ct method
using GAPDH as a reference (Schmittgen and Livak, 2008). The
observed qPCR changes in the transfected cells were compared
to the cells not exposed to Nucleofector transfection using
the Pearson correlation test carried out on the R statistical
environment using the (cor.test) package.

RNA-sequencing
Harvested cells were homogenized with QIAshredder spin
columns (Qiagen; Valencia, CA, USA). Total cellular
RNA was extracted using Qiagen RNeasy kit according
to manufacturer’s instructions. RNA quality was assessed
using Agilent Technologies 2200 TapeStation Instrument
(Agilent Technologies; Santa Clara, CA, USA) and 260/280
absorbance ratios were captured with a NanoDrop ND-1000
Spectrophotometer (Thermo Fisher Scientific; Waltham, MA,
USA). cDNAwasmade using the Illumina Truseq Stranded Total
RNA Sample Preparation kit per the manufacturer’s instructions
and Ribozero (Illumina; San Diego, CA, USA) was used to
deplete rRNA from the sample. Libraries were multiplexed using
the Illumina Truseq Stranded Total RNA Sample Preparation
kit with four samples per lane, pooled and sequenced using
the HiSeq2000 sequencer to generate 101 bp single-end reads
(Ilumina; San Diego, CA, USA). Sequencing obtained an average
depth of about 28.5 million reads per replicate in SK-N-SH
cells and about 36.3 million reads per replicate in ReNcell CX
cells (Supplementary Table 1). RNA sequencing data files were
deposited into the SRA database under the accession number
SRP064264.

RNA-sequencing Analysis
Quality control processing of raw reads was carried out using
Cutadapt (version 1.3; Martin, 2011). One SK-N-SH sample
collected at 72 h did not meet quality control standards and
was removed from further analysis. Reads were then aligned to
the ENSEMBL GrCH38 version 77 transcriptome using Bowtie2
(version 2.1.0) and TopHat (version 2.0.10; Trapnell et al., 2009).
Gene annotations were derived from the ENSEMBL GrCH38.77
database. The Picard command line tool “CollectRnaSeqMetrics”
(https://broadinstitute.github.io/picard/) (version 1.134) was
used to assess the percentage of reads mapping to exonic,
intronic, untranslated regions (UTR), and intergenic regions
of the genome in both cell lines. Differential gene expression
analysis was carried out using Cuffdiff (version 2.2.1; Trapnell
et al., 2012). All default settings were used during the Cuffdiff
analysis with the exception of masking all ribosomal RNAs
and using the no-effective-length-correction option. Genes were
defined as being expressed if they showed a normalized fragments
per kilobase of transcript per million mapped reads (FPKM)
value of 0.1 or greater. Cuffdiff uses the statistical equation
T = E[log(y)]/Var[log(y)] where y is the ratio of the normalized
counts between two conditions. Hence, a t-test was used to
generate a p-value for differential expression. No threshold was
set for the magnitude of differential expression given the lack of
a priori knowledge regarding the biological impact of these RNA
transcripts. Therefore, differential expression was defined using
statistical criteria. Genes with a false discovery rate (q-value) less

than 0.05 were considered significant. However, genes identified
using the more lenient statistical threshold of p < 0.05 are also
reported in the Supplementary Files.

Weighted Gene Co-expression Network
Analysis (WGCNA)
Weighted gene co-expression network analysis (WGCNA) is
a systems biological technique used to identify networks
of co-expressed genes as they relate to a phenotypic trait
(Langfelder and Horvath, 2008). This approach calculates
correlation coefficients between the expression values of genes
and determines a connectivity measure (topological overlap) by
summing their connection strengths with other genes. These
calculations permit the clustering of genes into distinct modules
based on their topological overlap. In order to determine if there
is a relationship between the formed modules and a phenotypic
trait, the first principle component (eigengene) of the modules
can then be correlated with the phenotype data. With the
inclusion of noncoding RNAs in this analysis, it is possible to
identify noncoding RNAs showing highly correlated expression
with protein coding genes important in neural differentiation and
infer their functional properties through these associations.

As a result of their common use in neuroscience and the
robust transcriptional changes observed in the present study,
the SK-N-SH cell line was chosen for the construction of a
weighted gene co-expression network. A signed co-expression
network was built for SK-N-SH cells using the WGCNA package
(version 1.46) in R. Normalized gene expression values were
collected for each sample using Cuffdiff. The genes used in
the co-expression network were restricted to those showing a
minimum of 0.1 FPKM to reduce the amount of noise in the
network. This resulted in 27,984 expressed genes. The WGCNA
method creates an adjacency matrix from the gene correlation
values using a power function. The power was selected from
a scale free topology fit and a power of 20 was chosen for
the network. The “blockwiseModules” function was utilized for
network construction. To facilitate the formation of large and
distinct modules, the minimum module size was set to 100 with
the minimummodule membership connectivity (kME) set at 0.7.
Modules showing a correlation value of 0.75 were merged.

The eigengene of the formed modules was then extracted and
a Pearson’s correlation was calculated with the cell collection
time. These calculations were used to identify biologically
interesting modules for further analysis. Modules were selected
for additional analysis if the correlations with cell collection time
had a p < 0.1.

Functional Enrichment
In order to functionally annotate differentially expressed genes
and gene co-expression modules of interest, the Database for
Annotation, Visualization and Integrated Discovery (DAVID)
(version 6.7; Dennis et al., 2003) was used to identify enriched
gene ontology terms. Analyses were carried out using default
options and redundant terms or terms with a Benjamini-
Hochberg corrected p > 0.05 were removed.
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Disease-associated Gene Enrichment
To investigate whether differentially expressed genes are enriched
in disease related gene sets, lists of genes implicated in
autism spectrum disorder, Alzheimer’s disease, and cancer were
collected. Autism candidate genes were compiled from the
Simons Foundation Autism Research Initiative (SFARI) AutDB
database (Abrahams et al., 2013). This gene list was restricted
to only include genes with SFARI gene rankings 1–4 (strong
evidence—minimal evidence) and S (syndromic) as performed
previously (Wilkinson et al., 2015). The list of genes implicated in
Alzheimer’s disease was obtained fromALZGENE (Bertram et al.,
2007) and cancer related genes were collected from the Catalogue
of Somatic Mutations in Cancer (COSMIC) (Futreal et al., 2004).
Because most of the genes listed in these lists are protein coding,
the number of expressed protein coding genes in SK-N-SH and
ReNcell CX cells served as the background for enrichment tests.
Statistics were analyzed using the two-tailed Fisher’s exact test
using the (fisher.test) package in R.

RESULTS

Validation of Gene Expression in
Transfected Cells
To ensure that transfection with an empty vector using
Nucleofector technology does not produce an overall effect on the
transcriptional profile of the cells, qPCR was performed on cells
exposed to the transfection protocol as well as transfection naïve
cells. Comparison of these experimental procedures indicated a
significant Pearson’s correlation coefficient for the level of gene
expression changes between the 24 and 72 h time-points in both
SK-N-SH (R = 0.76, p = 0.048) and ReNcell CX cells (R = 0.79,
p = 0.036) (Supplementary Figure 1; Supplementary Table 2).
Thus, exposure to transfection did not have an overall effect on
gene expression in these cell lines.

Neuronal Morphology of Differentiating
Cells
Images of SK-N-SH and ReNcell CX cells were captured prior
to cell harvesting in order to characterize the cell morphology
observed at the 24 and 72 h collection time-points. SK-N-
SH cells showed distinct stages of neuronal maturation with
small outgrowth of neurites evident at 24 h and longer, and
more mature neurites present at 72 h (Supplementary Figure 2).
ReNcell CX cells revealed a more rapid replication time and
achieved a more mature neuronal morphology characterized by
longer neurites at the 24 h time-point when compared to SK-N-
SH cells. However, it was evident that ReNcell CX cells collected
at the 72 h time-point were more mature than the cells collected
at the earlier time-point (Supplementary Figure 2) indicating that
these cells are in distinct stages of neural differentiation at these
two collection time-points.

Distribution of RNA-Sequencing Reads
RNA-sequencing reads were aligned to the ENSEMBL GrCH38
version 77 genome and the distribution of reads was assessed.
Reads obtained from SK-N-SH cells were mapped to mRNA

with an average of 25.5% localizing to exonic regions and
25.7% mapping to untranslated regions (UTR) (Figure 1A). The
remaining reads aligned to areas of the genome shown to harbor
noncoding RNAs with 22.0 and 26.8% mapping to intronic
and intergenic regions, respectively. ReNcell CX cells contained
a similar expression profile with 28.1% of reads localizing to
exonic regions (Figure 1B) and 25.2% mapping to the UTR. The
remaining reads in ReNcell CX cells mapped to intronic (19.1%),
and intergenic (27.6%) regions of the genome.

The number of expressed genes (see Materials and Methods)
in human neural progenitors cells was analyzed and resulted in
SK-N-SH cells expressing 27,984 genes and 26,183 genes being
expressed in ReNcell CX cells (Table 1). All expressed genes
are listed in Supplementary Table 3. Genes were then classified
based on their gene type and revealed that 54.8 and 57.0% of the
genes in SK-N-SH and ReNcell CX cells, respectively, are protein

FIGURE 1 | Distribution of RNA sequencing reads in neural progenitor

cell lines, SK-N-SH and ReNcell CX. Reads were mapped to the

transcriptome of ENSEMBL GrCH38 release 77. The reads were assigned as

exonic (black), untranslated region (UTR) (light yellow), intronic (light blue), or

intergenic (light green) regions. All replicates were averaged in (A) SK-N-SH

and (B) ReNcell CX cell lines.
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TABLE 1 | Characterization of expressed genes in human neural progenitor cells.

Cell line Number of expressed genes* Protein coding Antisense Pseudogene lncRNA pre-miRNA Other noncoding RNA

SK-N-SH 27984 15339 (54.8%) 3369 (12.0%) 3517 (12.6%) 2368 (8.5%) 375 (1.3%) 3016 (10.8%)

ReNcell CX 26183 14913 (57.0%) 3100 (11.8%) 2948 (11.2%) 2059 (7.9%) 390 (1.5%) 2775 (10.6%)

*Minimum 0.1 fragments per kilobase of transcript per million mapped reads (FPKM).

lncRNA, long noncoding RNA; pre-miRNA, pre-micro-RNA.

FIGURE 2 | Classification of expressed genes in human neural

progenitor cell lines. Expressed genes were classified as being either protein

coding or noncoding RNA in both SK-N-SH (A) and ReNcell CX cells (B).

coding (Figure 2). The remaining genes were found to be various
classifications of noncoding RNAs (Table 1).

The top 5% of genes showing the highest normalized
expression values were identified (Supplementary Table 4).
Noncoding RNAs comprised 6.6 and 6.7% of the genes showing
the highest level of expression in SK-N-SH and ReNcell CX
cells, respectively. Interestingly, a known long noncoding RNA
shown to be important in regulating gene expression and
synaptogenesis, MALAT1, is highly expressed in both cell
lines along with other noncoding RNAs of unknown function
(Bernard et al., 2010).

The abundance of noncoding RNA subtypes was assessed in
both cell lines. Long noncoding RNAs (lncRNA) account for the
greatest proportion of the noncoding RNAs in SK-N-SH cells at
both the 24 h (51.1%) and 72 h (47.9%) collection time-points
(Figure 3A). The remaining expression of noncoding RNAs in
SK-N-SH cells collected at 24 h was attributed to snoRNAs
(17.7%), antisense transcripts (15.1%), pseudogenes (11.2%),
precursor miRNAs (pre-miRNA) (0.8%), and other noncoding
RNAs (4.1%). Cells collected at the more differentiated state
(72 h) show slight shifts in the abundance patterns of snoRNAs
(25.2%), antisense transcripts (12.1%), pseudogenes (9.9%),
pre-miRNAs (0.7%), and other noncoding RNAs (4.2%).

The subtype of noncoding RNA showing the greatest
abundance in ReNcell CX cells was snoRNAs representing 45.2
and 26.6% of the normalized expression values of noncoding
RNAs in cells collected at 24 and 72 h, respectively (Figure 3B).
The abundance of lncRNAs, antisense transcripts, pseudogenes,
pre-miRNAs, and other noncoding RNAs in cells collected at
the 24 h time-point represented 21.6, 19.8, 7.6, 1.1, and 4.7%
of the expression, respectively. ReNcell CX cells collected at the

FIGURE 3 | Proportion of normalized expression values attributed to

noncoding RNA subtypes. The proportion of the FPKM values attributed to

distinct classes of noncoding RNA in (A) SK-N-SH and (B) ReNcell CX cells.

Long noncoding RNA (lncRNA), precursor microRNA (pre-miRNA), antisense

transcript (antisense), small nucleolar RNA (snoRNA), other noncoding RNA

(ncRNA).

more differentiated state show 21.2, 24.3, 20.1, 1.8, and 7.2% of
the expression values of noncoding RNAs being attributed to
lncRNAs, antisense transcripts, pseudogenes, pre-miRNAs, and
other noncoding RNAs, respectively.

Differential Gene Expression in Neural
Differentiation
Both human neural progenitor cell lines were collected at two
time-points of neural differentiation. Differential gene expression
analysis revealed transcriptional changes between these time-
points in both cell lines (Supplementary Table 5). All of the
differentially expressed genes in both SK-N-SH and ReNcell CX
cells are listed in Supplementary Table 6 with their associated
q-values and more statistically lenient p-values.

SK-N-SH cells revealed 222 differentially expressed genes (q <

0.05) between the two collection times with 105 (47.3%) being
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upregulated in the more differentiated state (72 h). Noncoding
RNAs represented 4.5% of the differentially expressed genes in
SK-N-SH cells. Functional enrichment in gene ontology terms
was analyzed in differentially expressed protein coding genes
in SK-N-SH cells and revealed enrichment in terms such as
biological adhesion, regulation of cell proliferation, and cell
motion (Figure 4) (Supplementary Table 7). An exploratory
analysis was run using a statistical threshold of p < 0.05, and
identified 1284 differentially expressed genes with 11.4% being
noncoding RNA. Genes showing differential expression using
the more lenient statistical threshold demonstrate functional
enrichment in the same gene ontology terms revealed using
the false discovery rate calculation (Supplementary Figure 3)
(Supplementary Table 7).

ReNcell CX cells revealed differential expression in only 19
genes with 14 (73.7%) of these genes being upregulated at the
72 h time-point. All of the differentially expressed genes were
identified as protein coding with functional enrichment in the
gene ontology term relevant to a response to oxidative stress
(Supplementary Table 7). To broaden this search, the p-value
calculation was used and revealed differential expression in
534 genes with 20 (3.7%) being identified as noncoding RNA.
Overall, these genes show functional enrichment in GO terms
relevant to processes such as chromatin assembly, protein-DNA
complexes, and biological adhesion (Supplementary Figure 3;
Supplementary Table 7).

Investigation of the differentially expressed genes revealed
7 genes showing altered expression in both cell lines as they
differentiate into cortical projection neurons. All of these genes
were identified as protein coding genes. In an exploratory
analysis, 106 genes were identified as being differentially
expressed in both cell lines when using themore lenient statistical
cutoff for differential expression with 4 of these genes being
identified as noncoding RNA.

Enrichment of Disease-associated Genes
Differentially expressed genes from the two cell lines were
analyzed for enrichment in lists of genes implicated in a

FIGURE 4 | Representative enrichment of gene ontology among

differentially expressed genes (q < 0.05). GO enrichment analysis of

SK-N-SH. P-value represents Benjamini-Hochberg correction for multiple

tests.

neurodevelopmental disorder (autism spectrum disorder), a
neurodegenerative disorder (Alzheimer’s disease), and cancer.
Genes differentially expressed in SK-N-SH cells were shown to
be trending for enrichment in the gene list for autism spectrum
disorder (ASD) (p = 0.061, OR = 1.959) while showing no
enrichment in genes implicated in either Alzheimer’s disease (p =

0.118,OR = 1.460) or cancer (p = 0.072,OR = 1.623). However,
a significant enrichment was observed in the gene list for autism
spectrum disorder (p = 0.0454, OR = 1.437) when using
the less stringent statistical threshold. No statistically significant
enrichment was observed in Alzheimer’s disease (p = 0.575,
OR = 0.982) or cancer (p = 0.279, OR = 1.101). The autism-
associated genes showing differential expression in SK-N-SH cells
are listed in Table 2.

TABLE 2 | ASD-associated genes differentially expressed in SK-N-SH

cells.

ASD-associated Fold Locus* p-value q-value

gene change

CNTNAP4 8.62 16:76277277-76928169 5.00E-05 6.07E-3

CNTNAP5 3.73 2:124025286-124915287 5.00E-05 6.07E-3

CNTNAP2 3.62 7:146116360-148420998 5.00E-05 6.07E-3

ICA1 2.93 7:8113183-8344516 5.00E-05 6.07E-3

FHIT 2.38 3:59749309-61251459 4.77E-02 5.91E-1

CHRNA7 2.37 15:32030487-32172521 1.50E-04 1.52E-2

DPP6 2.33 7:153887096-154894285 2.00E-04 1.86E-2

CACNA1C 2.13 12:1946053-2697950 3.00E-03 1.25E-1

CNTN4 1.99 3:2098812-3061145 3.15E-03 1.28E-1

PARK2 1.90 6:161347419-163315492 2.17E-02 4.07E-1

SEMA5A 1.90 5:9001773-9546075 2.75E-03 1.17E-1

RIMS3 1.87 1:40620678-40665657 9.00E-04 5.76E-2

CADM1 1.85 11:115169217-115504957 1.25E-03 7.22E-2

MYO16 1.81 13:108596151-109208007 6.25E-03 1.99E-1

RPS6KA2 1.79 6:166409363-166957191 2.18E-02 4.07E-1

MYT1L 1.75 2:1789112-2331260 8.25E-03 2.36E-1

ASXL3 1.74 18:33578614-33751192 7.75E-03 2.28E-1

AUTS2 1.63 7:69598918-70793068 6.55E-03 2.04E-1

NRXN2 1.61 11:64606173-64723188 4.14E-02 5.53E-1

KDM5B 1.55 1:202724490-202809470 1.22E-02 2.98E-1

GABRB3 1.55 15:26543545-26949207 1.49E-02 3.35E-1

AGAP1 1.53 2:235494088-236131800 4.32E-02 5.65E-1

DPYD −1.43 1:97077742-97921049 4.23E-02 5.59E-1

RAPGEF4 −1.60 2:172677140-173052893 6.35E-03 2.00E-1

MET −1.65 7:116672389-116798386 8.45E-03 2.39E-1

TCF7L2 −1.68 10:112950249-113167678 4.16E-02 5.53E-1

NRP2 −1.73 2:205681989-205798133 8.00E-03 2.31E-1

ANXA1 −1.81 9:73151756-73170393 2.45E-03 1.08E-1

PCDH9 −1.83 13:66302833-67230445 1.92E-02 3.84E-1

IL1RAPL1 −2.55 X:28587398-29956723 4.01E-02 5.46E-1

ITGB3 −2.73 17:47253845-47441312 2.00E-04 1.86E-2

NLGN1 −3.59 3:173396283-174286644 5.00E-05 6.07E-3

TBX1 −7.32 22:19756702-19854939 3.95E-02 5.42E-1

ASD, autism spectrum disorder. *Refers to Ensembl GrCH38.77.
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Enrichment analysis was also performed on genes showing
altered expression in ReNcell CX cells. Contrary to the results
found in SK-N-SH cells, differentially expressed genes in the
ReNcell CX cell line failed to reach statistical significance for
enrichment in gene lists for ASD (p = 1.00, OR = 1.00),
Alzheimer’s disease (p = 0.214, OR = 2.466), and cancer
(p = 1.00, OR = 1.00). Enrichment remained nonsignificant
for autism spectrum disorder (0.901, OR = 0.659), Alzheimer’s
disease (p = 0.560, OR = 0.984), and cancer (p = 0.574, OR =

0.977) when analyzing the genes showing differential expression
using the more lenient statistical cutoff.

Weighted Gene Co-expression Network
Analysis
Identifying noncoding RNAs regulating complex biological
processes remains a difficult challenge due to the vast landscape
of uncharacterized noncoding RNAs. To narrow the list of
noncoding RNAs possibly regulating neural differentiation, a
weighted gene co-expression network was constructed to form
distinct modules of protein coding and noncoding genes showing
highly correlated expression patterns. This network construction
allows for the identification of transcriptional networks possibly
being regulated by these noncoding RNAs.

SK-N-SH cells were selected for construction of a gene co-
expression network due to the robust transcriptional changes
observed as a result of neural differentiation. A signed network
was constructed using the 27,984 expressed genes containing a
minimum FPKM value of 0.1. The constructed network revealed
25 distinct modules of co-expressed genes (Figure 5A) and these
modules were each assigned a color (Supplementary File 3). Four
modules were identified as being associated with cell collection
time (Figure 5B) and were selected for further analysis. The
modules meeting criterion were the midnight blue, purple, green,
and blue modules (p = 0.02, p = 0.03, p = 0.05, p = 0.09,
respectively).

Characteristics of Neural Differentiation
Associated Modules
Genes assigned to the midnight blue, purple, green, and blue
modules were first divided as being either protein coding or
noncoding RNA. Noncoding RNA represented 10.7, 27.1, 49.7,
and 39.3% of the genes assigned to these modules, respectively
(Figures 6A–D). In agreement with their association with neural
differentiation, the four modules show an enrichment of genes
within GO categories relevant to the synapse, transcription,
chromatin remodeling, and the regulation of cell proliferation
and cell size (Figures 6E–H) (Supplementary Table 8).

DISCUSSION

The differentiation of pluripotent stem cells into human cortical
projection neurons involves a complex network of coordinated
changes in gene expression. With the growing appreciation that
noncoding RNAs play critical roles in the regulation of gene
expression, it is likely that noncoding RNAs are crucial for proper
neurogenesis and differentiation. The present study used RNA
sequencing to detect noncoding RNAs that are expressed in the
human neural progenitor cells, SK-N-SH and ReNcell CX, as they
differentiate into cortical projection neurons. The transcriptional
profiles of these cells contain a large proportion of noncoding
RNAs. It has been postulated that the rise in non-protein
coding regions of the genome corresponds to the evolutionary
development of more complex organisms (Taft et al., 2007; Liu
et al., 2013). As such, the human transcriptome, particularly in
the brain, has been shown to express a large amount of these
regulatory transcripts (Barry, 2014). In fact, previous research
has suggested that 64% of the transcriptional reads in the human
brain are noncoding RNAwith smaller proportions being evident
in other tissues (Kapranov et al., 2010). Consistent with these
previous findings, approximately half of the expressed genes in
the two human neural progenitor cells used in this study were

FIGURE 5 | Weighted Gene Co-Expression Network Analysis of SK-N-SH neural progenitor cells. (A) Gene dendrogram of co-expressed genes in SK-N-SH

cells. Weighted Gene Co-Expression Network Analysis (WGCNA) revealed 25 modules of co-expressed genes not including the gray module. (B) Heatmap indicating

module eigengene similarity and relation to cell collection time.
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FIGURE 6 | Modules identified as being associated with differentiation status. Four modules (midnight blue, purple, green, blue) were found to be associated

with the status of neural differentiation in SK-N-SH cells. (A–D) Distribution of genes within the (A) midnight blue, (B) purple, (C) green, and (D) blue modules as being

either protein coding or noncoding RNA. Noncoding RNA is present in all four modules ranging from 10.7 to 49.7% of genes in associated modules. (E–H)

Representative enrichment of gene ontology among all genes in the (E) midnight blue, (F) purple, (G) green, and (H) blue modules. p-value represents

Benjamini-Hochberg correction for multiple tests.

found to be protein coding and only 25–28% of raw sequencing
reads were shown to align to exonic regions of the genome.
Interestingly, a proportion (6.6–6.7%) of the genes showing the
highest expression in these cell lines are noncoding RNA. One of
the noncoding RNAs showing high expression in both cell lines is
MALAT1. Previous research has found this long noncoding RNA
to be highly expressed in the brain and to hold key functional

roles in gene regulation and synaptogenesis (Bernard et al., 2010).
Long noncoding RNAs (including lncRNA, antisense transcripts,
and pseudogenes) were shown to account for a large proportion
of the normalized reads of noncoding RNAs in both neural
progenitor cell lines. Interestingly, these long noncoding RNAs
show greater abundance than pre-miRNAs, which are widely
recognized for their regulatory roles on gene expression (Vidigal
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andVentura, 2015), suggesting their importance in the regulation
of gene networks in neural cells.

Both cell lines investigated in this study showed differential
expression of both protein coding and noncoding RNAs as the
cells differentiate. Interestingly, the differentially expressed genes
were significantly enriched in gene ontology terms important in
neural differentiation. SK-N-SH cells portrayed a more robust
transcriptional change between the 24 and 72 h collection time-
points compared to ReNcell CX cells. As a result, several of the
gene ontology terms identified using the differentially expressed
genes identified using the less stringent statistical threshold
(p-value) were also observed using the false discovery rate
calculation (q-value) in SK-N-SH cells but not in ReNcell CX cells
(Supplementary Table 7). The less dramatic transcriptional shift
in ReNcell CX cells is likely a result of the observed differences
in the replication time and cell morphology observed in these
cells. ReNcell CX cells replicated at a more rapid rate and
achieved a more mature neural phenotype at the 24 h time-point
compared to SK-N-SH cells. It is likely that a more pronounced
transcriptional change would be observed in ReNcell CX cells
at an earlier time-point before a mature neuronal morphology
is achieved. Only four noncoding RNAs were found to be
differentially expressed in both cell lines when using the less
stringent statistical cutoff. These results suggest that the two cell
lines investigated were likely in differing stages of differentiation
and that noncoding RNAs likely show cell type specificity, an idea
that has been proposed in previous studies (Cheng et al., 2005;
Tsoi et al., 2015). However, further experimentation is needed to
address these questions.

SK-N-SH cells revealed dramatic changes in the
transcriptional profile of cells collected at the 24 and 72 h
time-points. One of the noncoding RNAs showing altered
expression in this cell line was H19. This long noncoding RNA
has been extensively studied in cancer and is suggested to
act as a precursor to several miRNAs and have downstream
effects on cell proliferation and insulin-like growth factor
signaling (Cai and Cullen, 2007; Keniry et al., 2012). While this
known noncoding RNA may provide insight into the biological
processes being modulated in these differentiating cells, the
majority of the differentially expressed noncoding RNAs have
unknown functions and will require further experimentation to
identify their functional properties.

Interestingly, differentially expressed protein coding genes in
SK-N-SH cells were found to be enriched in genes implicated in
autism spectrum disorder, while showing no enrichment in genes
linked to a neurodegenerative disorder or cancer implicating
these genes in early neurodevelopmental processes. In order to
identify the noncoding RNAs possibly regulating the expression
of these gene networks in SK-N-SH cells, a gene co-expression
network was created. This systems biological approach creates
modules of genes showing highly correlated expression values.
By incorporating noncoding RNAs in the analysis, this method
allows for a narrowing of the vast landscape of these regulatory

RNAs and provides the opportunity to imply function through
their co-expressed protein coding genes. This analysis identified
four modules associated with neural differentiation status and
gene ontology of the protein coding genes in these modules
were enriched in terms shown to be important in this biological
process (Gurok et al., 2004; Fathi et al., 2011). Additionally,
each of these modules was shown to contain large proportions
of noncoding RNAs. For example, the long noncoding RNA,
TUNAR, was identified in the blue module along with genes
associated with DNA-binding and transcriptional processes.
TUNAR (TCL1 Upstream Neural Differentiation-Associated
RNA) has previously been found to regulate pluripotency and
is required for neural differentiation through its recruitment of
RNA binding proteins to NANOG, SOX2, and FGF4 promoters
(Lin et al., 2014). Additionally, MIR137HG, was located in the
green module which is characterized by genes associated with the
synapse and transcriptional regulation.MIR137HG is a precursor
to the miRNA, MIR137, known to have regulatory properties
important for proper neuronal and dendritic development (Smrt
et al., 2010; Szulwach et al., 2010; Tarantino et al., 2010;
Sun et al., 2011). This miRNA has also been implicated in
several neuropsychiatric conditions such as autism spectrum
disorder and schizophrenia (Collins et al., 2014; Devanna and
Vernes, 2014). Therefore, it is likely that the noncoding RNAs
identified in the neural differentiation-associated modules hold
regulatory properties important in this biological process and
alterations in their expression may underlie the pathogenesis
of neurodevelopmental disorders. However, further experiments
are needed to investigate the individual functions of these RNA
transcripts.

The present study demonstrates the vast landscape of
noncoding RNAs that are expressed in human cortical neurons.
Additionally, dramatic shifts in gene expression occur as these
cells undergo early differentiation and indicate changes in
genes linked in autism spectrum disorder. The identification of
noncoding RNAs showing highly correlated expression patterns
with protein coding genes using WGCNA lays the foundation
for future explorations into the functional properties of these
non-protein coding transcripts.
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