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Resting-state fMRI (R-fMRI) has shown considerable promise in providing potential

biomarkers for diagnosis, prognosis and drug response across a range of diseases.

Incorporating R-fMRI into multi-center studies is becoming increasingly popular,

imposing technical challenges on data acquisition and analysis, as fMRI data is

particularly sensitive to structured noise resulting from hardware, software, and

environmental differences. Here, we investigated whether a novel clean up tool for

structured noise was capable of reducing center-related R-fMRI differences between

healthy subjects. We analyzed three Tesla R-fMRI data from 72 subjects, half of whom

were scanned with eyes closed in a Philips Achieva system in The Netherlands, and

half of whom were scanned with eyes open in a Siemens Trio system in the UK.

After pre-statistical processing and individual Independent Component Analysis (ICA),

FMRIB’s ICA-based X-noiseifier (FIX) was used to remove noise components from the

data. GICA and dual regression were run and non-parametric statistics were used to

compare spatial maps between groups before and after applying FIX. Large significant

differences were found in all resting-state networks between study sites before using FIX,

most of which were reduced to non-significant after applying FIX. The between-center

difference in the medial/primary visual network, presumably reflecting a between-center

difference in protocol, remained statistically significant. FIX helps facilitate multi-center R-

fMRI research by diminishing structured noise from R-fMRI data. In doing so, it improves

combination of existing data from different centers in new settings and comparison of

rare diseases and risk genes for which adequate sample size remains a challenge.

Keywords: resting-state functional MRI, multi-center analysis, independent component analysis, dual regression,

structured noise reduction

INTRODUCTION

Resting-state functional Magnetic Resonance Imaging (R-fMRI) has become an important tool in
neuroimaging research to examine Resting-State Networks (RSNs) in normal brains, during the
aging process and in various neurological disorders (Greicius et al., 2003; Fox et al., 2005; De Luca
et al., 2006; Fox and Raichle, 2007; Littow et al., 2010). One of the techniques used for this purpose
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is Independent Component Analysis (ICA)—a data-driven
technique that facilitates comparison of functional networks
in the brain without requiring a priori selected seed regions
(Beckmann and Smith, 2004).

(R-)FMRI research has certain challenges, such as problems
regarding sample size in clinical and at-risk populations. Multi-
center analysis may help to solve these limitations, but has
been shown to be difficult to perform for (R-)fMRI. Specifically,
differences between groups may not always be attributable to the
feature of interest, such as disease or gene carrier status, but may
also be secondary to scanner hardware differences (manufacturer,
head-coil), software differences (filters, k-space acquisition
method, scan parameters), and environmental differences (radio-
frequency noise) (Casey et al., 1998; Zivadinov and Cox, 2008).
Confounding center effects also manifest as noise in multi-center
analysis, reducing power.

Whilst several studies have investigated and provided
guidelines and recommendations for these difficulties for fMRI
(Zou et al., 2005; Costafreda et al., 2007; Friedman et al.,
2008; Wegner et al., 2008; Zivadinov and Cox, 2008; Glover
et al., 2012), multi-center research using R-fMRI is still an
underdeveloped field. Long et al. (2008) were able to cross-
validate the Default Mode Network (DMN) in a multi-center
study even though scanner parameters were not controlled.
Biswal et al. (2010) demonstrated that functional connectivity has
a universal architecture in an extensive study with 1414 subjects.
However, they also found many differences due to center-related
variability. As data sharing becomes more important in imaging
research [e.g., the Genetic Frontotemporal dementia Initiative
(GenFI), Rohrer et al., 2013; 1000 Functional Connectome
Project, Biswal et al., 2010; ADHD 200 Consortium dataset
(The ADHD-200 Consortium, 2012); and Autism Brain Imaging
Data Exchange (ABIDE), Di Martino et al., 2014], methods for
reducing scan site differences must be developed.

In the current study, a novel tool for the clean up of
structured noise-components from ICA was used to study
whether R-fMRI data from different scan sites become more
comparable in a multi-center analysis. The Functional Magnetic
Resonance Imaging of the Brain Centre’s (FMRIB’s) ICA-based
X-noiseifier (FIX) is a plug-in to FMRIB’s Software Library
(FSL) that is able to automatically classify and remove structured
noise-components (e.g., motion-effects, scanner artifacts, (non-
neuronal) physiological noise, etc.) from R-fMRI data, once it has

Abbreviations: AD, Alzheimer’s Disease; ALFF, amplitude of low frequency

fluctuations; APOE ε4, apolipoprotein E ε4; BOLD signal, Blood-oxygen-level-

dependent signal; DMN, Default Mode Network; EMC, Erasmus Medical

Centre; EPI, echo-planar imaging; FIX, FMRIB’s ICA-based X-noiseifier; FMRIB,

Functional MRI of the Brain Centre; FSL, FMRIB’s Software Library; FTD,

Frontotemporal Dementia; FWHM, full-width-at-half-maximum; GICA, group-

level ICA; GLM, General Linear Model; GRN, progranulin; ICA, Independent

Component Analysis; LUMC, Leiden University Medical Centre; MAPT,

microtubule-associated protein tau; MELODIC, Multivariate Exploratory Linear

Optimized Decomposition into Independent Components; MNI, Montreal

Neurologic Institute; OCMR, Oxford Centre for Clinical Magnetic Resonance

Research; PE, Parameter Estimate; PVN, primary/medial visual network; R-

fMRI, Resting-state functional Magnetic Resonance Imaging; RSN, Resting-State

Network; TFCE, Threshold-free cluster enhancement; TNR, true-negative rate;

TPR, true-positive rate.

been trained through hand-classifications (Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014). FIX has been used before to clean
up structured noise in order to heighten the quality of R-fMRI
data (Salimi-Khorshidi et al., 2014), but this is the first time FIX
is used to diminish scanner differences in a multi-center study.

METHODS

Participants
In this study, MRI data was included from subjects scanned at
the Leiden University Medical Centre (LUMC) and from subjects
scanned at the University of Oxford Centre for Clinical Magnetic
Resonance Research (OCMR). The LUMC data (referred to in
this article as the “Dutch” sample) consisted of 36 subjects
from the control group of an earlier R-fMRI study investigating
the effect of microtubule-associated protein tau (MAPT) and
progranulin (GRN), risk genes for Frontotemporal Dementia
(FTD), on the brain (Dopper et al., 2013). The OCMR data
(referred to in this article as the “English” sample) consisted
of 36 subjects from control groups of earlier R-fMRI studies
investigating the effect of apolipoprotein E ε4 (APOE ε4), a risk
gene for Alzheimer’s Disease (AD), on the brain (Filippini et al.,
2009, 2011; Heise et al., 2011; Trachtenberg et al., 2012a,b).

The English subjects were selected from a larger cohort in
order to match the Dutch subjects in age, gender and sample size.

For a detailed description of the recruitment protocols, see
Dopper et al. (2013) for the Dutch data and Filippini et al. (2009),
Filippini et al. (2011), and Trachtenberg et al. (2012b) for the
English data. In short, 36 MAPT- and GRN-non-carriers were
selected from a pool of 160 healthy first-degree relatives of FTD
patients with either a MAPT- or GRN-mutation. It is assumed
that the non-carriers from these families have the same risk for
dementia as the general population. Thirty-six APOE ε4-non-
carriers, scanned at the OCMR, were selected from the general
population and the data from most (30/36) were reported in
previous studies (Filippini et al., 2009, 2011; Trachtenberg et al.,
2012b).

Pre-scan exclusion criteria included MRI contraindications,
history of drug abuse, and current or past neurologic or
psychiatric disorders for the Dutch sample, and head injury,
substance abuse (including alcohol), corticosteroid therapy,
youth diabetes therapy, memory complaints, and current or past
neurologic or psychiatric disorders for the English sample.

All participants provided written informed consent, and
ethical approval for data acquisition was obtained from National
Research Ethics Service Committee South Central—Oxford C
(Oxford data) and the Medical Ethical Committees in Rotterdam
and Leiden (Leiden data).

Image Acquisition
LUMC scans were acquired using a Philips 3.0T Achieva MRI
scanner with an 8-channel SENSE head coil. OCMR scans were
acquired using a Siemens 3.0T Trio scanner with a 12-channel
head coil. Participants were instructed to keep their eyes closed
(LUMC) or open (OCMR), to think of nothing in particular
(OCMR) and to remain awake. The scan parameters used for the

Frontiers in Neuroscience | www.frontiersin.org 2 October 2015 | Volume 9 | Article 395

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Feis et al. FIX diminishes scan site differences

high-resolution 3D anatomical T1-weighted and for the R-fMRI
T2*-weighted images are shown in Table 1.

Image Analysis
FSL (http://www.fmrib.ox.ac.uk/fsl) tools were used for all data
analyses (Smith et al., 2004;Woolrich et al., 2009; Jenkinson et al.,
2012).

Pre-statistical Processing
Individual pre-processing included motion correction
(Jenkinson et al., 2002), brain-extraction (Smith et al., 2002),
and spatial smoothing using a Gaussian kernel of 6mm full-
width-at-half-maximum (FWHM). 4D grand-mean scaling
and high-pass temporal filtering corresponding to a period of
150 s (0.007Hz) were performed. FMRI volumes were registered
to MNI152 standard space (Montreal Neurologic Institute
average T1-weighted image created from 152 normal subjects’
T1 scans). Boundary-Based Registration (Jenkinson and Smith,
2001; Jenkinson et al., 2002; Greve and Fischl, 2009) was used
to register each individual’s echo-planar imaging (EPI) volumes
onto their respective high-resolution T1-weighted structural
images. T1-weighted structural scans were aligned to MNI152
standard space using non-linear image registration (Anderson
et al., 2007; Jenkinson et al., 2012). The resulting registration
matrices were then used to register the EPI volumes onto
MNI152 standard space. Individual ICA was carried out and
voxel-by-voxel intensity normalization was performed manually,
dividing each voxel by its mean value across time andmultiplying
by 10,000.

FIX
Network components obtained from the individual ICA were
visually judged and were labeled as signal, noise, or unknown for
12 subjects from each group. Manual classification was done by
looking, firstly, at their spatial maps (typically thresholded abs(Z)
> 2.3), then at the temporal power spectrum and lastly at their
time-series. Unthresholded spatial maps were examined when
necessary (Salimi-Khorshidi et al., 2014).

Using these classifications, the FIX classifier was trained and a
training file was created. As described by Salimi-Khorshidi et al.

(2014), FIX uses over 180 features, capturing components’ spatial
and temporal characteristics, which are fed into a multi-level
classifier (built around several different classifiers). Temporal
features include autoregressive properties, distributional
properties, jump amplitudes, the Fourier transform, and the
time series’ correlation with GM-, WM, CSF-, and head motion-
derived time series. Spatial features include clusters’ sizes and
spatial distribution, voxel intensity information indicating
whether voxels are GM or (e.g.,) blood vessels, percent on brain
boundary, hand-created mask-based features for components
that have signal-like spatiotemporal characteristics (such as
sagittal sinus, CSF, and WM) and other spatial features such as
spatial smoothness.

Next, a leave-one-out test was run in order to control the
quality of the classifier algorithm by estimating the level of
agreement of the hand-labeled classifications and the classifier’s
classifications. The accordance was measured as a true-positive
rate (TPR), a true-negative rate (TNR) and a composite measure
((3 · TPR+ TNR) / 4) for a range of thresholds (used to
determine the binary classification of components since FIX’s
output is probabilistic). After checking the TPR, TNR and
the composite measure, the optimal threshold (i.e., 20) was
chosen and the classifier was applied to all subjects’ data using
this threshold in order to classify and remove the structured
noise components from the data (Griffanti et al., 2014; Salimi-
Khorshidi et al., 2014).

GICA
After pre-statistical processing and FIX, three group-level ICA
(GICA) analyses were run using MELODIC. In order to
qualitatively compare FIX’s effect on GICA components, GICA
was run on combined English and Dutch data before application
of FIX (GICA-1) and on combined English and Dutch data
after application of FIX (GICA-2). For statistical analysis of
FIX’s effect on the multi-center differences, GICA was carried
out on all data combined (GICA-3). Consequently, the data
used for this analysis (GICA-3) contained four subgroups: Dutch
subjects with and without use of FIX, and English subjects
with and without use of FIX. R-fMRI data were temporally

TABLE 1 | Structural and functional scan parameters per scan site.

Parameters Structural Resting-state

LUMC OCMRa LUMC OCMR

TR 9.8ms 2040ms 2200ms 2000ms

TE 4.6ms 4.7ms 30ms 28ms

Flip angle 8◦ 8◦ 80◦ 89◦

Number of slices/FOV 140 slices FOV = 192 cm2 – –

Number of axial slices – – 38 34

Number of volumes – – 200 180

Voxel size 0.88× 0.88× 1.20mm 1× 1 × 1mm 2.75× 2.75× 2.75mm + 10% interslice gap 3× 3 × 3.5mm

Total scan time 5min 6min 8min 6min

FOV, field of view; LUMC, Leiden University Medical Centre; OCMR, Oxford Centre for Clinical Magnetic Resonance Research; TE, echo time; TR, repetition time.
aStructural scanning at OCMR was done using a magnetization-prepared rapid gradient echo sequence (MPRAGE).
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concatenated across individuals to create a single 4D data set.
The data were whitened and principle component analysis
was used to project the data into a 25-dimensional subspace,
matching many previous R-fMRI studies (Filippini et al., 2009;
Smith et al., 2009; Cocozza et al., 2015; Gaudio et al., 2015).
By optimizing for non-Gaussian source estimates through a
fixed-point iteration technique, we obtained component maps
(Hyvärinen, 1999). After transforming the component maps
to Z-maps, Gaussian/Gamma Mixture Models were fitted
to them in order to obtain 25 independent spatial maps
defining functional connectivity patterns across the participants
(Beckmann and Smith, 2004). The GICA-derived spatial maps
were then judged by eye and divided into RSN and noise
components.

Dual Regression
Analysis of group differences was performed using FSL’s dual
regression, a regression technique that allows for voxel-wise
comparisons of R-fMRI (Filippini et al., 2009; Veer et al., 2010).
All spatial maps derived from GICA-3 (using English and Dutch
FIX and non-FIX data) were regressed against each individual’s
pre-processed R-fMRI data, resulting in a time-course for
each component and subject. The produced time-courses were
regressed against the same individual’s pre-processed R-fMRI
data, resulting in subject-specific spatial maps for parameter
estimates (PEs) and Z-stats. GICA noise component maps
were disregarded and RSN component maps were collected
across subjects into 4D files (one per ICA component, with the
fourth dimension being subject identification) and were tested
voxel-wise for statistically significant differences between groups.
We used a General Linear Model (GLM) equivalent to two-
sample t-tests to test the PE- and Z-stat-driven spatial maps
for differences between Dutch and English groups before use
of FIX, differences between Dutch and English groups after
use of FIX, and the interaction between the use of FIX and
group differences (by comparing the differences before and after
use of FIX to each other). Age and years of education were
added to the analysis as confound regressors. Non-paramatric
permutation-based testing was done by running 5000 random
permutations using the randomize algorithm, a tool based
on the Freedman-Lane methods within FSL (Winkler et al.,
2014). Afterwards, threshold-free cluster enhancement (TFCE),
a method for finding clusters in data without defining clusters
in a binary way, was applied (Smith and Nichols, 2009), and
a family-wise error-corrected cluster significant threshold of
p < 0.05 was used. In a more qualitative approach, non-
family-wise error-corrected results and raw t-stat maps were also
investigated.

Result Masking
In order to fully appreciate the impact that FIX has on the data,
results of the differences between groups for all components
were thresholded, binarized, and merged. The resulting imaging
volumes display the total number significant voxels for all
different components together, with color variation showing the
number of components with significant change in each voxel.

Statistical Analysis
Statistics of non-imaging variables were performed using SPSS
version 20 (SPSS, Chicago, IL). Demographic variables were
tested using independent samples t-tests for continuous variables
and χ

2-tests for categorical variables.

RESULTS

Sample Demographics
Demographic information for the Dutch and English subjects is
shown in Table 2. Age and gender were matched across groups.

Individual ICA and FIX
Table 3 shows the number of extracted independent components
by individual ICA for each group (OCMR and LUMC), as well
as the number of components classified as noise and RSN by FIX.
Significantly more independent components were extracted from
Dutch data, compared to English data. Also, significantly more
components fromDutch data were classified as noise by FIX. The
number of components classified as RSNs by FIX was not found
to be different between groups.

GICA
Figure 1 shows spatial maps derived from GICA for data before
(GICA-1, Figure 1A) and after (GICA-2, Figure 1B) application
of FIX (numbers in text correspond to numbers in Figure).
RSN components are shown with a green frame, whereas noise
components are shown with a red frame. FIX’s effect on GICA
seems to be two-fold: some noise components are eliminated (i.e.,
motion artifacts [1A: numbers 6, 22, 23] and brain stem/vascular
artifacts [1A: numbers 14, 18, 25], sagittal sinus artifact [1A:
numbers 8, 19]) and others are “pushed back” (i.e., have a higher
number after the use of FIX: WM [1A: number 4, 1B: number

TABLE 2 | Participant demographicsa.

OCMR (n = 36) LUMC (n = 36) p-value

Age, ya 49.9 (11.5) 49.8 (11.3) 0.943

Gender, % Female 52.8 50.0 1.000

Education, ya 16.6 (3.2) 12.6 (2.9) <0.001*

LUMC, Leiden University Medical Centre; OCMR, Oxford Centre for Clinical Magnetic

Resonance Research.
aValues denote mean (SD); *statistically significant; scores of education level in years were

missing for two individuals (both LUMC subjects).

TABLE 3 | FIX classificationsa.

OCMR (n = 36) LUMC (n = 36) p-value

ICsa 36.1 (4.8) 44.3 (7.9) <0.001*

Noise ICsa 23.6 (3.9) 31.8 (8.2) <0.001*

RSN ICsa 12.6 (3.0) 12.7 (3.0) 0.875

IC, independent component; LUMC, Leiden University Medical Centre; OCMR, Oxford

Centre for Clinical Magnetic Resonance Research.
aValues denote mean (SD); *statistically significant.
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FIGURE 1 | GICA spatial maps before and after FIX. Maps illustrate the 25 GICA networks’ most informative orthogonal slices before (A, GICA-1) and after (B,

GICA-2) applying FIX. Green frames indicate RSNs; red frames indicate noise networks. Color bar represents Z-scores. GICA, Group-level Independent Component

Analysis.
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23] and frontal sinus susceptibility noise [1A: number 9, 1B:
number 21]). Both observations rely on the same mechanism:
FIX removes variance explained by noise components from the
data. As MELODIC shows components in order of decreasing
explained variance, the removal of variance explained by noise
components results in higher component numbers or even
exclusion.

Spatial maps that were used as spatial regressors for dual
regression (GICA-3) are shown in Figure 2. Identified RSNs
were the DMN [1], primary/medial [2], and lateral [7, 13]
visual networks, lateralized higher order cognitive networks
involved with working memory [3, 5], a network showing the
dorsal attention network combined with the salience network
[4], the auditory network [6], a network combining features
of the DMN and the ventral stream [8], the executive control
network [9], networks that describe different parts of the
sensorimotor network [10,11], cerebellar network [14], a network
describing the basal ganglia [17] and a network showing frontal
DMN features as well as features from the executive control
network [21].

Dual Regression
All RSNs’ combined results based on PE-driven spatial maps
are shown for family-wise error-corrected group differences
before the use of FIX (Figure 3A), group differences after the
use FIX (Figure 3B) and for the interaction between applying
FIX and group differences (Figure 3C). Dual regression results
for each RSN are shown separately in Supplemental Figure 1

(numbers in Supplemental Figure 1 correspond with numbers
in Figure 2).

Before the use of FIX, large areas of statistically significant
differences were shown in all (15) RSNs. After applying FIX, the
size, and number of areas with significant differences between
groups was strongly reduced: only 7/15 RSNs showed statistically
significant differences and the number of significantly different
voxels was reduced by 98%. The RSN with the largest area of
significant differences after using FIX was the primary/medial
visual network (PVN), containing 85% of all significantly
different voxels after applying FIX. This network is associated
with a difference in scan protocol (eyes open vs. closed) and
showed greater activation in English than in Dutch subjects.

FIGURE 2 | GICA spatial maps for statistical analysis. Maps illustrate the 25 GICA networks’ most informative orthogonal slices of data before and after applying

FIX combined (GICA-3). Green frames indicate RSNs; red frames indicate noise networks. Color bar represents Z-scores. GICA, Group-level Independent Component

Analysis.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2015 | Volume 9 | Article 395

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Feis et al. FIX diminishes scan site differences

The interaction between the use of FIX and site-differences
was significant in 13/15 RSNs.

Dual regression results based on Z-stat-driven spatial maps
were similar on visual inspection.

Additionally, for a more qualitative view of the results,
Supplemental Figure 2 shows dual regression results without
family-wise error-correction for each component. Another point
of view on FIX’s effect is offered in Supplemental Figure 3,
demonstrating a reduction in raw t-stats for group differences in
each component after applying FIX.

DISCUSSION

In this study, FIX was found to be helpful in the comparison of
multi-center R-fMRI data. FIX significantly reduces structured
noise resulting from hardware, software, and environmental
differences in a multi-center group comparison, as demonstrated
by Figure 3 and Supplemental Figures 1, 2. Additionally,
Supplemental Figure 3 shows an intra- and inter-component
reduction in raw t-stat variability after applying FIX. The
significant interaction between the application of FIX and
group differences (Figure 3 and Supplemental Figure 1) shows
that site-differences are not just pushed below significance
threshold, but are significantly changed by applying FIX.
Importantly, the remaining differences between sites after FIX
(Figure 3 and Supplemental Figure 1) are primarily confined
to the primary/medial visual cortex, which reflects differences
in experimental design (Dutch participants had eyes closed,
whereas English participants had eyes open). This implies that
FIX removes structured noise, but retains physiologically driven
differences.

Dual regression is usually run using PE-driven spatial maps;
alternatively, Z-stat-driven spatial maps can be used. Our results
using PE- and Z-stat-driven spatial maps were similar on visual
inspection, suggesting that the use of FIX is of value for both types
of analysis. However, in order to assess whether FIX works better
for either one, a more specific analysis is required.

Structured noise in fMRI has various origins: hardware
differences (e.g., scanner manufacturer, type of head coil),
software differences (filters, k-space acquisition methods and
scan parameters) and radio-frequency noise (Casey et al., 1998;
Zivadinov and Cox, 2008). As demonstrated in Figure 3 and
Supplemental Figures 1–3, FIX helps to deal with noise from
these origins, inasmuch as they present themselves as separate
noise components in individual subjects’ ICA. Still, it cannot
account for all potential between-site differences. For example,
it cannot deal with differences that present themselves within
RSN components such as differences in sensitivity to RSNs based
on hardware configurations or RSN spatial variability relating to
head coils. However, due to the nature of ICA, the most striking
differences caused by structured noise are presented as separate
noise components. Therefore, intra-component variability is
much smaller than inter-component variability, implying that
the scope of this drawback is altogether limited. Also, FIX
cannot account for differences in the magnitude of the BOLD
effect. Voxel-wise intensity normalizationmay help to reduce this
problem, but site-wise confound regressors should be used, when
they do not correlate with the regressors of interest.

FIGURE 3 | Combined group differences. Maps show statistically

significant (p < 0.05) differences between groups: without the use of FIX (A),

after the use of FIX (B) and the interaction between FIX and group differences

(C) in all (15) RSNs combined. Color bar represents the number of significantly

differing networks.

Although eyes-open and eyes-closed differences cannot be
mathematically disentangled from site/scanner differences, we
suggest that the remaining differences in the PVN after using
FIX are a manifestation of this protocol discrepancy since
the differences in all other networks are substantially reduced.
Recently, a number of studies have investigated the effect of
eyes-open vs. eyes-closed conditions on functional connectivity
without yet reaching a clear consensus. For example, reduced
activation (Feige et al., 2005), amplitude of low frequency
fluctuations (ALFF, Yang et al., 2007; Yan et al., 2009; Liu
et al., 2013; Liang et al., 2014; Yuan et al., 2014) and regional
homogeneity (Liu et al., 2013) have all been reported in eyes-
closed relative to eyes-open conditions. Conversely, other studies
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showed higher BOLD response (McAvoy et al., 2008) and higher
mean ALFF (Jao et al., 2013) for the eyes-closed condition,
or no difference in seed-based correlations (Patriat et al.,
2013). Aside from these local changes in functional connectivity
between conditions, Jao et al. discovered that the mean ALFF
of the whole brain was greater in eyes-closed vs. eyes-open
conditions (Jao et al., 2013). Some of these studies also reported
functional connectivity differences in other networks than the
PVN, including the sensorimotor, default mode, and auditory
networks. The family-wise error-corrected changes found in this
study in non-PVN networks were small, scattered, and generally
did not follow the IC’s anatomy closely. Therefore, it is difficult to
infer if these changes are due to the experimental design or if they
reflect a small quantity of remaining noise. The changes we found
in IC 2 are extensive and follow the PVN anatomy well. As it is
unlikely that false positive results or leftover noise would take this
form and since similar PVN differences between eyes-open and
eyes-closed conditions have been described in R-fMRI multiple
times before, it seems reasonable to assume that this effect is due
to reported differences in experimental design.

Whilst groups were matched for age and sex, there was
a significant difference in level of education. This may
be attributable to the recruitment protocols. The English
recruitment protocol selected subjects from the general
population near Oxford, a relatively highly educated region
(Filippini et al., 2009, 2011; Trachtenberg et al., 2012b), whereas
the Dutch sample was recruited from known FTD families
(Dopper et al., 2013). In order to account for this, demeaned
education values were added to the GLM as a regressor of no
interest.

Previous studies on multi-center fMRI primarily focused on
data collected using standardized protocols. Glover et al. (2012)
argue that hardware, software, and procedural aspects should be
carefully matched and managed in order to successfully perform
multi-center fMRI research. Zivadinov and Cox (2008) suggest
the use of quality assurance methods and careful subject selection
and matching across centers—such as used by Wegner et al.
(2008)—in order to control for scan site by adding center as
covariate in the analysis. Whereas these recommendations are
naturally important for the correct set-up of a new multi-center
study, our results suggest reanalysis of existing non-standardized
R-fMRI data may also be possible across sites. Additionally,
although it would be interesting to see how these different sources
of structured noise are dealt with individually by FIX (whilst
controlling for the others), this study importantly shows that
even with more of these problems present simultaneously, FIX
adequately diminishes structured noise.

CONCLUSION

Previous studies using FIX have considered the theoretical and
practical use of spatial ICA, classifier training and noise detection

(Salimi-Khorshidi et al., 2014) and denoising (Griffanti et al.,
2014). They showed that FIX is a useful tool for noise clean up
and therefore helps in making data more sensitive to changes
related to neuronal activity. This study is the first to show FIX’s
additional value in multi-center R-fMRI analysis. By improving
multi-center fMRI research and efficient reanalysis of acquired
data, comparisons of rare diseases and at-risk populations will
be more efficient and convenient, leading to a better insight in
neurological disorders. Furthermore, as free data sharing is an
upcoming way to create large R-fMRI datasets (Biswal et al., 2010;
The ADHD-200 Consortium, 2012; Di Martino et al., 2014),
FIX may be a valuable tool to ensure valid comparison of data
acquired at different centers.
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(A) and after the use of FIX (B) for each of 15 RSNs. Color bar represents

significance. FWE, family-wise-error; TFCE, Threshold-free cluster enhancement.

Supplemental Figure 3 | Raw t-stats variability. Graphs show raw t-stats

between groups (positive t-stats signify Dutch > English, negative t-stats signify

English > Dutch) before and after FIX for each of 15 RSNs on a logarithmic scale.

Frontiers in Neuroscience | www.frontiersin.org 8 October 2015 | Volume 9 | Article 395

http://journal.frontiersin.org/article/10.3389/fnins.2015.00395
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Feis et al. FIX diminishes scan site differences

REFERENCES

Anderson, J. L. R., Jenkinson, M., and Smith, S. (2007). Non-linear Registration

Aka Spatial Normalisation. FMRIB Technical Report TR07JA2. FMRIB

Centre, Oxford. Available online at: http://www.fmrib.ox.ac.uk/analysis/

techrep/tr07ja2/tr07ja2.pdf

Beckmann, C. F., and Smith, S. M. (2004). Probabilistic independent component

analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging

23, 137–152. doi: 10.1109/TMI.2003.822821

Biswal, B. B., Mennes,M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S.M., et al. (2010).

Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A.

107, 4734–4739. doi: 10.1073/pnas.0911855107

Casey, B. J., Cohen, J. D., O’Craven, K., Davidson, R. J., Irwin, W., Nelson, C. A.,

et al. (1998). Reproducibility of fMRI results across four institutions using a

spatial working memory task. Neuroimage 8, 249–261.

Cocozza, S., Saccà, F., Cervo, A., Marsili, A., Russo, C. V., Giorgio, S. M., et al.

(2015). Modifications of resting state networks in spinocerebellar ataxia type 2.

Mov. Disord. 30, 1382–1390. doi: 10.1002/mds.26284

Costafreda, S. G., Brammer, M. J., Vêncio, R. Z. N., Mourão, M. L., Portela, L. A.

P., de Castro, C. C., et al. (2007). Multisite fMRI reproducibility of a motor

task using identical MR systems. J. Magn. Reson. Imaging 26, 1122–1126. doi:

10.1002/jmri.21118

De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., and Smith,

S. M. (2006). fMRI resting state networks define distinct modes of long-

distance interactions in the human brain. Neuroimage 29, 1359–1367. doi:

10.1016/j.neuroimage.2005.08.035

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K.,

et al. (2014). The autism brain imaging data exchange: towards a large-scale

evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry. 19,

659–667. doi: 10.1038/mp.2013.78

Dopper, E. G., Rombouts, S. A., Jiskoot, L. C., Heijer, T. d., de Graaf, J. R.,

Koning, I. d., et al. (2013). Structural and functional brain connectivity in

presymptomatic familial frontotemporal dementia.Neurology 80, 814–823. doi:

10.1212/WNL.0b013e31828407bc

Feige, B., Scheffler, K., Esposito, F., Di Salle, F., Hennig, J., and Seifritz, E.

(2005). Cortical and subcortical correlates of electroencephalographic alpha

rhythm modulation. J. Neurophysiol. 93, 2864–2872. doi: 10.1152/jn.007

21.2004

Filippini, N., Ebmeier, K. P., MacIntosh, B. J., Trachtenberg, A. J., Frisoni,

G. B., Wilcock, G. K., et al. (2011). Differential effects of the APOE

genotype on brain function across the lifespan. Neuroimage 54, 602–610. doi:

10.1016/j.neuroimage.2010.08.009

Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B.,

Smith, S. M., et al. (2009). Distinct patterns of brain activity in young carriers

of the APOE-epsilon4 allele. Proc. Natl. Acad. Sci. U.S.A. 106, 7209–7214. doi:

10.1073/pnas.0811879106

Fox, M. D., and Raichle, M. E. (2007). Spontaneous fluctuations in brain activity

observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8,

700–711. doi: 10.1038/nrn2201

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Essen, D. C. V.,

and Raichle, M. E. (2005). The human brain is intrinsically organized into

dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102,

9673–9678. doi: 10.1073/pnas.0504136102

Friedman, L., Stern, H., Brown, G. G., Mathalon, D. H., Turner, J., Glover, G.

H., et al. (2008). Test–retest and between-site reliability in a multicenter fMRI

study. Hum. Brain Mapp. 29, 958–972. doi: 10.1002/hbm.20440

Gaudio, S., Piervincenzi, C., Beomonte Zobel, B., Romana Montecchi, F., Riva,

G., Carducci, F., et al. (2015). Altered resting state functional connectivity of

anterior cingulate cortex in drug naïve adolescents at the earliest stages of

anorexia nervosa. Sci. Rep. 5:10818. doi: 10.1038/srep10818

Glover, G. H., Mueller, B. A., Turner, J. A., van Erp, T. G. M., Liu, T. T.,

Greve, D. N., et al. (2012). Function biomedical informatics research network

recommendations for prospective multicenter functional MRI studies. J. Magn.

Reson. Imaging JMRI 36, 39–54. doi: 10.1002/jmri.23572

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003). Functional

connectivity in the resting brain: a network analysis of the default

mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258. doi:

10.1073/pnas.0135058100

Greve, D. N., and Fischl, B. (2009). Accurate and robust brain image

alignment using boundary-based registration. Neuroimage 48, 63–72. doi:

10.1016/j.neuroimage.2009.06.060

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J., Douaud,

G., Sexton, C. E., et al. (2014). ICA-based artefact removal and accelerated

fMRI acquisition for improved resting state network imaging. Neuroimage 95,

232–247. doi: 10.1016/j.neuroimage.2014.03.034

Heise, V., Filippini, N., Ebmeier, K. P., and Mackay, C. E. (2011). The APOE ǫ4

allele modulates brain white matter integrity in healthy adults.Mol. Psychiatry.

16, 908–916. doi: 10.1038/mp.2010.90

Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent

component analysis. IEEE Trans. Neural Netw. 10, 626–634.

Jao, T., Vértes, P. E., Alexander-Bloch, A. F., Tang, I.-N., Yu, Y.-C., Chen,

J.-H., et al. (2013). Volitional eyes opening perturbs brain dynamics and

functional connectivity regardless of light input. Neuroimage 69, 21–34. doi:

10.1016/j.neuroimage.2012

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved

optimization for the robust and accurate linear registration and

motion correction of brain images. Neuroimage 17, 825–841. doi:

10.1006/nimg.2002.1132

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M.

W., and Smith, S. M. (2012). FSL. Neuroimage 62, 782–790. doi:

10.1016/j.neuroimage.2011.09.015

Jenkinson,M., and Smith, S. (2001). A global optimisationmethod for robust affine

registration of brain images.Med. Image Anal. 5, 143–156. doi: 10.1016/S1361-

8415(01)00036-6

Liang, B., Zhang, D., Wen, X., Xu, P., Peng, X., Huang, X., et al. (2014). Brain

spontaneous fluctuations in sensorimotor regions were directly related to eyes

open and eyes closed: evidences from a machine learning approach. Front.

Hum. Neurosci. 8:645. doi: 10.3389/fnhum.2014.00645

Littow, H., Elseoud, A. A., Haapea, M., Isohanni, M., Moilanen, I., Mankinen,

K., et al. (2010). Age-related differences in functional nodes of the brain

cortex—a high model order group ICA study. Front. Syst. Neurosci. 4:32. doi:

10.3389/fnsys.2010.00032

Liu, D., Dong, Z., Zuo, X., Wang, J., and Zang, Y. (2013). Eyes-open/eyes-closed

dataset sharing for reproducibility evaluation of resting state fMRI data analysis

methods. Neuroinformatics 11, 469–476. doi: 10.1007/s12021-013-9187-0

Long, X.-Y., Zuo, X.-N., Kiviniemi, V., Yang, Y., Zou, Q.-H., Zhu, C.-Z.,

et al. (2008). Default mode network as revealed with multiple methods for

resting-state functional MRI analysis. J. Neurosci. Methods 171, 349–355. doi:

10.1016/j.jneumeth.2008.03.021

McAvoy, M., Larson-Prior, L., Nolan, T. S., Vaishnavi, S. N., Raichle, M. E.,

and d’Avossa, G. (2008). Resting states affect spontaneous BOLD oscillations

in sensory and paralimbic cortex. J. Neurophysiol. 100, 922–931. doi:

10.1152/jn.90426.2008

Patriat, R., Molloy, E. K., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand, M. E.,

et al. (2013). The effect of resting condition on resting-state fMRI reliability and

consistency: a comparison between resting with eyes open, closed, and fixated.

Neuroimage 78, 463–473. doi: 10.1016/j.neuroimage.2013.04.013

Rohrer, J. D., Warren, J. D., Fox, N. C., and Rossor, M. N. (2013). Presymptomatic

studies in genetic frontotemporal dementia. Rev. Neurol 169, 820–824. doi:

10.1016/j.neurol.2013.07.010

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti,

L., and Smith, S. M. (2014). Automatic denoising of functional MRI

data: combining independent component analysis and hierarchical fusion of

classifiers. Neuroimage 90, 449–468. doi: 10.1016/j.neuroimage.2013.11.046

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay,

C. E., et al. (2009). Correspondence of the brain’s functional architecture

during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 106, 13040–13045. doi:

10.1073/pnas.0905267106

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T.

E. J., Johansen-Berg, H., et al. (2004). Advances in functional and structural

MR image analysis and implementation as FSL. Neuroimage 23(Suppl. 1),

S208–S219. doi: 10.1016/j.neuroimage.2004.07.051

Smith, S. M., and Nichols, T. E. (2009). Threshold-free cluster

enhancement: addressing problems of smoothing, threshold dependence

and localisation in cluster inference. Neuroimage 44, 83–98. doi:

10.1016/j.neuroimage.2008.03.061

Frontiers in Neuroscience | www.frontiersin.org 9 October 2015 | Volume 9 | Article 395

http://www.fmrib.ox.ac.uk/analysis/techrep/tr07ja2/tr07ja2.pdf
http://www.fmrib.ox.ac.uk/analysis/techrep/tr07ja2/tr07ja2.pdf
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Feis et al. FIX diminishes scan site differences

Smith, S. M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P. M., Federico, A.,

et al. (2002). Accurate, robust, and automated longitudinal and cross-sectional

brain change analysis. Neuroimage 17, 479–489. doi: 10.1006/nimg.2002.1040

The ADHD-200 Consortium (2012). The ADHD-200 Consortium: a model to

advance the translational potential of neuroimaging in clinical neuroscience.

Front. Syst. Neurosci. 6:62. doi: 10.3389/fnsys.2012.00062

Trachtenberg, A. J., Filippini, N., Cheeseman, J., Duff, E. P., Neville, M. J., Ebmeier,

K. P., et al. (2012b). The effects of APOE on brain activity do not simply

reflect the risk of Alzheimer’s disease.Neurobiol. Aging 33, 618.e1–618.e13. doi:

10.1016/j.neurobiolaging.2010.11.011

Trachtenberg, A. J., Filippini, N., Ebmeier, K. P., Smith, S. M., Karpe, F., and

Mackay, C. E. (2012a). The effects of APOE on the functional architecture

of the resting brain. Neuroimage 59, 565–572. doi: 10.1016/j.neuroimage.2011.

07.059

Veer, I. M., Beckmann, C. F., van Tol, M.-J., Ferrarini, L., Milles, J., Veltman,

D. J., et al. (2010). Whole brain resting-state analysis reveals decreased

functional connectivity in major depression. Front. Syst. Neurosci. 4:41. doi:

10.3389/fnsys.2010.00041

Wegner, C., Filippi, M., Korteweg, T., Beckmann, C., Ciccarelli, O., De Stefano,

N., et al. (2008). Relating functional changes during hand movement to clinical

parameters in patients withmultiple sclerosis in amulti-centre fMRI study. Eur.

J. Neurol 15, 113–122. doi: 10.1111/j.1468-1331.2007.02027.x

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., and Nichols, T. E.

(2014). Permutation inference for the general linear model. Neuroimage 92,

381–397. doi: 10.1016/j.neuroimage.2014.01.060

Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T.,

et al. (2009). Bayesian analysis of neuroimaging data in FSL. Neuroimage 45(1

Suppl. 1), S173–S186. doi: 10.1016/j.neuroimage.2008.10.055

Yan, C., Liu, D., He, Y., Zou, Q., Zhu, C., Zuo, X., et al. (2009). Spontaneous

brain activity in the default mode network is sensitive to different

resting-state conditions with limited cognitive load. PLoS ONE 4:e5743. doi:

10.1371/journal.pone.0005743

Yang, H., Long, X.-Y., Yang, Y., Yan, H., Zhu, C.-Z., Zhou, X.-P., et al.

(2007). Amplitude of low frequency fluctuation within visual areas

revealed by resting-state functional MRI. Neuroimage 36, 144–152. doi:

10.1016/j.neuroimage.2007.01.054

Yuan, B.-K., Wang, J., Zang, Y.-F., and Liu, D.-Q. (2014). Amplitude differences in

high-frequency fMRI signals between eyes open and eyes closed resting states.

Front. Hum. Neurosci. 8:503. doi: 10.3389/fnhum.2014.00503

Zivadinov, R., and Cox, J. L. (2008). Is functional MRI feasible for multi-center

studies on multiple sclerosis? Eur. J. Neurol. 15, 109–110. doi: 10.1111/j.1468-

1331.2007.02030.x

Zou, K. H., Greve, D. N., Wang, M., Pieper, S. D., Warfield, S. K., White,

N. S., et al. (2005). Reproducibility of functional MR Imaging: preliminary

results of prospective multi-institutional study performed by biomedical

informatics research network. Radiology 237, 781–789. doi: 10.1148/radiol.2373

041630

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Feis, Smith, Filippini, Douaud, Dopper, Heise, Trachtenberg,

van Swieten, van Buchem, Rombouts and Mackay. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) or licensor are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No

use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 10 October 2015 | Volume 9 | Article 395

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI
	Introduction
	Methods
	Participants
	Image Acquisition
	Image Analysis
	Pre-statistical Processing
	FIX
	GICA
	Dual Regression
	Result Masking

	Statistical Analysis

	Results
	Sample Demographics
	Individual ICA and FIX
	GICA
	Dual Regression

	Discussion
	Conclusion
	Acknowledgments
	Supplementary Material
	References


