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This study firstly presents (i) a novel general cellular mapping scheme for two dimensional

neuromorphic dynamical systems such as bio-inspired neuron models, and (ii) an

efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid

memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This

approach employs 4n memristors and no switch for implementing an n-cell system in

comparison with 2n2 memristors and 2n switches of a Cellular Memristive Dynamical

System (CMDS). Moreover, this approach allows for dynamical variables with both analog

and one-hot digital values opening a wide range of choices for interconnections and

networking schemes. Dynamical response analyses show that this circuit exhibits various

responses based on the underlying bifurcation scenarios which determine the main

characteristics of the neuromorphic dynamical systems. Due to high programmability

of the circuit, it can be applied to a variety of learning systems, real-time applications,

and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo

(FHN), Adaptive Exponential (AdEx) integrate and fire, and Izhikevich neuron models on

our platform, and investigate the dynamical behaviors of these circuits as case studies.

Moreover, error analysis shows that our approach is suitably accurate. We also develop

a simple hardware prototype for experimental demonstration of our approach.

Keywords: general cellular mapping, hybrid memristor-crossbar/CMOS platform, FitzHugh-Nagumo (FHN) neuron

model, Adaptive Exponential (AdEx) integrate and fire neuronmodel, Izhikevich neuronmodel, dynamical behavior

analysis

1. INTRODUCTION

The human nervous system is an intriguing complex system capable of performing intricate
tasks using an enormous number of neurons each connected via synapses to several thousand
neighboring neurons. Mathematical modeling of biological neural elements such as neurons,
synapses, and glial cells has been a long standing active research area (Hodgkin and Huxley, 1952;
Fitzhugh, 1961; Abbott, 1999; Izhikevich, 2003; Brette and Gerstner, 2005). Recently, the hardware
implementation of neural networks has been the subject of much research with three motivations:
(1) exploitation of functional mechanisms of biological neural systems; (2) development of neural
prosthetics (i.e., replacement of a biological neural system by an electronic circuit), and building
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an artificial brain as a long-term goal; and (3) development of
artificial neural networks for use in engineering applications.
Two main factors in this research area are accuracy (targeting
biological plausibility) and computational complexity of the
model and system (targeting efficiency in terms of the large scale
simulation and implementation cost). In general, there is a trade-
off between model accuracy and its computational complexity.
Different platforms have been applied for hardware realization
of neuromorphic dynamical systems. Here, we investigate main
approaches for this challenge:

1. Special purpose computing architectures have been developed
to simulate neurobiological networks and functions using
their specially designed software tools for large scale
simulations (Ahmadi and Soleimani, 2011; Furber et al., 2014;
Minkovich et al., 2014). Even though these systems are flexible
and biologically realistic with considerably high performance
due to their massively parallel architecture, the presented
hardware approaches are based on bulky and power-hungry
workstations with relatively high cost and development time.
Hence, these approaches are often impractical for public
access, and general purpose large-scale simulations.

2. Analog CMOS platform is considered to be a significant
choice for direct implementation of neural dynamic functions
(Linares-Barranco et al., 1991; Arthur and Boahen, 2011;
Wijekoon and Dudek, 2012; Soleimani et al., 2014). However,
this approach is not a general approach. This implies
that the structure of the circuit must be modified if
there are any changes to the starting equations. Moreover,
non-linear functions in target mathematical models are
directly implemented using inherent non-linearity of the
circuit elements and networks. Hence, the variability and
mismatch of the circuit elements drastically affect the circuit
performance, and implementation of some models with
special non-linear dynamics is cumbersome and intractable.
Besides, this hardware platform is comparatively inflexible,
and model adjustment is typically troublesome in these
circuits.

3. A digital platform is used to realize bio-inspired neural
cells. Most digital approaches (Weinstein et al., 2007;
Soleimani et al., 2012, 2015; Cassidy et al., 2013) use
digital computational units to implement the mathematical
equations describing the behavior of biological neural cells.
Another type of digital approach (Matsubara and Torikai,
2013) is presented based on Cellular Automata (CA)
consisting logic gates, register arrays, and reconfigurable
wires, and the dynamics of the target system are determined by
the wire patterns. This platform can be further subcategorized
into FPGA based (Weinstein et al., 2007; Soleimani et al., 2012,
2015; Matsubara and Torikai, 2013) and digital custom IC
based (Cassidy et al., 2013) hardware, where FPGAs provide
more configurability and lower development time, but at a
higher cost in terms of area, power, and speed in comparison
with the digital custom ICs. Generally, a digital platform
achieves rapid development time, high reconfigurability, and
immunity to device mismatch. However, its silicon area and
power consumption is directly related to the mathematical

complexity of the model, and it is not beneficial for complex
models due to excessive utilization of high-cost computational
units such as comparators, multipliers, and adders. Moreover
a CA based approach (Matsubara and Torikai, 2013) uses a
complicated wiring network that occupies a large switching
area, decreases the maximum frequency of the overall system
clock by making a long critical path, and results in a
cumbersome implementation process.

4. Full custom analog/digital (mixed mode) implementations
that comprise low-power, fast analog circuits and
programmable, mismatch immune digital circuits. Generally,
for this approach, neural computation is performed in the
analog domain while the communication of spikes between
nervous cells is carried out in the digital domain (Schemmel
et al., 2008; Benjamin et al., 2014; Moradi and Indiveri, 2014).
Recently using this approach, we have proposed a Cellular
Memristive Dynamical System (CMDS; Bavandpour et al.,
2014) consisting a dynamical systems cellular mapping, and a
memristor-based hardware platform for implementing a wide
range of neuromorphic systems. The mixed analog-digital
nature of this system results in accuracy and efficiency in
terms of hardware implementation cost. However, in this
platform, the number of memristors employed in a two-
dimensional system has a quadratic relation with the number
of cells where an n-cell system requires 2n2 memristors.
So, the area consumption is significantly increased with the
number of cells. Besides, the circuit provides just one-hot
digital values of the dynamical variables, which constrains
the networking schemes, so an additional circuit is needed to
provide the analog value of the variables.

Our approach is a cellular-based system that discretizes
dynamical variables resulting in a cellular phase plane, stores
the equilibrium curves in a memristive crossbar-based analog
memory block, evaluates the velocity and direction of the
vector field in the cells, and tracks the state point in the
space using VCOs and pointer registers. This system is a fully
reconfigurable general approach capable of implementing a wide
range of two dimensional neuromorphic dynamical systems
such as FitzHugh-Nagumo (FHN; Fitzhugh, 1961), Adaptive
Exponential (AdEx) integrate and fire (Brette and Gerstner,
2005), and Izhikevich neuron models (Izhikevich, 2003).

One promising technology particularly suited for analog and
mixed analog-digital computing is based on hybrid circuits that
integrate CMOS and memristor devices (Strukov and Likharev,
2006; Bahar et al., 2007; Kavehei et al., 2012). The memristor is
a two-terminal thin-film device whose resistance can be tuned
in a nonvolatile and analog way (Chua, 1971; Strukov et al.,
2008; Yang et al., 2008). In the context of analog and mixed
circuit applications, recent advances in memristive devices and
their integration with CMOS enable efficient implementations of
nanoscale analog-grade resistive elements that can be fine-tuned
after fabrication (Alibart et al., 2012). The proposed approach
is an efficient generalized system with high reconfigurability
due to usingmemristor-crossbar/CMOS hardware platform. This
circuit is highly programmable because reconfiguration is carried
out by adjusting memristance values, while the structure of the
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system remains fixed. It implies that a wide range of target
dynamical systems such as various neuron models can be easily
programmed into the system and their parameters can be easily
adjusted without changing the hardware structure. Furthermore,
the circuit can accurately mimic different dynamic neuronal
behaviors, and yield a variety of biological-like spike trains as well
as single spike shapes.

The implementation constraint has strongly limited the power
of dynamical systems in modeling, and neuroscientists have been
unable to develop an accurate model. Moreover, a number of
behaviors such as special output signal shapes have no elegant
analytical description. Our approach significantly alleviates the
limitation of computational effort in dynamical functions.

The rest of the paper is organized as follows: In Section 2, we
discuss the proposed general mapping scheme. The memristor-
crossbar/CMOS based hardware structure of the proposed
platform is introduced in Section 3. Section 4 presents
implementation of three widely used neuron models called
the FHN neuron model (Fitzhugh, 1961), AdEx neuron model
(Brette and Gerstner, 2005), and Izhikevich neuron model
(Izhikevich, 2003) based on the proposed approach, and
investigates various dynamical responses of the resultant circuits
as the case studies. Section 5 introduces design steps and practical
results of a simple hardware prototype of our approach. The error
analysis of the proposed approach is studied in Section 6, and
the networking and learning capability of the system is explained
as two remarks in Section 7. Finally, the work is concluded in
Section 8.

2. GENERAL CELLULAR MAPPING FOR
NEUROMORPHIC DYNAMICAL SYSTEMS

The first step toward developing a memristor-crossbar/CMOS
hardware for implementing a reconfigurable neuromorphic
dynamical system is drawing a proper mapping to represent
target dynamical systems. This step plays a significant role
in the whole design process because the proposed mapping
ought to satisfy a number of crucial conditions: It ought
to have the capability of (1) transforming the relatively
complicated equations of neuromorphic dynamical systems
into a number of simplified fully implementable equations,
(2) obtaining a maximum accuracy considering the available
hardware resources for implementation, (3) being applied to a
wide range of neuromorphic dynamical systems, and (4) bringing
reconfigurability into the hardware by separating the variable
features of the neuromorphic dynamical systems (requisite
information in phase plane for reconstructing vector field)
from the shared features (computations for reproducing time-
domain signals), and implementing the variable features on the
reconfigurable memristive part of the circuit.

In this section, we propose a cellular mapping that properly
satisfies the aforementioned conditions. In Section 2.1, basic
concepts of dynamical systems in neuroscience are reviewed, and
a general form for two dimensional neuromorphic dynamical
systems and its simplified forms are presented. One of the
simplified forms, which covers most of the two dimensional

neuron models, is the basis of our mapping in the next
subsections. In Section 2.2, a two dimensional cellular space is
defined and the mapping equations for transforming the target
dynamical system from the continuous space to the cellular
space is presented. Then, according to the simplified form, a
technique for calculating the motion velocity of the state point
in each cardinal direction in the cellular space is proposed.
Applying this technique to the simplified general form in the
cellular space results in a mapping which satisfies first, third and
fourth out of four above-mentioned conditions. But the second
condition related to the timing and asynchrony ought to be
satisfied in order to maximize the accuracy of tracking state point
in the cellular space. In Section 2.3, the concept of timing and
asynchrony in our cellular approach is explained, the requisite
timing condition is introduced, and the final satisfactory timing
equations and cell change policy based on the timing parameters
are presented.

2.1. Dynamical Systems in Neuroscience
In computational modeling of neural cell behaviors and
phenomena, neuroscientists aim to point out critical features and
factors as the system variables and parameters, and draw out
deterministic laws governing the evolution of these variables over
time (Gerstner and Kistler, 2002). These laws are presented by
mathematical functions, and the collection of resultant equations
is called a dynamical system. Dynamical systems model the
behavior of a given system without a thorough comprehensible
knowledge on all the governing rules for its evolution. This
feature significantly matches the nature of neuroscience, and
turns dynamical system into a strong mathematical tool for
effective modeling of individual components in the nervous
system.

In neuromorphic modeling, two-dimensional dynamical
systems are popular because of their capability of phase portrait
representation. The overall qualitative dynamics of a system
can be easily investigated through the study of the phase
portrait of the system including different types of equilibrium
points and curves and consequently local velocity vectors in
the phase space, and also a geometric representation of special
trajectories determining topological behaviors of trajectories in a
neighborhood in the phase space. Hence, several neuromorphic
models are presented in the general form described as:

{

dx
dt
= F(x, y)+ b

dy
dt
= G(x, y)+ c

(1)

where F and G are smooth functions, b and c are input variables
and a number of auxiliary functions on x,y may be attached. In
this case, the phase plane is a two-dimensional space, (x, y) ∈
Z2 represents the location of state point in the plane, and
(ẋ, ẏ) (velocity vector) determines the velocity and direction
of the motion. According to Equation (1), the terms b and c
directly influence the velocity of the moving state point in both
dimensions. Here, we temporarily ignore b and c (b = c = 0)
in the general form to simplify developing the mapping scheme,
and then apply their influences directly on the velocity vector in
the last step of the hardware design.
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In most neuromorphic dynamical systems with the general
form of Equation (1) the equilibrium lines are single-valued
functions. This implies that one dynamical variable is a single-
valued function of another one. Hence, the simplified general
form of neuromorphic dynamical systems, ignoring input
parameters b and c, can be rewritten as one of these four different
forms:

{

dx
dt
= α · (F(x)− y)

dy
dt
= β · (G(x)− y)

(2)

{

dx
dt
= α · (F(y)− x)

dy
dt
= β · (G(x)− y)

(3)

{

dx
dt
= α · (F(x)− y)

dy
dt
= β · (G(y)− x)

(4)

{

dx
dt
= α · (F(y)− x)

dy
dt
= β · (G(y)− x)

. (5)

Note that our approach supports all four different above-
mentioned forms, but considering this fact that most of
the popular neuron models such as the FitzHugh-Nagumo
(Fitzhugh, 1961), Izhikevich (Izhikevich, 2003), and AdEx (Brette
and Gerstner, 2005) neural models, fit into the first simplified
general form represented in Equation (2), we continue the rest
of the paper based on this general form.

2.2. Cellular Space and Generalized
Mapping
In the first step, we map the continuous phase plane to a cellular
plane. As shown in Figure 1A, in the cellular space, discrete
points on the state variable axes and accordingly discrete mesh-
like points on the phase plane are considered. Thus, X =

i where i ∈ M ≡ {0, 1, ...,M − 1}, and Y = j where j ∈ N ≡

{0, 1, ...,N − 1} are discrete variables parallel to x and y in the
continuous space. The location of state point in theM×N cellular

space can be evaluated as:

{

X = ⌊ x−xmin
1x ⌋

Y = ⌊
y−ymin

1y ⌋
(6)

where 1x = xmax−xmin
M and 1y =

ymax−ymin

N are cellular steps
in each dimension. In the next step, which is one of the key
steps in the mapping scheme, we evaluate the velocity and
direction of the vector field in the cells in the way that it can
be easily implemented on our proposed hardware platform.
In CMDS approach (Bavandpour et al., 2014), the value of
velocity and direction in each cell is directly stored in its
corresponding memory cell in a cellular memory block, which
requires embedding a memory block of size 2 · N · M memory
cells (memristors) in the hardware implementation. Here, we
significantly shrink the size of memory block using a technique
to evaluate the motion velocity and direction in the simplified
general form.

As mentioned, the first simplified general form represents the
most common condition in neuromorphic dynamical systems
where y is a function of x in both equations. In this condition,

equilibrium curves of the system (considering dx
dt
= 0,

dy
dt
= 0)

are yeqx = F(x) and yeqy = G(x). In the cellular representation,
we have:

{

Yeqx(X) = F(xmin + X ·1x)
Yeqy(X) = G(xmin + X ·1x)

(7)

where Yeqx and Yeqy are two arrays ofM real numbers presenting
the value of the y variable for discrete points on the equilibrium
curves corresponding to different discrete values of X. We
refer to these arrays as the equilibrium arrays in the cellular
space. Figure 1A shows the cellular phase plane and a sample
equilibrium curve in the plane. As shown, the value of y variable
for cross points of equilibrium curve with X = i (i =
0, 1, ...,M − 1) vertical lines are the elements of Yeq array. It will
be substantiated that we can evaluate the velocity vector (Ẋ, Ẏ)
for all cells in the phase plane just using the equilibrium arrays.

FIGURE 1 | (A) Cellular phase portrait of a sample dynamical system, one of its equilibrium curves, and evaluating the velocity of a sample point using equilibrium

curve according to Equation (9), (B) absolute value of the velocity in the phase plane for a quadratic equilibrium curve used in Izhikevich neuron model (Izhikevich,

2003), (C) absolute value of the velocity in the phase plane for a cubic parabola equilibrium curve used in FHN (Fitzhugh, 1961) neuron model.
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Consider a sample point (X = i,Y = j); the velocity vector for
this point is calculated as:

{

Ẋ(X,Y) = α · (F(xmin + X ·1x)− (ymin + Y ·1y))

Ẏ(X,Y) = β · (G(xmin + X ·1x)− (ymin + Y ·1y))
. (8)

Substituting Equation (7) in Equation (8), the velocity vector
equation is given by:

{

Ẋ(X,Y) = α · (Yeqx(X)− (ymin + Y ·1y))

Ẏ(X,Y) = β · (Yeqy(X)− (ymin + Y ·1y))
. (9)

As the above equation shows, the velocity vector depends on the
equilibrium arrays and a number of predetermined parameters.
In other words, the absolute value of the velocity at every
state point is proportional to its absolute vertical distance
(distance in y direction) from the equilibrium curve, and its
direction (forward/backward) is proportional to the position of
the state point (above/below) to the equilibrium curve in the
phase plane. The equations of cell change policy based on the
timing parameters are represented in the next subsection after
defining these parameters and drawing requisite timing and
asynchrony conditions in our approach. Figures 1B,C are shown
the absolute value of the velocity in the phase plane for two
applied equilibrium curves in the neuron models. For hardware
realization of our approach, we store the equilibrium arrays on
the memristor crossbar and evaluate the velocity vector using
hardware structure of Equation (9). Clearly, the resultant circuit
is fully reconfigurable because the equilibrium arrays can be
evaluated and programmed on the memristive memory block
once a new dynamical system is presented.

2.3. Timing and Asynchrony in Cell Change
Policy
According to the previous subsection, the velocity of motion
and the motion direction (forward/backward in each dimension)
are variable in the cellular phase plane, and can be evaluated
using Equation (9). Note that the evaluated velocities are in
units of (1/s) where x and y are unitless quantities. For uniform
representation in the cellular space, we ought to evaluate the
cellular velocity with the unit of (cell/s). So, the velocity values
are divided by the amount of cellular steps:

{

Ẋcellular(X,Y) = Ẋ(X,Y)
1x

Ẏcellular(X,Y) = Ẏ(X,Y)
1y

. (10)

Here, with the aim to simplify the timing analysis, we convert
the concept of motion velocity to the concept of motion time.
Hence, the cellular motion time (the amount of time required for
moving one cell) can be obtained by reversing the cellular motion
velocity as:







T
(X,Y)
x = NF( 1

Ẋcellular
)

T
(X,Y)
y = NF( 1

Ẏcellular
)

(11)

where NF(·) is a function presenting restrictions imposed by
hardware implementation that limits the time delay value in a

specific boundary. A simple form for this boundary function can
be represented as:

NF(input) =







MAX input > MAX
input MIN ≤ input ≤ MAX
MIN input < MIN

(12)

where MIN and MAX are lower and upper boundaries. Clearly,
our cellular approach is asynchronous, so the state variables are
changed asynchronously. Considering this fact, it is crucial to
proportionally handle the cellular motion time in one direction
when other state variable is changed and consequently causes a
change in motion time in both directions. In other words, time
handling of themotion in each dimension is independent, but the
motion in one dimension influences the motion time in another
dimension by changing the vertical distance of the state point
from the corresponding equilibrium curve, and it ought to be
considered.

Here, we illustrate the time handling procedure for a special
case, and then derive a generalized rule to handle the two
dimensional timing. Assume that the initial state (t = 0) of the

system is (i, j) and the corresponding motion times are T
(i,j)
x and

T
(i,j)
y where |T

(i,j)
x | < |T

(i,j)
y |. At t = |T

(i,j)
x | the state point moves

to (i + 1, j) and the motion time of variable X is updated to

|T
(i+1,j)
x |, but this is not reasonable to update the motion time

of variable Y to |T
(i+1,j)
y | without taking into account the elapsed

time in point (i, j) resulting in no change in Y direction. Hence,
the passed time is considered as a portion of the newmotion time,
and deducted from this time amount:

T
(i+1,j)
y (new) = (1−

|T
(i,j)
x |

|T
(i,j)
y |

) · T
(i+1,j)
y . (13)

Regarding above explanations, an overall recursive rule can be
derived to handle the dimensional motion times for moving from
any given cell P ∈ M × N to its neighbor cell Q ∈ M × N :

txr (Q) =

{

(1− t
y
r (P)
txr (P)

) · |T
(Q)
x | X(Q) = X(P)

|T
(Q)
x | X(Q) 6= X(P)

(14)

t
y
r (Q) =

{

(1−
txr (P)

t
y
r (P)

) · |T
(Q)
y | Y(Q) = Y(P)

|T
(Q)
y | Y(Q) 6= Y(P)

(15)

where txr (Q) and t
y
r (Q) are, respectively, the remaining time to

change for X and Y state variables at Q cellular point which are
decreased with passing operation time of the system. The cell
change policy is given by:

X(t+) =

{

X(t)+ sign(T
(X(t),Y(t))
x ) txr = 0

X(t) Otherwise
(16)

Y(t+) =

{

Y(t)+ sign(T
(X(t),Y(t))
y ) t

y
r = 0

Y(t) Otherwise
. (17)

Thus, when the shorter remaining motion time for the faster
state variable is elapsed, the state variable is changed by one
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cell, and the remaining motion time for the other state variable
is updated according to the motion time vector in the new
state and using Equation (13). In the following sections, it
is qualitatively and quantitatively shown that the dynamical
behaviors of a given two dimensional dynamical system described
generally by Equation (2) can be accurately mimicked by
evaluating velocity vector given by Equation (9) using the
equilibrium arrays, and following the rules of motion given by
Equations (14–17).

3. MEMRISTIVE CIRCUIT
IMPLEMENTATION

The memristor is a nano-scale passive variable resistor with
memory whose resistance changes depending on the polarity
and magnitude of a voltage applied to the device terminals and
the duration of this voltage application. Threshold condition is
one of the key characteristics of the memristor. Based on this
feature, small voltages across the memristor, below its threshold
(Vth), do not cause a considerable memristance change, while
larger voltages, greater than the threshold, induce much greater
memristance changes (Jo et al., 2010). In this approach, we use
the memristors as pre-programmed analog memories, so their
memristance values ought to remain constant during operation

time of the circuit. This implies that the maximum applied
voltage to the memristors ought to be lower than the threshold
voltage.

The emerging technology of memristive circuits is one of
the most promising technologies for hardware implementation
of computational systems. Accordingly, developing new analog
computation approaches compatible with a hybrid memristor-
crossbar/CMOS platform is a significant ongoing research area
(Bichler et al., 2012; Ligang et al., 2013; Merrikh-Bayat et al.,
2013). In this paper, we engage this platform in the area of
neuromorphic engineering and bio-modeling by developing a
novel mapping scheme for neuromorphic dynamical systems,
which makes them compatible for implementation on the
aforementioned platform. In this section, we present the
hardware structure of the system according to the proposed
mapping scheme in the previous section.

The proposed memristive circuit is shown in Figure 2. In this
circuit, the memristors are connected in a crossbar architecture
which offers flexibility, scalability, and simplicity, and also
provides maximum density. Moreover, the memristor crossbar
is separated from the CMOS-based part of the circuit causing the
compatibility of the circuit for implementation on the promising
hybrid memristor-crossbar/CMOS technology. As shown in the
figure, the circuit is broken down to different parts which are
explained one by one as follows:

FIGURE 2 | Hardware structure of the proposed memristive dynamical circuit which is totally compatible with the hybrid memristor crossbar/CMOS

platform because the memristor crossbar part of the circuit is isolated from the CMOS-based part.
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3.1. XR and YR
In the proposed circuit, X and Y discrete variables are,
respectively, stored in two M-bit and N-bit bidirectional shift
registers named XR and YR using one-hot encoding described as:

XR(i) =

{

1 X(t) = i
0 Otherwise

, i = 0, 1, . . . ,M − 1 (18)

YR(i) =

{

1 Y(t) = i
0 Otherwise

, i = 0, 1, . . . ,N − 1. (19)

Clearly in this representation, increasing or decreasing one unit
in the X and Y discrete variables are, respectively, equivalent to
one-bit forward or backward shift in the registers. Also, registers
can be reset through a control signal.

3.2. X_DAC and Y_DAC
These units receive the one-hot value of the discrete variables
from XR and YR and produce their proportional analog values
in the outputs Xa and Ya. The circuit diagram of these units
contains an opamp-based multi-input analog adder where the
input resistors are replaced by the memristors, so the gain
of each input can be controlled by changing the value of its
input memristance. Thus, as the Figure 2 shows, we set the
memristances proportional to the weight array of the input bits
in the one-hot encoding, which is an array of linearly increasing
real numbers. Thus, the governing equation of these circuits can
be given by:

{

Xa = −6M−1
i=0 XR(i) · Gmx(i) · Rf · vd

Ya = −6N−1
i=0 YR(i) · Gmy(i) · Rf · vd

(20)

where Rf is the feedback resistor of the op-amps, vd is the
voltage level from digital registers representing logic “one." In
this circuit, reading conductance of the memristors ought not
to affect their value. On the other hand, it is mentioned that
if the applied voltage to the memristor is below its threshold
(Vth), it does not induce considerable change in the memristance.
Hence, as an essential condition, the applied voltage to the
memristors ought to be lower than the threshold value (vd <

Vth). The conductance values functionsGmx(·) andGmy(·) for the
memristors are described as:

{

Gmx(i) = (Ax.i+ 1) · Gmx0

Gmy(i) = (Ay.i+ 1) · Gmy0
(21)

where Ax, Ay are the normalizing coefficients and Gmx0, Gmy0 are
the initial conductance parameters. For uniformity, the output
voltage range for both units ought to be clamped in (v

op
min, v

op
max).

For satisfying lower boundary condition of this interval, we have:

v
op
min = Gmx0 · Rf · vd = Gmy0 · Rf · vd

⇒ Gmx0 = Gmy0
(22)

and for satisfying upper boundary condition, we have:

v
op
max = (Ax · (M − 1)+ 1) · Gmx0 · Rf · vd
= (Ay · (N − 1)+ 1) · Gmx0 · Rf · vd

⇒ Ax
Ay
= N−1

M−1 .
(23)

The parameters can get various values satisfying the conditions
described in Equations (22) and (23). Note that there is an
undesirable negative sign multiplied in the output voltages Xa
and Ya in Equation (20), but it is not the source of any difficulties
in our approach, because what is calculated in the next blocks is
just the difference of the voltages and the negative sign can be
easily handled.

3.3. X_eqa and Y_eqa
In these units, the equilibrium arrays given by Equation (7)
are stored on the memristors, and the analog output voltages
proportional to the equilibrium values for current YR state is
produced in the Xeqa and Yeqa outputs. Thus, the governing
equation of these circuits can be given by:

{

Xeqa = −6M−1
i=0 XR(i) · Geqx(i) · Rf · vd

Yeqa = −6N−1
i=0 XR(i) · Geqy(i) · Rf · vd

(24)

where Rf is the feedback resistor of the op-amps, vd is the
voltage level from digital registers representing logic “one,” and
the conductance values functions Geqx(·) and Geqy(·) for the
memristors are described as:







Geqx(i) = (Ay ·
Yeqx(i)−ymin

1y + 1) · Gmy0

Geqy(i) = (Ay ·
Yeqy(i)−ymin

1y + 1) · Gmy0

. (25)

Similar to the equations of the X_DAC, Y_DAC units presented
in Equation (20), there is an undesirable negative sign in the
expression for the output voltages Xeqa and Yeqa in Equation (24),
but it is not the source of any difficulties. This is because voltage
differences are calculated in the next blocks and the sign can be
easily handled.

3.4. X_vel and Y_vel
As shown in Figure 2, each of these units contains one analog
voltage subtractor and one analog voltage adder which can be
merged in one op-amp based circuit. The subtractor receives the
proportional analog value of equilibrium arrays (Xeqa or Yeqa)
and the Y state variable (Ya), and produces the proportional
analog value of the velocity (Vdx or Vdy) using Equation (9). The
governing equations of the subtractor circuits are:

{

Vdx = Gsx · (Xeqa − Ya)
Vdy = Gsy · (Yeqa − Ya)

(26)

where Gsx and Gsy are the gain of subtractors. Note that the
coefficients α and β in Equation (9), and the aforementioned
undesirable negative sign from the previous steps ought to be
considered in the gain of the subtractors in this step. In the next
step, the adders add the proportional analog voltages of the b
and c parameters in Equation (1), which were ignored (b =
c = 0) for the sake of convenience in the mathematical process
and hardware design, to the output of subtractors to apply their
influence directly to the velocity of moving state point. The adder
equations are given by:

{

Vx = Vdx + bb
Vy = Vdy + cc

. (27)

Frontiers in Neuroscience | www.frontiersin.org 7 November 2015 | Volume 9 | Article 409

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Bavandpour et al. Generalized reconfigurable MDS

For adjusting the mathematical parameters b and c with their
proportional analog voltage value bb and cc, they are then
multiplied by the adjusting coefficients as:

{

bb = Gb · b
cc = Gc · c

(28)

whereGb andGc are the adjusting parameters. We will determine
the essential conditions on how all the introduced parameters in
X_vel and V_vel units can be chosen, after introducing the VCO
units and their parameters.

3.5. X_VCO and Y_VCO
These units contain VCOs and controller circuit. The VCO
receives the analog voltage corresponding to the velocity (Vx or
Vy) and produces the linearly proportional motion clock pulse,
which is used for clocking the shift of the XR and YR registers,
with a specific range of the frequency. Functional equation of the
VCOs is given by:

f Xclkout (Vx) =







fmax |Vx| > UT
Gvco · |Vx| LT < |Vx| ≤ UT
fmin |Vx| ≤ LT

(29)

f Yclkout (Vy) =







fmax |Vy| > UT
Gvco · |Vy| LT < |Vy| ≤ UT
fmin |Vy| ≤ LT

(30)

where Gvco is the VCO coefficient, the UT and LT are,
respectively, the upper-hand and lower-hand input voltage
threshold of the VCOs and fmax and fmin are, respectively, the
maximum and minimum output frequencies of the VCOs. The
VCOs produce two asynchronous clock pulse signals based on
the derived equation on their output pins X_clk and Y_clk. Note
that the VCOs inherently satisfy Equations (14) and (15).

The controller circuit determines the direction of the motion
(shift direction of the XR andYR state registers) on the pins X_SD
and Y_SD. Zero logical value on these pins means that the next
change in their proportional state registers is a backward shift,
and the one logical value means that the next change is a forward
shift:

X_SD =

{

1 Vx > 0
0 otherwise

(31)

Y_SD =

{

1 Vy > 0
0 otherwise

. (32)

Eventually, the state registers are shifted at the positive edge of
their proportional clock pulse signals X_clk and Y_clk:

XR(t+
posedge

)















XR≫ 1 XR(M − 1) 6= 1,X_SD = 1
XR≪ 1 XR(0) 6= 1,X_SD = 0
XR XR(M − 1) = 1,X_SD = 1
XR XR(0) = 1,X_SD = 0

(33)

YR(t+
posedge

)















YR≫ 1 YR(N − 1) 6= 1,Y_SD = 1
YR≪ 1 YR(0) 6= 1,Y_SD = 0
YR YR(N − 1) = 1,Y_SD = 1
YR YR(0) = 1,Y_SD = 0

(34)

where t+
posedge

is the time when a positive edge is appeared on the

input clock pulse of the state registers.
As we mentioned before, we ought to draw the essential

conditions on the coefficients for proper operation of the system.
According to the Equation (2), the analog velocity of the state
point in x direction is α times of its absolute analog vertical
distance (distance in y direction) from the equilibrium curve, and
in y direction is β times of its absolute analog vertical distance
from the equilibrium curve. Accordingly, in the cellular space,

the cellular velocity of the state point in x direction is α ·
1y
1x times

of its absolute cellular vertical distance from the equilibrium
curve, and in y direction is β times of its absolute cellular vertical
distance from the equilibrium curve. Note that in the cellular
space, the cellular velocity is equal to the frequency of VCOs.
So, for a special condition where the vertical distance of the state
point from the equilibrium curve is equal to one cell, the cellular

output frequencies of the VCOs are f Xclkout = α ·
1y
1x and f

Yclk
out = β .

In this condition, if we merge the Equations (21), (24–26), (29),
and (30) (assuming b = c = 0) to evaluate the output frequency
of the VCOs, we have:

{

Ay · Gmy0 · Rf · vd · Gsx · Gvco = α ·
1y
1x

Ay · Gmy0 · Rf · vd · Gsy · Gvco = β
. (35)

By dividing these two equations, we obtain:

Gsx

Gsy
=

α ·1y

β ·1x
. (36)

Now, assume the special condition where the vertical distance of
the state point from the equilibrium curve is equal to zero and
b = 1x, c = 1y. In this condition, the frequencies of the VCOs
are f Xclkout = f Yclkout = 1. According to the Equations (28–30), we
have:

{

Gb ·1x · Gsx = 1
Gc ·1y · Gsy = 1

. (37)

By dividing these two equations, we have:

Gb

Gc
=

β

α
. (38)

Therefore, the parameters must satisfy the essential conditions
given by Equations (35–38).

Auxiliary Function: This unit is a logical block for
implementing the auxiliary functions like threshold conditions
and resetting functions.

The proposed circuit is significantly more efficient in term of
area in comparison with the previous similar approach named
CMDS (Bavandpour et al., 2014) while achieving the same
performance and accuracy. In the Table 1, our approach is
compared with the CMDS in terms of circuit elements/blocks for
implementing a two-dimensional 100 × 100 cellular dynamical
system.
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TABLE 1 | Hardware assessment of the proposed approach in comparison

with the CMDS approach for implementing a two-dimensional 100 × 100

cellular dynamical system.

Circuit element/block Proposed approach CMDS

Memristor 400 20,000

Switch – 400

Analog adder 1 1

VCO 2 2

Auxiliary function 1 1

State variable registers 2 2

Analog output Yes No

One-hot digital output Yes Yes

4. DYNAMICAL BEHAVIOR ANALYSIS

The behavior of a biological neuron depends on many intrinsic
and extrinsic factors, such as the morphology of its dendritic tree,
the type and characteristics of ion-gated channels and voltage
expressed by the neuron, the location of the stimulating input,
and so on. These factors are indeed important, because they
determine not only the neuronal response but also the rules that
govern dynamics of the neuron. Accordingly, different neuron
models are developed to mimic different responses of the neuron
and their related dynamics (bifurcations). Our generalized circuit
can mimic the dynamics and the various responses of a wide
range of neuronmodels with different computational complexity.
In this section, we investigate three main neuron models as the
FHN (Fitzhugh, 1961), AdEx (Brette and Gerstner, 2005), and
Izhikevich neuron models (Izhikevich, 2003), and show that the
circuit is able to properly mimic different responses of different
neuron models.

4.1. FitzHugh-Nagumo (FHN) Neuron Model
The FHN is a two-dimensional neuron model derived form the
simplified Hodgkin-Huxley (HH) model for biological process
of spike generation in squid large axons (Fitzhugh, 1961). This
model is considered as a relatively complex mathematical model
due to a third power factor in its equations. FHN is represented
by a simplified set of equations as:

{

v̇ = v− v3

3 − u+ I
u̇ = a · (v+ 0.7− 0.8u)

(39)

where v and u are, respectively, the membrane potential variable
and the recovery variable, I is the injected stimulus current, and
a is an adjustable parameter. As shown, FHN model utilizes
no auxiliary resetting function to reproduce spiking behaviors.
Hence, it does not employ the auxiliary function block in the
circuit implementation. Mathematical analysis of this model
simply shows that this system behaves like a relaxation oscillator.
It implies that if the stimulus input current of the model
exceeds a specific threshold, the model will follow a characteristic
trajectory in phase space before the state variables relax back to
their resting values. Typically, this behavior is how a biological

neuron generates a spike (defined as a short and fast elevation
of membrane potential) after injecting a short stimulus input
current. Comparing the FHN model with the general form
of target systems presented in the previous section, it can be
rewritten in the general form of Equation (2) and then mapped
easily on the proposed platform. The general form of FHN
neuron model in our mapping is given by:























x = v, y = u
α = 1, β = 0.8a
b = I, c = 0

F(x) = x− v3

3
G(x) = (x+ 0.7)/0.8

. (40)

Our FHN-MDS approach can exhibit all significant qualitative
phenomena of the original FHN model and their underlying
bifurcations. In this study, four main bio-inspired phenomena of
FHN model are individually investigated on our approach.

4.1.1. Absence of All-or-none Spike
The original FHN model is capable of producing the absence of
all-or-none spikes as it is produced in HH model in response to
stimulus current I. According to this behavior, the amplitude of
output relaxation trajectory is directly and continuously related
to the amplitude of the injected current pulse I to the model.
Weak stimulation produces a small-size relaxation trajectory
as a subthreshold response. Stronger stimulation produces an
intermediate-size trajectory as a partial-size spike, and strong
stimulation produces a large-size trajectory as a supra-threshold
firing response. Figure 3A shows time-domain and phase-plane
representations of this phenomenon produced by our approach.
As shown, size of trajectories in the phase plane is directly
related to the amplitude of applied input pulses in the time
domain.

4.1.2. Excitation Block
According to this response, the neuron stops repetitive firing and
goes back to a stable resting state as the amplitude of the input
current increases. This type of response is based on a special
bifurcation scenario in the phase plane representation. When
input current I is relatively weak, the equilibrium point (the point
that the nullclines intersect) is located on the left branch of X-
nullcline resulting in a stable state, and hence the model is in the
resting state. As the input current increases, the nullcline shifts
upward in the phase plane, so the equilibrium point moves onto
the middle branch of the nullcline resulting in an unstable state.
Hence, the model produces a limit cycle in the phase plane and
starts a repetitive firing in the output. Further increase of the
stimulus current shifts the equilibrium point to the right branch
of the N-shaped nullcline resulting in a stable state again, so
the previous firing state is blocked. The FHN-MDS approach
can exhibit this behavior as accurate as the original FHN model.
Transition from the resting state to the repetitive firing, and then
the blocking state produced by the FHN-MDS approach using a
ramp input current are shown in Figure 3B in both phase and
time domains.
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FIGURE 3 | Phase-plane (left side) and time-domain (right side) representations of (A) absence of all-or-none spikes phenomenon, (B) excitation block

phenomenon, (C) post-inhibitory rebound spike phenomenon, and (D) spike accommodation phenomenon, for 64-bit FHN-MDS neuron circuit. In the

phase plane, XN and YN are the nullclines, MXN is the momentary location of XN nullcline, ST is the trajectory of the state point in the plane, and IP is the initial

location of the state point.

4.1.3. Post-inhibitory Rebound Spike
Another basic behavior of the original FHN model is post-
inhibitory rebound spikes. This phenomenon is also called
anodal break excitation. This behavior is produced in response
to application of a short negative pulse to the model. As the
negative pulse is applied, hyperpolarization is occurred, and the
resting state slides to the left. At the moment when negative pulse
is finished, anodal break is occurred, stable equilibrium point
promptly shifts up, and the state point makes a transitory large-
amplitude excursion to move from previous location of the stable
point to its current location and rest. This transient state results
in a single spike in time domain. This response is investigated on
the FHN-MDS circuit in Figure 3C, and the results show that the
approach can accurately produce this behavior.

4.1.4. Spike Accommodation
This type of response is a common basic dynamical mechanism
produced by HH-family models. According to this response,
slow increase of the injected current I to a specific amplitude
does not cause a firing behavior, while prompt increase of the
current to the same (even smaller) amplitude results in a spike
in neuron output. In the case of gradual stimulation, the stable
resting point of the model gradually slides to the right side of
the phase plane, and the state point smoothly follows it without
any additional excursion such as a firing cycle. In the case of
prompt stimulation, the state point potentially fails to follow
the resting point directly, and moves toward the trajectory of a
transient spike to approach the new location of the resting point.

This phenomenon is investigated on the FHN-MDS circuit using
ramp and step stimuli in Figure 3D.

4.2. Adaptive Exponential (AdEx) Integrate
and Fire Neuron Model
The AdEx is a two-dimensional neuron model that
mathematically describes the dynamical relationship between
the membrane potential of the neuron v(t) and an adaptation
current w(t). This model is defined by the following system of
non-linear ordinary differential equations:

{

C · v̇ = −gL · (v− EL)+ gL ·1T · exp(
v−VT
1T

)+ I − w

τw · ẇ = a · (v− EL)− w
(41)

if v > 0 mV then

{

v← vr
w← wr = w+ b

where C is total capacitance, gL is total leak conductance, EL is
effective rest potential,1T is threshold slope factor,VT is effective
threshold potential, I is injected current, a is conductance, τw
is time constant of the adaptation current, vr is reset voltage,
and b is the adaptation reset parameter. One of the important
characteristics of the AdEx distinguishing it from the other two
dimensional neuron models is that its mathematical parameters
have equivalent physiological quantities, because the model has
been soundly developed based on a biophysical model of a regular
spiking pyramidal cell and its behavior completely fits to neuro-
signals recorded from real-life pyramidal cells (Clopath et al.,
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2007). The first equation of the AdEx is extended based on
the LIF neuron models family (Abbott, 1999) that describes the
exponential-shaped upraising of the neuron membrane potential
during an action potential. Whenever the membrane potential
approaches the threshold (vth), the exponential term in the
equation results in a rapid increase of the membrane potential.
The downward portion of the spike shape is produced by
an auxiliary reset condition. Subthreshold and spike-triggered
adaptations are, respectively, considered using the parameters a
and b in the second equation.

According to the explanations in the previous section, the
model can be rewritten in the general form of Equation (2) and
then mapped easily on the proposed platform. The general form
of AdEx neuron model in our mapping is given by:























x = v, y = w
α = 1/C, β = 1/τw
b = I, c = 0

F(x) = −gL · (x− EL)+ gL ·1T · exp(
x−VT
1T

)

G(x) = a · (x− EL)

. (42)

Despite the simplicity of this two equation model with only
a few parameters, this model can reproduce a wide range of
physiological firing patterns. Here, we investigate a number of its
main responses.

4.2.1. Tonic Spiking
In this response, when a step current is injected into the neuron,
it starts to fire repetitively, and produces a spike train with a
constant frequency in its output. Figure 4A shows the tonic
spiking response of our circuit in the phase plane and time
domain representations.

4.2.2. Adaptation
In this response, when a step current is injected into the
neuron, the neuron starts to fire repetitively and adapt the spike
frequency from a relatively high initial frequency to a specific
lower frequency. Figure 4B shows the adaptation response of our
circuit in the phase plane and time domain representations.

4.2.3. Initial Bursting
In this response, when a step current is injected into the neuron,
the neuron produces an initial burst of spikes and then starts to
fire repetitively with a constant frequency. Figure 4C shows the
initial bursting response of our circuit in the phase plane and time
domain representations.

4.2.4. Regular Bursting
In this response, when a step current is injected into the
neuron, the neuron produces a repetitive burst of spikes with
a constant frequency (first burst may have different shape due
to the initial state point). Figure 4D shows the regular bursting
response of our circuit in the phase plane and time domain
representations.

4.2.5. Delayed Accelerating
In this response, when a step current is injected into the
neuron, the neuron produces an initial delay by a slow

increase in the membrane potential, and then produces a
spike train. The frequency of spike train increases by time
as a transient phase (accelerating transient) and then the
frequency is fixed. Figure 4E shows the delayed accelerating
response of our circuit in the phase plane and time domain
representations.

4.2.6. Delayed Regular Bursting
Similar to the delayed accelerating, in this response, when
a step current is injected into the neuron, the neuron
produces an initial delay by a slow increase in the membrane
potential, and then produces a repetitive burst of spikes with
a constant frequency. Figure 4F shows the delayed accelerating
response of our circuit in the phase plane and time domain
representations.

4.2.7. Transient Spiking
In this response, when a step current is injected into the neuron,
the neuron produces one transient spike and then remained
in the resting state. Figure 4G shows the transient spiking
response of our circuit in the phase plane and time domain
representations.

4.2.8. Irregular Spiking
The AdEx model can represent the irregular spiking behavior,
which is a chaotic response, despite this fact that the equations are
deterministic. According to this response, inter-spike intervals
vary over time without a periodic pattern. Figure 4H shows the
irregular spiking response of our circuit in the phase plane and
time domain representations.

4.3. Izhikevich Neuron Model
Izhikevich model (Izhikevich, 2003) is one of the well-known
neuron models which has been applied to a variety of brain
simulation applications. This model is capable of mimicking a
wide range of firing patterns and their underlying bifurcation
scenarios using a two-dimensional relatively simple phase plane.
Its simple equations results in an optimum computational cost
to achieve an accurate inclusive group of bio-inspired spike
patterns. Two coupled dynamical equations of this model is
given by:

{

v̇ = 0.04v2 + 5v+ 140− u+ I
u̇ = a · (b · v− u)

(43)

if v > 30 mV then

{

v← c
u← u+ d

where the main dynamical variables of the model, v and u, are,
respectively, the membrane potential, and membrane recovery
variables of the neuron. Dynamic of the recovery variable u
models the activation of the ionic channels such as K+ and Na+

channels, and provides controlling feedback to v. Parameters
a, b, c, d are dimensionless adjusting parameters of the model
to achieve various responses and spike patterns. The auxiliary
resetting function represented above resets the membrane
potential and the recovery variable when the membrane potential
reaches its pre-determined apex (vth = 30 mV) and neuron
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FIGURE 4 | Phase-plane trajectory and time-domain representation of (A) tonic spiking, (B) adaptation, (C) initial burst, (D) regular bursting, (E)

delayed accelerating, (F) delayed regular bursting, (G) transient spiking, and (H) irregular spiking responses for 64-bit memristive AdEx neuron circuit.

In the phase plane, XN and YN are the nullclines, MXN is the momentary location of XN nullcline, ST is the trajectory of the state point in the plane, IP is the initial

location of the state point, and XR is the reset line.

fires. This model can be conveniently rewritten in the general
form of Equation (2) and then mapped easily on the proposed

platform using the procedure explained in the previous sections.

The general form of Izhikevich neuron model in our mapping is
given by:























x = v, y = u
α = 1, β = a
b = I, c = 0
F(x) = 0.04x2 + 5x+ 140
G(x) = b · x

. (44)
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Time-domain neuron-like responses of the proposed 64-bit
memristive cellular Izhikevich-MDS approach are shown in
Figure 5. As shown, the circuit can reproduce all key responses
of the original Izhikevich neuron model and transitions from
resting state to the spiking states by adjusting model parameters
and applying special input current shapes.

5. HARDWARE PROTOTYPE

In this section we introduce a potentiometers-based board
simulating our memristive system. This board is remarkably
useful for improving the level of understanding about MDS
approach, and the concept of learning in this approach for
devising compatible learning algorithms, and also developing
novel dynamical models with the capability of mimicking new
responses. Note that detailed fabrication of this approach on
thememristor-crossbar/CMOS platform considering all platform
constraints is not the main aim of this paper and may be
investigated in the future.

For circuit-level realization of the approach, the essential
information about the target dynamical system is mapped into
arrays of resistors with different resistances and also a number
of logic gates for auxiliary functions such as reset equations.
In our general circuit, type of the response and the dynamical
system can be changed by changing these two parts of the
circuit. Hence, we use the programmable resistors known as
multiturn potentiometers and the programmable digital logic
gates known as FPGA to develop a fully reconfigurable and
generalized hardware.

The final board for a 20 × 20 cellular approach is depicted in
Figure 6A, and v and u analog output signals of the circuit for
tonic spiking and tonic bursting responses of Izhikevich neuron
model are depicted in Figures 6B,C, respectively. As shown in
the figure, we used 4×20 = 80 100 k�multiturn potentiometers
instead of memristors and TL074 opamps with Rf = 10 k� to
implement X_DAC,Y_DAC,X_eqa,Y_eqa units of the circuit
shown in Figure 2. According to Equations (21) and (25), we
ought to evaluate the value of Gmx0,Gmy0,Ax,Ay based on our
board voltage level and other constraints such as resistance values
before we go through the detailed circuit design. In this case,
knowing Rf = 10 k�, vd = 3.3 V, and the resistance range
of the potentiometers, we decided to limit the range of variable
resistances to (10–80 k�). Therefore, we can easily evaluate
the above-mentioned parameters in Equations (21) and (25) by
checking the lower boundary (i = 0) and upper boundary (i =
19) conditions:

{

Gmx(0) = (Ax.(0)+ 1) · Gmx0 =
1

80×103

Gmx(19) = (Ax.(19)+ 1) · Gmx0 =
1

10×103
(45)

⇒

{

Gmx0 = Gmy0 =
1

80×103

Ax = Ay =
7
19

. (46)

The gain of other adders, subtractors, and op-amp based absolute
value circuits are equal to unit. Also the sign of the velocities
are calculated using single-supply TLC272 opamps working in

the saturation mode, and comparing the velocity voltage values
with the ground voltage. The final absolute values are converted
to 8-bit digital values using two built-in ADC of ATmega16
microcontroller, and sent to the Spartan3 XC3S400-4PQ208C
FPGA. The VCO units, the state registers, and the auxiliary reset
equations are synthesized on the FPGA, and 2 × 20 wires of
state registers are connected back from the FPGA to the input
of potentiometer arrays.

6. ERROR ANALYSIS

One of the challenging topics in dynamical systems is error
analysis of an approximation of the system such as piece-
wise linear approximations (Soleimani et al., 2012) and cellular
mappings (Bavandpour et al., 2014) in comparison with the
original system. This challenge is raised because of two main
reasons: first, there are different expectations from different
dynamical systems which change the fidelity factors in error
analysis, and the concept of error ought to be redefined by these
expectations. For example, in a neuron model, these different
fidelity factors include exact timing of the spikes, rate of the
spikes, exact trajectory of the spikes and refractory phases, etc.
Second, the equations and parameters of dynamical systems are
sensitive, and a small change in them may cause a fundamental
change in the whole behavior (bifurcations) of the system. In this
section, we assess error in terms of both trajectory in the phase
plane and the timing of output spikes for our approach.

In the Section 2, in the first step, we changed the
representation of the general form of the target dynamical system,
and showed that the velocity of a given state point in the phase
plane is related to the vertical distance of that point from the
nullclines. This step was just a change in the representation form
that did not cause any kind of error in the system. Therefore,
the cellular mapping, and different variations in fabrication
process are the source of error in our system. The detailed
circuit implementation of different blocks of the system and
investigation of the hardware variations in the system is not in
the scope of this paper, and will be studied as a future work. So,
here we investigate the effect of cellular mapping.

As explained before, although our approach turns the
continuous phase plane into a plane with discrete crossbar cells,
it can exactly locate any point in the plane and indicate that
point using the motion times. It implies that our asynchronous
approach can track any trajectory in the plane with the sufficient
number of cells. Figure 7 shows a sample continuous trajectory
in the phase plane and its proportional cellular trajectory using
the motion times. In the figure, the motion times (Tx,Ty) for
each cell are represented. These times are updated in each cell
based on Equations (9) and (11). As shown, the virtual cellular
trajectory (cellular trajectory + motion times) can exactly track
the continuous trajectory in the phase plane under specific
conditions on the trajectory and the number of cells.

Note that the Figure 7 represents the ideal condition where
the velocity in the intra-cells space is approximately constant and
consequently the trace is smooth. In our approach, we calculate
the velocity for the cross point of the cells and consider it to be
constant over intra-cell space. This matter causes error in form
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FIGURE 5 | Time-domain representation of different dynamical behaviors of a 64-bit memristive Izhikevich neuron circuit. (A) Tonic spiking, (B) phasic

spiking, (C) tonic bursting, (D) phasic bursting, (E) mixed mode, (F) spike frequency adaption, (G) class I excitable, (H) class II excitable, (I) spike latency, (J)

sub-threshold oscillation, (K) resonator, (L) integrator, (M) rebound spike, (N) rebound burst, (O) threshold variability, (P) bistability, (Q) Depolarized After-Potential

(DAP), (R) accommodation, (S) inhibitory induced spiking, and (T) inhibitory induced bursting.
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FIGURE 6 | A simple 20-bit potentiometers-based hardware prototype and its output signals. (A) Hardware board consisting of potentiometer arrays,

Opamps, one FPGA, and one AVR microcontroller. (B) Output u and v signals for tonic spiking response of MDS-Izhikevich model. (C) Output u and v signals for tonic

bursting response of MDS-Izhikevich model

FIGURE 7 | A sample continuous trajectory in the phase plane and its

proportional cellular trajectory using the motion times.

of momentary and permanent lag, lead and deviation in tracking
where the velocity changes are more erratic and uneven. This
effect can be significantly reduced by increasing the number of
cells. Note that the injected currents bb, cc given in Equation (28)
are directly influence the velocity and do not cause this kind of
error.

Here, we separate spike timing error caused by the piece-wise
constant velocity nature, and spike shape error caused by cellular
nature of our approach. Table 2 shows the spike timing error
and spike energy error of our approach in comparison with the
original model for tonic spiking and regular bursting responses

of different neuronmodels such as the FitzHugh-Nagumo, AdEx,
and Izhikevich neuron models. For the spike timing error, we
calculated the relative error of duration of spike train (duration of
one limit cycle). Also, for the spike energy error, we synchronized
the spike trains and calculated the relative error for the energy
of signal shapes for one cycle. As can be seen, absolute value of
the spike timing error is decreased by increasing the number of
bits or cells in the system. Note that the relative timing of the
signals (lead/lag) is changed randomly. Moreover, the relative
spike energy error is decreased by increasing the number of bits
or cells in the system. Figure 8 shows the signal shape of regular
bursting produced by our MDS-AdEx using 20, 40, and 60 bits.

7. REMARKS

This paper presented a novel, efficient, fully reconfigurable
approach for implementing neuromorphic dynamical systems.
This approach shows a huge capability in different aspects, and
it can be developed and fabricated for different applications. In
this section, we present two main capabilities of our approach
and attempt to point out an acceptable roadmap for research
works toward which we can obtain a powerful hardware for
neuromorphic applications. These two capabilities, which are the
key topics in neuromorphic engineering, are (1) configuring and
networking, and (2) learning.

7.1. Configuring and Networking Capability
Considering various applications of the neural systems, it can
be easily concluded that any proposed approach for hardware
implementation of a single neural element ought to provide the
capability of networking with variable weights. Here, we draw
a roadmap to achieve a reconfigurable network of Memristive
Dynamical System (MDS) cells with inherent plasticity. As
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TABLE 2 | The relative spike timing error and relative spike energy error of our approach in comparison with the original model for tonic spiking and

regular bursting responses of the FitzHugh-Nagumo, AdEx, and Izhikevich neuron models.

Neuron model Response type 20-bit (%) 40-bit (%) 60-bit (%) 80-bit (%) 100-bit (%)

(A) RELATIVE SPIKE TIMING ERROR

FHN Tonic spiking 1.78 1.04 0.67 0.43 0.26

AdEx Tonic spiking 2.29 1.34 1.00 0.79 0.54

Regular bursting 3.52 1.73 1.08 0.81 0.65

Izhikevich Tonic spiking 2.03 1.22 0.88 0.54 0.32

Regular bursting 3.01 1.69 1.01 0.76 0.55

(B) RELATIVE SPIKE ENERGY ERROR

FHN Tonic spiking 3.24 1.78 1.22 0.88 0.62

AdEx Tonic spiking 9.41 5.09 3.99 2.98 2.07

Regular bursting 17.55 8.77 5.04 4.57 3.95

Izhikevich Tonic spiking 7.85 4.08 3.12 2.01 1.44

Regular bursting 10.14 5.00 3.85 2.97 2.45

FIGURE 8 | Signal shape of regular bursting produced by MDS-AdEx

approach using 20, 40, and 60 bits.

explained, MDS approach produces both analog and digital
one-hot outputs, and accepts analog voltage as injected input
to the system. This feature makes it feasible to replace
conventional hardware implementation of single neural cells with
the MDS cells in a wide range of applied digital/analog weighted
networking schemes with plasticity to achieve a network of
optimum accurate general neural cells. Besides, it is convenient
to propose novel networking schemes to connect Memristive
Dynamical System (MDS) cells with variable weights, so the

resultant system is flexible network of general neural cells with
variable intera-cell dynamics and the capability of applying bio-
inspired learning schemes.

Figure 9 shows the overall conceptual structure of the
system which contains the network of the proposed Memristive
Dynamical System (MDS) cells connecting to each other through
a weighting and integrating Synaptic Unit (SU) and sharing a
connection bus for programming the reconfigurable MDS cells.
In this conceptual model of the system, the user is provided with
a user interface to determine the equilibrium functions and the
desired intervals [xmin, xmax) and [ymin, ymax) on the dynamical
variables x and y. A host processor calculates the equilibrium
arrays Yeqx and Yeqy and their equivalent memristances (where
b = c = 0), and applies a compatible programmer system to
program them on the stand-alone neuro-chip using a developed
communication protocol. During this process, the equilibrium
memristor arrays are selected and programmed using the special
pulse shapes proposed for writing into the memristors. Clearly,
the reconfigurable memristors ought to be updated every time
the dynamical system parameters are changed. Then, the MDS
cells starts to track their deterministic trajectory in the phase
plane according to the moving policy given by Equations (14–17)
implemented on the neuro-chip.

7.2. Learning
Applying the flexible memristors in a well-mapped general
hardware brings a significant advantage of learning capability
to the MDS approach. In other words, the MDS is capable of
learning various intra-cell dynamics with various complexities
to reproduce various signal shapes specifically spike patters in
its output. One of the major advantages of our novel MDS
approach over previous CMDS (Bavandpour et al., 2014) is
our novel mapping which uses the vertical distance of the
state point from the nullclines to calculate the velocity. In this
mapping, the nullclines while in the CMDS the memristors
store the value of velocity in all over the cellular phase plane.
Therefore, learning process in MDS is significantly simpler and
more effective than CMDS. Considering this feature, different
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FIGURE 9 | Conceptual network-level structure for networking the MDS cells. The user inputs required mathematical information of the model into the host

computer, and the required equilibrium curves data are calculated and programmed into the neuro-chip memristors using a programmer unit.

intra-cell learning schemes can be applied to the MDS to teach
it different dynamical behaviors with no straight knowledge on
the dynamical equations. Figure 10 shows the conceptual block
diagram of a possible learning system for MDS. As shown, target
system is a black box system with unknown mathematical model
governing its dynamical behavior. Assume that the system can be
modeled with a two-dimensional dynamical system, and the state
variables of the black box are observable. In this condition, the
dynamical behavior of the system can be extracted by applying
different stimulus inputs in different initial states. Output signals
of the black box can be applied to MDS system as teacher signals
to follow its behavior. Learning controller detects the black box

state, and modifies MDS behavior in the same state using teacher
signal. Modification of MDS behavior during the learning phase
is done by changing the memristance of the memristors using
learning signals.

8. DISCUSSION

This study presented an unconventional computing approach
based on a novel general mapping for dynamical systems in
two-dimensional cellular phase space, and then its hardware
implementation on efficient hybrid memristors-crossbar/CMOS
memristive circuit. The proposed approach calculates the
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FIGURE 10 | A possible learning system block diagram which extracts

the behavior of an unknown black box system and teaches an MDS

cell to imitate this behavior.

velocity vector using the vertical distance of the state point
from the nullclines, and applies an unconventional VCO-based
asynchronous technique to track the state trajectory in the
phase space. This approach employed 4n memristors and no
switch for implementing an n-cell system in comparison with
the 2 · n2 memristors and 2n switches of a Cellular Memristive
Dynamical System (CMDS). In addition, our proposed circuit
provides both analog and one-hot digital values of dynamical
variables offering a wide range of choices for interconnections
and networking schemes. The fidelity of MDS approach was
investigated on widely used two-dimensional neuromorphic
dynamical systems such as the FitzHugh-Nagumo model, the
Adaptive Exponential (AdEx) integrate and fire model, and
the Izhikevich neuron model covering a wide range of real-
life neuronal dynamic behaviors and responses. The MDS-based
neurons were simulated with various stimulus currents, and it
was showed that they can mimic every key response produced by
the original models. Moreover, we clarified different definitions

of error in neuromorphic dynamical systems and investigated
spike timing error and spike shape error for different responses
of different neuron models. The error results showed that our
approach can properly mimic the exact behavior of the dynamical
system. In conclusion, the key advantages of the proposed
approach can be listed as:

• It is general and highly programmable.
• It achieves a relatively high accuracy in a low resolution

cellular space.
• Its implementation cost is almost independent from the

computational effort of the target mathematical model.
• It is capable of implementing mathematically indescribable

dynamical systems.
• It is implementable on a nanoscale efficient memristor/CMOS

hardware platform.
• It is conveniently feasible to apply conventional analog or

digital networking schemes to the MDS cells, and also propose
novel networking schemes.

• It is capable of learning unknown intra-cell dynamics.

Toward the future roadmap, the problems which ought to be
solved can be listed as:

• A detailed circuit design and analysis process to achieve an
optimum circuit for different blocks of the MDS system.
• Developing unconventional learning methods for MDS-based

dynamical systems.
• A novel compatible mathematical method for stability analysis

of the proposed cellular mapping.
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