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The computation of image similarity is important for a wide range of analyses in

neuroimaging, from decoding to meta-analysis. In many cases the images being

compared have empty voxels, but the effects of such empty voxels on image similarity

metrics are poorly understood. We present a detailed investigation of the influence of

different degrees of image thresholding on the outcome of pairwise image comparison.

Given a pair of brain maps for which one of the maps is thresholded, we show that

an analysis using the intersection of non-zero voxels across images at a threshold of

Z = ±1.0 maximizes accuracy for retrieval of a list of maps of the same contrast, and

thresholding up to Z = ±2.0 can increase accuracy as compared to comparison using

unthresholdedmaps. Finally, maps can be thresholded up to to Z = ±3.0 (corresponding

to 25% of voxels non-empty within a standard brain mask) and still maintain a lower

bound of 90% accuracy. Our results suggest that a small degree of thresholding may

improve the accuracy of image similarity computations, and that robust meta-analytic

image similarity comparisons can be obtained using thresholded images.

Keywords: neuroimaging, functional magnetic resonance imaging, image comparison, thresholding, image

classification, human connectome project

1. INTRODUCTION

The computation of similarity between images is an increasingly important component of
neuroimaging analyses. In the context of reproducibility, statistical brain maps must be compared
to evaluate if a new result has successfully replicated a previous one. For approaches that involve
clustering, a distance or similarity matrix is commonly defined that makes a comparison between
all pairwise maps. For meta-analytic decoding (Yarkoni et al., 2011), one must be able to identify
similarity between the target image and each image in the relevant database.

One challenge in computation of image similarity is the presence of empty (zero-valued) voxels
due to thresholding. The clearest example comes from coordinate-based meta-analysis, where
voxels outside of regions with activation peaks will have a zero value. However, the problem arises
in other domains as well, such as the NeuroVault database (Gorgolewski et al., 2013, 2015). The
maps in NeuroVault represent a broad range of statistical tests, and while a warning is issued when
a user uploads a thresholded map, there is no hard restriction. At the time of our analysis, for the
774 publicly available maps in the NeuroVault database, 60 (∼7.7%) had fewer than 25% of non-
empty voxels observed within anMNI template brainmask. Recently, NeuroVault has implemented
the ability to compare a single result map to all others in the database. This reality presents with
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the challenge of performing image comparison in the presence
of thresholding choices that may introduce many “faux zeros,” or
even eliminate negative values completely. The impact of these
empty voxels on image comparison is not currently understood.

In the present work we examine the effects of thresholding
on image similarity metrics. Specifically, we test the accuracy of
classifying brain images according to their experimental contrast,
using several levels of image thresholds and strategies to handle
values that are rendered empty by thresholding. We approach
the problem from a machine learning framework, assessing the
accuracy of classifying image contrasts at the varying levels of
thresholding. The results demonstrate that limited thresholding
may in some cases have a beneficial effect on classification
accuracy, and that accurate classification can be retained even
under fairly aggressive thresholding.

2. MATERIALS AND METHODS

The code and results for all analyses reported here is available
(https://github.com/vsoch/image-comparison-thresholding),
and a summary of our classification framework is detailed in
Figure 1.

2.1. Data
To generate a large set of group maps across many behavioral
contrasts, we utilized images from the Human Connectome
Project (HCP; Van Essen et al., 2012, 2013). The HCP provides
access to large datasets of brain images, including a data release
of 501 subjects (including relatives) with the majority having
completed seven functional tasks (Van Essen et al., 2013). The
large number of subjects and assortment of functional paradigms
allowed us to generate samples of unrelated individuals for a
wide range of contrasts, and assess the influence of levels of
thresholding (Section 2.4 Empty voxels in brain statistical maps)
combined with a strategy for handling said empty voxels
(Section 2.5 Strategies to handle empty voxels) in a classification
framework. Specifically, we are studying the influence of image
thresholding and the choice of how to handle non-overlapping
voxels on the ability to match any given contrast from one group
to the equivalent contrast in a second group.

To generate two groups, A and B, to be used in our random
subsampling procedure (Section 2.6 Assessing influence of
thresholding on classification accuracy), we first subset the
HCP data to the 465 out of 501 subjects that have data for all
contrasts across all tasks. For each of 500 iterations, we used
a random sampling procedure to generate two groups (N =

46) for comparison that ensured no related subjects between
groups. To accomplish this, we take a random sample of 46
subjects for group A, and randomly sample from the remaining
subjects, adding to group B only in the case that the sample has
no relations to individuals in group A. We repeat this procedure
until we have amassed an appropriately sized sample.

2.2. Contrast Selection and Statistical Map
Generation
We first filtered the contrasts to a unique subset. Across the
seven functional tasks from HCP (emotion, working memory,

relational, gambling, language, social, and motor), there were
a total of 86 contrasts (6, 30, 6, 6, 6, 6, and 26 respectively
for each task), and we filtered this set down to 47 (3, 19, 3,
3, 3 ,3, 13 respectively) to remove redundancy in the maps,
including negation of contrasts and inverse subtractions (e.g.,
“faces - shapes” vs. “shapes - faces”). The list of contrasts
is available in Supplementary Data 1. Single subject data for
these contrasts was used to derive group maps for comparison;
for each group/contrast, a one-sample t-test was performed
using the FSL randomise tool, which returns a whole-brain
t-statistic map. This procedure resulted in 47 whole-brain,
unthresholded t-statistic maps for each of two unrelated groups,
A and B, for each of 500 iterations. We normalized these maps
to Z-scores using an implementation of Hughetts transform
(https://github.com/vsoch/TtoZ) that has better precision than
the tools currently employed in standard neuroimaging software
packages Hughett, 2007.

2.3. Similarity Metrics
While choice of a similarity metric is just as important as a
strategy for handling empty voxels, for the purposes of this study
we chose two commonly utilized metrics, Pearson’s R correlation
coefficient, and Spearman’s Rank correlation coefficient (Taylor,
1895), implemented with “pearsonr” and “spearmanr” in the
python package scipy (Jones et al., 2014).

2.4. Empty Voxels in Brain Statistical Maps
As discussed previously, image thresholding introduces empty
voxels in brain statistical maps. We define a set of thresholds, T,
ranging from 0.0 (no threshold applied) to ±13.0 in increments
of 1.0 to cover the entire range of possible Z-Scores defined
for the images (minimum = −12.27, maximum = 11.18). We
consider two separate analyses: first to include positive and
negative values, and second to include only positive values,
as researchers interested in positive associations alone may
completely eliminate negative values from a map. In the case of
including positive and negative values for a given threshold, T,
the images were thresholded to only include values above+T, and
below−T.

2.5. Strategies to Handle Empty Voxels
The default of most software is to take one of two approaches:
replacing empty voxels with 0, or eliminating them entirely from
the comparison set. We chose these two strategies for handling
empty voxels to mirror this practice. We first consider data that
is only complete, “complete case analysis” (CCA). This means an
intersection-based strategy that limits the comparison set to the
intersection of non-zero, non-NaN voxels between two images.
Second, we consider the case of single-value imputation (SVI),
where empty/NaN values are replaced with zeros. Each of these
two strategies was applied to each of two images for comparison.

2.6. Assessing Influence of Thresholding
on Classification Accuracy
2.6.1. Extraction of Pairwise Scores
Within each iteration, we calculated pairwise Pearson and
Spearman scores for each of the 47 contrasts for group A
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(unthresholded) against all 47 contrasts for group B with a
particular strategy for handling empty voxels (CCA and SVI) and
threshold applied. Note that because CCA excludes any voxels
not present in both images, it is equivalent to thresholding each
map using the non-zero voxels shared between an unthresholded
image A and thresholded image B. For each of our 14 thresholds
(including a level of 0.0 that is equivalent to no thresholding
applied), we tested the comparisons using both positive and
negative values, and only positive values. Using theMNI standard
template brain mask (2 mm), a completely unthresholded image
would allow for 228, 483 voxels for comparison. In the cases of no
non-zero values surviving a level of thresholding, no overlapping
finite values, or having fewer than three voxels from which to
compute a score, we assert that the maps cannot be compared
and thus have no similarity, and ascribe a score of NaN.

2.6.2. Assessment of Empty Voxels on Classification

Accuracy
Within each of the 500 subsamples, we make the basic
assumption that equivalent contrasts defined between groups
A and B should be most similar, meaning that a particular
contrast for group A should have the greatest similarity with the
equivalent contrast for group B across all contrasts. We can make
this assessment for each strategy to handle empty voxels, across
all thresholds, and calculate a mean accuracy for each strategy,
threshold, and metric. Specifically:

For each of 500 subsamples:

Subset data to unrelated groups A and B
For each unthresholded map, Ai in A

Apply each threshold in Z = ±0:13, and Z = + 0:13 to
all of B
Calculate similarity for each of B to Ai

Assign correct classification if contrast Ai most similar
to equivalent contrast in B

The “most similar” is defined as the highest scoring map from
the other group after scores are sorted by the absolute value in
a descending fashion. By comparing the actual vs. the predicted
label for each strategy for handling empty voxels, this evaluation
can provide a straightforward assessment of the influence of
empty voxels on image comparison Figure 1.

3. RESULTS

3.1. Assessing the Influence of
Thresholding
3.1.1. Score Distributions
Overall, both strategies to handle empty voxels (CCA and
SVI) exhibited decreasing Pearson and Spearman similarity
scores with increasing threshold, and this trend was prevalent
whether the thresholding included both positive and negative
values (Supplementary Video 1), or just positive values
(Supplementary Video 2). For more highly correlated images,
CCA seemed to inflate correlation scores. We observed that a
group of more highly positive correlations present for CCA using
positive and negative values is not present for CCA that includes
only positive values. This suggests that using only positive values
to calculate correlation serves to deflate scores (consistent with
the fact that it is restricting the range of values), and using
both positive and negative values inflates overall scores. It is
not clear if this would be important for distinguishing contrasts
of different types in the task of image comparison. It could be
the case that “deactivations,” if they are non-task related will
make two images more similar to one another, but in being

FIGURE 1 | Data generation and analysis process. A subset of 465 datasets from the Human Connectome Project (subjects) is used to generate 47 contrast

maps (group maps) for each of groups A and B for 500 subsamples. Within each subsample, an unthresholded image from A is compared with each thresholded

image from B with a particular similarity metric and comparison strategy applied. Each image from A is then assigned the predicted class for the max. arg from the set

of B, and accuracy is calculated for the subsample.
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consistent across tasks, will act as noise and decrease accuracy
to distinguish different tasks and contrasts from one another.
This finding has been suggested in recent work (see Figure 4)
of Gorgolewski et al. (2015). When comparing CCA with SVI,
the group of more highly positive values is relatively smaller,
possibly due to the fact that the CCA reduces the size of the mask
drastically, and the other strategies do not, for both positive
and negative (Supplementary Image 1) and only positive values
(Supplementary Image 2).

3.1.2. Thresholding Effects on Classification

Accuracy
When assessing the accuracy of image contrast classification at
varying levels of image thresholding, CCA with Pearson has
achieved the highest accuracy, followed by CCA with Spearman
for both positive and negative values, and only positive values
Figure 2. Accuracy peaked at 0.984 for a threshold of Z =

±1.0 (95% confidence interval, 0.983, 0.985) and at 0.953
for a threshold of Z = 0.0 (no threshold) (0.951, 0.954), a
subtle indication that inclusion of positive and negative values
improves accuracy of rankings globally. Interestingly, for image
comparisons using positive and negative values, the maximum
accuracy did not occur when comparing unthresholded to

unthresholded images, suggesting that values close to 0 may
serve as noise across all images and impede the classification
task. When using a Pearson score for either directionality, a
threshold value of Z = ±3.0 can be used to ensure minimally
0.90 accuracy in returning images of the same contrast, a
threshold that corresponds with images having approximately
only 25% of overlapping voxels within a standard brain
mask (Supplementary Image 1). Investigation of the worst-
performing contrast across folds (working memory task, contrast
“0-back body,” accuracy = 0.758, standard deviation = 0.429)
showed equivalent highest performance using CCA with a
Pearson score at a threshold of Z = ±1.0 Figure 3, still much
higher than chance (2%). Surprisingly, the global peak accuracy
of 0.902 (95% confidence interval, 0.876, 0.928) occurred for a
Spearman score with CCA using positive values only. Complete
accuracy results for combined images across folds are included
in Supplementary Data 2, and for the worst performing image in
Supplementary Data 3.

3.1.3. Image Classification
Across a range of thresholds, very high classification
accuracy was achieved between contrasts, consistent with
but substantially better than previous between-subject

FIGURE 2 | Accuracy of image contrast classification at varying levels of image thresholding, for comparison of an unthresholded image against a set

of images at each threshold, including positive and negative values (left) and positive values only (right). Complete case analysis (CCA) with a Pearson

score had a maximum accuracy of 0.984 for a threshold of Z = ±1.0 (0.983, 0.985), outperforming single-value imputation (SVI).

FIGURE 3 | Accuracy of image contrast classification at varying levels of thresholding, for the worst performing image, “0-back body,” from the

working memory task. Accuracy peaked at a threshold of Z = ±1.0 for complete case analysis with a Pearson score and at a threshold of Z = + 2.0 for complete

case analysis with a Spearman score for each of positive and negative values (left) and positive values only (right).
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classification studies (e.g., Poldrack et al., 2009). Figure 4

presents the mean accuracy and standard deviation for
each contrast across 500 random folds for the optimally
performing threshold (Z = ±1.0), direction (positive and
negative), comparison strategy (CCA) and similarity metric
(Pearson score). Classification was consistently accurate to
distinguish contrasts between tasks (with 30 contrasts being
perfectly classified across all 500 folds), and classification
errors were seen for similar contrasts within the same task
(e.g., working memory contrasts “0-back body” vs. “body,”
(overlapping conditions) and gambling task contrasts “punish,”
vs. “reward.”) The only misclassification between tasks occurred
for the gambling “punish - reward” contrast predicted to be
the working memory “face - average” contrast. Interactive
confusion matrices to explore the complete result are available
(http://vsoch.github.io/image-comparison-thresholding).

4. DISCUSSION

We have quantitatively assessed the impact of thresholding on
performing pairwise image comparison with the two similarity
metrics, Pearson and Spearman rank correlation coefficients.
Our results suggest that a small amount of thresholding can
improve image similarity computations. The Pearson metric
using maps with both positive and negative values can be used
to optimize classification of contrast maps, and including maps
in the search set that have been thresholded up to Z = ±3.0
(corresponding to 25% of voxels non-empty within a standard
brain mask overlapping between two images) ensures minimally
0.90 accuracy for retrieval of a map of the same contrast. Our
results suggest that a minimum degree of thresholding (Z =

±1.0) can maximize accuracy of contrasts in a classification

framework, and even moderate thresholding (Z = ±2.0) can
increase accuracy as compared to comparison of unthresholded
maps.

In assessing the distributions of Pearson and Spearman scores,
we saw that including both positive and negative values inflated
comparison scores for the higher correlations, however the
overall distributions had generally deflated scores with increasing
threshold. We suggest that this finding is a strength for the
applied task of image comparison given the case that the
highest subset of scores represent “truly similar” images. The
image comparisons with lower correlations are likely driven
by noise at small values, and so removing these values would
deflate the overall score. However, studying these patterns in
the distributions did not serve to answer the question of how
classification accuracy is impacted by such thresholding, a
question that was answered by our image classification task. In
showing that inclusion of positive and negative values serves
to improve accuracy of contrast classification, we suggest that
negative and positive activations are both valuable sources of
information, regardless of the subtle details about if scores
are relatively inflated or deflated across our distributions. This
improvement in accuracy could simply be due to the fact that
a comparison is done with twice as many voxels, however this
hypothesis does not hold true when comparing CCA to single
value imputation. CCA, by way of being an intersection, included
substantially fewer voxels than single value imputation, and
was consistently more accurate Figure 2. Overall, our results
support a decision to not arbitrarily exclude negative values when
performing the task of image comparison. More work is needed
to study the consistency, or variability, of these deactivations
that have been sitting quietly in statistical brain maps before any
consideration of eliminating them is to be done.

FIGURE 4 | Mean accuracy ±1.0 standard deviation for each contrast across 500 random folds for the optimally performing threshold (Z = ±1.0),

direction (positive and negative), comparison strategy (complete case analysis) and similarity metric (Pearson score). Interactive confusion matrices for all

thresholds, comparison strategies, and similarity metrics are available (http://vsoch.github.io/image-comparison-thresholding).
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In a classification context, the scores themselves are almost
irrelevant given that the images of the same contrast are returned,
however this statement brings up a very basic question, “What
is the quantitative language that we should use to compare two
images?”We chose to define “similar” on a domain outside of the
quantitative, namely, deriving maps from subjects performing
the same behavioral tasks, solely because there is currently
no answer to this question. Our analyses suggest that images
thresholded up to Z = ±3.0 can be used to retrieve a
corresponding contrast 9/10 times, and further, that images can
be thresholded at Z = ±1.0 to maximize contrast classification
performance.

Investigation of the worst performing contrast across folds
revealed an interesting finding that using a Spearman score while
including positive values only can increase classification accuracy
by ∼ 10% (for this single image). This particular image, “0-
back body” from a working memory task, was most commonly
misclassified as either “0-back” or “body” from the same task, an
error that is likely attributable to the subtle differences between
these contrasts. In retrospect, these contrasts are redundant. The
contrast “0-back body” is a control condition for a working
memory task that requires participants to respond if a body
stimulus is presented (Owen et al., 2005), and so the contrast
“0-back” is the generalization of this task over different stimulus
types, and the contrast “body” combines all body conditions (“0-
back” and “2-back”). Although these overlapping contrasts might
have been eliminated from the classification task, they can be used
as a case study for comparing two images with subtle differences.
In this scenario, a strategy that would optimize classification of
subtle differences might be used in combination with a strategy
to optimize global accuracy (across tasks). Further, a finding like
this questions the distinctness of these contrasts, and utility in
deriving both. Finally, the inclusion of negative values hindering
our ability to distinguish between these similar contrasts again
questions the validity of these “deactivations” in the context of
highly similar contrasts. An investigation of the value-added
when including negative values for these highly similar contrasts
is warranted.

Importantly, our results question two common opinions on
thresholding in the neuroscience community. First, there is the
idea that completely unthresholded maps are generally superior
to thresholded images by way of providing more data. Our
results suggest that voxels with very small values (for our dataset
between Z = 0.0 and Z = ±1.0) primarily serve as noise, and
analyses of unthresholded data may be negatively impacted by
this noise.

Second, our results suggest that standard thresholding
strategies, namely random field theory (RFT) thresholding, may
not be optimal for subsequent image comparison because it
eliminates subthreshold voxels with valuable signal. RFT requires
a clusterforming threshold where only suprathreshold voxels
are considered for further statistical analyses. For example, the
popular neuroimaging software package FSL (Jenkinson et al.,
2012) has a standard setting for a clusterforming threshold of
Z = ±2.3 (p < 0.01), and the software SPM (Worsley, 2007)
uses an even higher threshold of Z = ±3.1 (p < 0.001). To
place this thresholding strategy in the context of our work, we
generated thresholded maps using the FSL standard (Z = ±2.3)

for a single subsample, including 47 contrasts for each of groups
A and B, and compared the number of voxels within a standard
brain mask for these maps compared to the optimal threshold for
this data, Z = ±1.0 (Supplementary Data 4). We found that a
threshold of Z = ±2.3 produces maps with on average 28.38%
brain coverage (standard deviation = 16.1%), corresponding to
an average decrease of 38.84% (standard deviation = 11.36%)
in the number of brain masked voxels as compared to our
maximum accuracy threshold of Z = ±1.0. This results in
more sparse results, meaning producing maps with fewer voxels.
Mapping this result into our accuracy space, a threshold of
Z = ±2.3 corresponds with 96.56% classification accuracy, or
a loss of∼1.86% accuracy for image classification as compared to
our optimal. This percentage could be meaningful given a large
database of images. A higher threshold (such as SPM’s standard
of Z = ±3.1) would result in a bigger loss of information and
accuracy for image classification.

We have identified an optimal image comparison strategy in
the context of the commonly practiced transformation of image
thresholding. We did not test other transformations, and so we
cannot confidently say that using this transformation of an image
is the “best” strategy. While answering this question is outside of
the scope of this paper, it is a question that is important to address
if we aim to have consistent standards for reproducibility, and a
common language for both humans and machines to understand
image comparison. This strategy must be developed by first
asking researchers what information is important for them to
understand about the images (e.g., regional or spatial similarity,
temporal similarity), what kind of noise is reasonable to expect
given maps derived in subtly different ways, and then developing
a set of standards to capture and balance those features. Finally,
we are not claiming that there exists a global optimal threshold
for such classification, but rather that researchers should take
heed to identify optimal strategies for thresholding their datasets
for use in a classification framework. The particular threshold
values reported in this study likely depend on the quality of the
data, the contrast to noise ratio, as well as the number of subjects,
and thus are not directly applicable to new datasets.

4.1. Limitations
While our initial question was asking about filtering an
image database based on thresholding (i.e., “What are the
thresholds that can be included to ensure optimal classification
of results?”), another interpretation of this analysis is about image
transformations (i.e., “How far can we reduce an image and still
get equivalent results?”). A limitation of this current work is that
we did not test a more substantial set of image transformations.
We also start with the basic assumption that, given that
most images are unthresholded, and sharing of unthresholded
images is the direction that the neuroimaging community is
moving toward, a researcher would approach this task using
an unthresholded map as a query image. Fair evaluation of
classification accuracy to compare two thresholded maps would
require a different approach that considers overlap between
suprathreshold voxels in the case of small or non-existent
overlap. Without carefully developed procedure to account for
the sparse overlap, we would expect the classification accuracy to
reduce dramatically. Due to this fact we recommend using fully
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unthresholded maps for sharing purposes (for example when
uploading to repositories such as NeuroVault.org).

The image retrieval task using a statistical map constrained
to an a-priori region of interest is a question not addressed by
our work. The field of image based retrieval is fairly unexplored
in context of statistical maps and some transformation
of unthresholded maps might improve the classification
performance. It could be that a transformation that weights
voxels in an intelligent way, a binary metric, a region-based
representation, or another dimensionality reduction algorithm
would be optimal toward this goal. The use of an intersection
mask between an unthresholded image A and thresholded image
B also makes our metric asymmetric, and a symmetric metric
to compare such maps might be desired. We are excited to
investigate these ideas in future work.

The HCP data represents, to our knowledge, the largest
publicly available dataset of single subject task data that allows for
our analyses, and thus we are limited to making inferences based
on this set of images. We recognize that these data are of higher
quality than many other existing datasets, and it would be useful
to compare the results to other datasets with many tasks across
many subjects. These images shared acquisition parameters,
voxel dimensions, and smoothing, and while it is relatively easy
to transform images into a common space and size, we cannot
predict deviances in our findings on different datasets. Finally,
our analyses are focused on group statistical maps. Retrieval
of contrast images for single-subject maps would be much
more challenging due to the possibility of large inter-subject
variability.

5. CONCLUSION

We have investigated the impact of thresholding on contrast
classification, and suggested specific strategies to take when
performing image comparison with unthresholded maps. This
work is important, because image comparison with a result image
as a query we believe will drive the next decade of meta-analysis.
The applicability of our work is immediate as we have used our
findings to drive the first version of our “image comparison”
feature newly released in http://www.neurovault.org. While
there are many questions to be investigated pertaining to the
simple task of image comparison and the more complicated
task of doing meta-analysis, this work is a first step toward
deriving a holistic understanding of how to “best” compare

the expanding landscape of publicly available statistical
brain maps.
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Supplementary Video 1 | Similarity metric distributions. Both strategies to

handle empty voxels, including complete case analysis (CCA) and single value

imputation (SVI), exhibited decreasing Pearson and Spearman scores as threshold
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Supplementary Image 1 | Size of comparison set as a percentage of brain

mask. Complete case analysis (CCA) by way of including only voxels defined in

both brain maps reduces the size of the mask more drastically than single value

imputation (SVI) when including both positive and negative values.

Supplementary Image 2 | Size of comparison set as a percentage of brain

mask. Complete case analysis (CCA) by way of including only voxels defined in

both brain maps reduces the size of the mask more drastically than single value

imputation (SVI) when including positive values only.
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