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Neuroprosthetics is an interdisciplinary field of study that comprises neuroscience, computer
science, physiology, and biomedical engineering. Each of these areas contributes to finally enhance
the functionality of neural prostheses for the substitution or restoration of motor, sensory or
cognitive funtions that might have been damaged as a result of an injury or a disease. For example,
heart pace makers and cochlear implants substitute the functions performed by the heart and
the ear by emulating biosignals with artificial pulses. These approaches require reliable bio-signal
processing and computational methods to provide functional augmentation of damaged senses and
actions.

This Research Topic aims at bringing together recent advances in sensory motor
neuroprosthetics. This issue includes research articles in all relevant areas of neuroprosthetics: (1)
biosignal processing, especially of Electromyography (EMG) and Electroencephalography (EEG)
signals, and other modalities of biofeedback information, (2) computational methods for modeling
parts of the sensorimotor system, (3) control strategies for delivering the optimal therapy, (4)
therapeutic systems aiming at providing solutions for specific pathological motor disorders, (5)
man-machine interfaces, such as a brain-computer interface (BCI), as an interaction modality
between the patient and the neuroprostheses.

One challenging issue in motor prosthetics is the variability in the clinical presentation
of patients, who show a variety of neurological disorders and physiological conditions. In
order to improve neuroprosthetic performance beyond the current limited use, reliable bio-
signal processing for extracting the intended neural information is needed (Farina et al., 2014).
This information extraction stage can also be based on a modeling approach. Personalized
neuroprosthetics with bio-signal feedback (Hayashibe et al., 2011; Borton et al., 2013; Li et al., 2014)
could be a break-through toward intelligent neuroprosthetics. Combining different engineering
techniques, such as in a hybrid approach (Del-Ama et al., 2014), is essential to expand the range of
technological applications for wider patient populations. Recent advances of BCI are also relevant
in this field to enable patients to transmit their intention of movement and its usage both for
functional and rehabilitative purposes.

This Research Topic comprises original research activities in different levels of maturity ranging
from hypothesis and poof-of-concept (Dutta et al., 2014; Grahn et al., 2014b) to systems already
tested with some patients. It also contains a variety of approaches from computational method to
experimental studies. Following the recent intensive developments of advanced BCI systems (Leeb
et al., 2015; Muller-Putz et al., 2015), many contributions in this Research Topic are provided in the
field of BCI, both with the aim of functional replacement and for neurorehabilitation. We overview
those contributions for each category.
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1. SIGNAL PROCESSING OF EMG AND

MECHANICAL SENSORS

Cervical spinal cord injury (SCI) paralyzes muscles of the
hand and arm, making it difficult to perform activities of daily
living. Any reaching system requires a user interface to decode
parameters of an intended reach. Corbett et al. (2014) present
the benefits of combining different signal sources to control the
reach in people with a range of impairments. A multimodal-
decoding algorithm was developed while shoulder EMGs and
gaze information were utilized for effective reaching task with
assistive robot control, which provides guiding mobilization of
the limb.

Powered prostheses are often controlled using EMG signals,
which may introduce high levels of uncertainty even for simple
tasks. According to Bayesian theories, higher uncertainty should
influence how the brain adapts the motor commands in response
to the perceived errors. Johnson et al. (2014) provide a simplified
comparison framework of prosthesis and able-bodied control by
studying adaptation with three control interfaces: joint angle,
joint torque, and EMG. Increased errors and decreased visual
uncertainty led to faster adaptation. This result suggests that
Bayesian models are useful for describing prosthesis control and
the man-machine interaction problem.

Lambrecht et al. (2014) present the first steps toward a more
user-friendly and context-aware neuroprosthesis for tremor
suppression and real-time monitoring. This methodology will
enable the monitoring of tremor with context awareness by
facilitating the automatic identification of the relative orientation
of the sensor location.

2. COMPUTATIONAL METHODS FOR

MODELING TARGETED SENSORI MOTOR

SYSTEM AND CONTROL OF

NEUROPROSTHETICS

This section overviews articles that are oriented toward new types
of modeling and control for sensory motor neuroprosthetics.

An equilibrium-point control of human elbow-joint
movement is proposed in Matsui et al. (2014) by using
multichannel functional electrical stimulation. In this study,
a computational electrical stimulation method that stimulates
units of agonist-antagonist muscle pairs is developed. Muscle
co-contraction level along with the total force was controlled for
elbow joints with FES. In Klauer et al. (2014), a feedback control
system is proposed for Neuro-Muscular Electrical Stimulation
(NMES) to enable reaching in people with no residual voluntary
control of the arm and shoulder due to high level SCI. NMES
is applied to the deltoids and the biceps muscles and integrated
with a three degrees of freedom (DoFs) passive exoskeleton,
which partially compensates gravitational forces.

As for sensory modeling, Williams and Constandinou (2014)
aimed at combining efficient implementations of biomechanical
and proprioceptor models in order to generate signals that mimic
humanmuscular proprioceptive patterns for future experimental
work in prosthesis feedback. A neuro-musculoskeletal model of
the upper limb with seven DoFs and 17 muscles is presented

and generates real time estimates of muscle spindle and Golgi
Tendon Organ neural firing patterns. The paper (Alnajjar et al.,
2015) addresses the concept of sensory synergies. In contrast to
muscle synergies, it hypothesizes that sensory synergies play an
essential role in integrating the overall environmental inputs to
provide low-dimensional information to the CNS. To examine
the hypothesis, posture control experiments were conducted
involving lateral disturbance on healthy participants.

Decoding the motor intent from recorded neural signals is
essential for the development of neuroprostheses. To facilitate
online decoding, Abdelghani et al. (2014) describe a software
platform to simulate neural motor signals recorded with
peripheral nerve electrodes, such as longitudinal intrafascicular
electrodes (LIFEs). The simulator uses stored motor intent
signals to drive a pool of simulated motoneurons with
various spike shapes, recruitment characteristics, and firing
frequencies.

A review article of Grahn et al. (2014a) summarizes
neuroprosthetic technology for improving functional restoration
following SCI and describes BCIs suitable for control of
neuroprosthetic systems with multiple degrees of freedom.
Additionally, stimulation paradigms that can improve synergy
with higher planning centers and improve fatigue-resistant
activation of paralyzed muscles are discussed.

3. THERAPEUTIC SYSTEMS TARGETED TO

SPECIFIC PATHOLOGICAL MOTOR

DISORDERS

In this section, we overview the clinical applications enhanced by
advanced computations.

Ortiz-Catalan et al. (2014) address the treatment of phantom
limb pain (PLP) based on augmented reality and gaming
controlled by myoelectric pattern recognition. The technology
applied is non-invasive and combines the prediction of motion
intent through the decoding of myoelectric signals, with the
inclusion of virtual and augmented reality. As opposed to
conventional mirror therapy, this system allows full range of
motion and direct volitional control of the virtual limb.

Grahn et al. (2014b) demonstrate a neurochemical closed-loop
controller for deep brain stimulation (DBS). This technology
report article summarizes the current understanding of
electrophysiological and electrochemical processing for control
of neuromodulation therapies. Additionally, it describes a
proof-of-principle closed-loop controller that characterizes
DBS-evoked dopamine changes to adjust stimulation parameters
in a rodent model of DBS.

Dutta et al. (2014) summarize post-stroke balance
rehabilitation under multi-level electrotherapy. This hypothesis
article presents a multi-level electrotherapy paradigm toward
motor rehabilitation that postulates that while the brain acts
as a controller to drive NMES, the state of the brain can be
altered toward improvement of visuomotor task performance
with non-invasive brain stimulation (NIBS). This leads to a
multi-level electrotherapy paradigm where a virtual reality-based
adaptive response technology is proposed for post-stroke balance
rehabilitation.
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4. BCI APPLIED FOR

NEUROPROSTHETICS ENHANCEMENT

Here, we overview four articles related to motor intention
extraction through brain signals for reaching and sit-standing by
different approaches toward BCI-driven neuroprosthetics.

Choi (2013) presents the reconstruction of the joint
angles of the shoulder and elbow from non-invasive
electroencephalographic signals. The cortical activities were
estimated from 64 channels electroencephalography (EEG)
signals using the Hierarchical Bayesian estimation while
continuous arm reaching movements. From the estimated
cortical activities, a sparse linear regression method was used to
reconstruct the electromyography (EMG) signals of nine arm
muscles. Then, a modular artificial neural network was used to
estimate four joint angles from the estimated EMG signals.

Morishita et al. (2014) address BMI to control a prosthetic
arm with monkey’s electrocorticography (ECoG) during periodic
movements. This study demonstrated an improvement of the
response time for detecting the motor intention from the cortical
signal. It focused on the generation of a trigger event by decoding
muscle activity in order to predict integrated electromyograms
(iEMGs) from the ECoGs.

In Lew et al. (2014), single trial prediction of self-paced
reaching directions from EEG signals is demonstrated. The
feasibility of predicting movement directions in self-paced
upper limb center-out reaching tasks in single trials is studied.
Spontaneous movements executed without an external cue, are
natural motor behavior in humans. Thus, BCI for self-paced
motions is important. It reports results of non-invasive EEG
recorded from mild stroke patients and healthy participants.

Bulea et al. (2014) discuss sitting and standing intention
decoded from scalp EEG recorded prior to movement execution.
Low frequency signals recorded from non-invasive EEG, in
particular movement-related cortical potentials (MRPs), are
associated with preparation and execution of the movement.
The paper investigated the ability to decode movement
intent from the delta-band (0.1–4Hz) of the EEG signal
recorded immediately before the movement execution in
healthy volunteers. This study demonstrates that delta-band
EEG recorded immediately before the movement carries
discriminative information regarding movement type.

The detection of movement-related components is useful in
brain-machine interfaces. A common approach is to classify the
brain activity into a number of templates or states. However,

complex arm movements such as reaching and grasping are
prone to cross-trial variability due to the way movements are
performed. The paper by Talakoub et al. (2015) presents amethod
of alignment that accounts for the variabilities in the way the
movements are conducted. Arm speed was used to align neural
activity. Four subjects had ECoG electrodes implanted over their
primary motor cortex using the upper limb contralateral to the
site of electrode implantation.

Human learning effect through neuro feedback in BCI are
addressed in two articles in this Research Topic. In Prins et al.
(2014), an adaptive BMI that can handle inaccuracies in the

feedback is described and it is shown that it produces adaptive
reinforcement learning based BMIs in a simulation study. A
critic confidence measure, which indicated how appropriate
the feedback is for updating the decoding parameters of the
user is introduced. The results show that with the new update
formulation, the critic accuracy is no longer a limiting factor for
the overall performance.

Restorative BCI are increasingly used to provide feedback
of neuronal states to normalize pathological brain activity
and achieve behavioral gains. However, patients often show a
large variability, or even inability of BCI control. The paper
by Bauer and Gharabaghi (2015) presents a Bayesian model
of neurofeedback and reinforcement learning for different
threshold selection strategies in a simulation to study the impact
of threshold adaptation of a linear classifier on optimizing
restorative BCIs.

The contributions in this Research Topic describe a large
variety of computational methods with unique approaches. As
we have seen the necessity of different approaches for different
applications, there are significant needs to correspond to patient-
specific problems in neurorehabilitation and neuroprosthetics.
This issue demonstrated a way to manage such complex scientific
questions through biosignal processing and computational
methods. The relevance of the presented contributions is testified
by the fact that this Research Topic is the most viewed among all
special issues in the category of neuroprosthetics under Frontiers
in Neuroscience (61,182 views as of 20 Oct 2015). We would
like to acknowledge all the authors of the 19 papers in this issue.
As neurofeedback loop is essential to improve neuroprosthetic
control, the exchanges and discussions in this interdisciplinary
field will lead the advancement of neuroprosthetics technology
with active information loop in our society. We hope this
Research Topic may take a role of triggering synergistic effect for
further development among researchers in this field.
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