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The ability to track when and which neurons fire in the vicinity of an electrode,
in an efficient and reliable manner can revolutionize the neuroscience field. The
current bottleneck lies in spike sorting algorithms; existing methods for detecting and
discriminating the activity of multiple neurons rely on inefficient, multi-step processing
of extracellular recordings. In this work, we show that a single-step processing of raw
(unfiltered) extracellular signals is sufficient for both the detection and identification of
active neurons, thus greatly simplifying and optimizing the spike sorting approach. The
efficiency and reliability of our method is demonstrated in both real and simulated data.
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INTRODUCTION

Multi-electrode arrays comprise one of the most valuable tools for neuroscience research (Buzsaki,
2004). Neural prosthetics (Gilja et al., 2012), Brain Machine Interfaces (BMIs; Schwarz et al.,
2014; Moxon and Foftani, 2015), and neurophysiology experiments (de Lavilléon et al., 2015) are
some of the areas where multiple electrodes are routinely used to extract neuronal-activity related
information. Analysis of that information toward the identification and discrimination of activity
events (spikes) from different neurons, termed Spike Sorting (SS; Gibson et al., 2012), is a multi-
step, computationally expensive process, thus limiting its application on wireless technologies that
would enable experiments under more ecological conditions (Rey et al., 2015).

In this work we propose a novel, spike detection and identification algorithm that is applied
on raw (unfiltered) extracellular recordings and effectively bypasses several steps of the common
SS process. As such, it paves the way for new, wireless on-chip algorithmic implementations,
considerably reducing the amount of data that needs to be transmitted through the wireless link.
The commonly used state-of-the-art SS process (Einevoll et al., 2012; Figure 1) is divided in five
basic steps: (1) the raw extracellular signal derived from a given electrode is band-pass filtered to
remove the low frequency component (Local Field Potential) and reveal the spiking activity; (2)
spikes are detected; (3) spikes are aligned; (4) specific features are extracted from spikes; (5) data
are clustered based on extracted features. Each cluster is assumed to represent a different neuron.
In this study, the raw, extracellular signal (derived from a single or multiple electrodes) is processed
once and both spike times and discriminatory features are extracted simultaneously (Figure 1).

The proposed algorithm is based on the finding that neuronal spike waveforms are compressible
in various basis sets (Thorbergsson et al., 2014). In other words, the spiking waveforms can be
decomposed into a set of simpler waveforms, in terms of a coeflicient vector, and a support set of few
coeflicients is sufficient to reliably reconstruct the initial waveform. More importantly, this support
set of coefficients is specific for different spike waveforms, namely different neurons (Charbiwala
et al., 2011) and obviously different from non-spiking waveforms. Thus, it is suggested that the
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FIGURE 1 | Spike sorting process. Left, common and proposed spike sorting processes. Right, Step-by-step illustration of the spike sorting process using part of
the 533101 session signal of the real extracellular recordings dataset (Henze et al., 2009; recording channel 3, samples 30501-34000). The depicted example of
feature space corresponds to the energy (E) of the aligned spike waveform (abscissa) and the first principal component coefficient (PC1) of the energy normalized
spike waveform (Schmitzer-Torbert et al., 2005; ordinate). Spikes 1, 7, and 8 correspond to the same neuron (Henze et al., 2009; intracellularly recorded neuron).

estimation of, e.g., the euclidean distance, between coefficient sets
extracted from consecutive, sliding windows of an extracellular
signal would reflect the existence of neuronal spiking. Even
better, due to the specificity of the coefficient sets, the
estimation of euclidean distance using a sliding window would
also discriminate among waveforms originating from different
neurons. For instance, the use of a simple basis set of discrete
cosines and the decomposition of the signals in a sliding
window framework using the Discrete Cosine Transform (DCT;
Narasimha and Peterson, 1978) would result in a new signal
with the aforementioned properties. Interestingly, since DCT is
an orthogonal transformation (thus distance is preserved), the
estimation of the new signal can be reduced to a very simple
calculation: the euclidean distance between the consecutive
windowed signals in their original form would be equivalent
to the distance between their decompositions. Our approach is
based on this observation.

The main processing step of the proposed approach is the
segmentation of the raw, single/multiple-electrode signal using
a sliding, fixed-length window. A new signal, D,, where w
denotes the length of the window, is produced by estimating the
euclidean distances between the different signal segments (see

Section Materials and Methods and Supplementary Figure 1).
Within the resulting signal D,,, the time points of the local
maxima indicate the time points of the spiking events while their
amplitudes serve as unique markers (identifiers) for each specific
spike waveform, namely each distinct active neuron (Figure 2).
Strikingly, this is true for both the band-pass filtered and the raw,
unfiltered version of the extracellular signal. In essence, different
support sets of coefficients for different spike waveforms, lead to
different amplitudes of local maxima for D,,. Thus with a single
processing step, the proposed method transforms the unfiltered,
extracellular signal into a new signal (D,,) that reveals both the
occurrence and identity of spikes in a simple and highly efficient
manner.

MATERIALS AND METHODS

D,, and Feature Space Extraction

The D,, signal consisted of the Euclidian distance values between

the successive Xj signal segments. For instance, D, (1) =
Yohoy (X]i — X,%)2 where X,i and X,% are the first two successive

segments of length w using a predefined step. In this work we
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FIGURE 2 | The proposed features. (A) Raw and filtered signal (same as Figure 1) and corresponding D5 signals. Maxima of the Ds signal correspond to spikes in
both the raw and filtered recordings. Red stars correspond to the same neuron (Henze et al., 2009; intracellularly recorded neuron). Red stars lay approximately in the
same amplitude level, different from the blue ones. (B) Left, amplitude of D15 maxima against amplitude of D5 maxima, estimated from raw (first row) and filtered
(second row) recordings. Right, the corresponding polar coordinates. Polar coordinates of the D5 and D15 maxima comprise the proposed feature space. Red dots
correspond to red stars in (A). (C) Feature space for the entire 533101 raw signal. Red dots correspond to the spiking activity of the intracellularly recorded neuron.
Blue dots correspond to “noisy” spiking activity. (D) The proposed feature space of dataset 3 in the fourth level of noise from the simulated database (Quiroga et al.,
2004). Blue, green, and red dots correspond to three different neurons. Black dots correspond to falsely detected spikes.

used w = 5 and w = 15 as most significant decomposition
coefficients varied within this range (Charbiwala et al., 2011). The
step value was 1 sample. The Ds and D5 signals were used to
extract the proposed feature space, which consisted of the polar
coordinates of the amplitudes of their local maxima (Figure 2).
Polar coordinates instead of Cartesian ones where used in order
to avoid the linearity that is exhibited between D5 and D;5 values
(see Figure 2B). Expansion of the methodology to account for
tetrode recordings was performed by estimating D,, using four
channels simultaneously. Specifically, the X segments where
concatenated before the euclidean distance calculation, resulting
in a single D,, signal that incorporated information from all four
recordings (see Supplementary Figure 1B).

Spike Detection
In this work, spike-detection (i.e., the detection of maxima in
the D,, signal) and feature-extraction (i.e., amplitudes of maxima

in the D,, signal) are essentially a single step, as the maximum
values of D,, are detected mainly around the time points of
a spike occurrence. The detection of maxima is based on D,,
amplitude thresholding, in particular using the Ds signal. In
all examples reported here (real or simulated), the threshold

(Quiroga et al., 2004) was set to T = 20, where 0, =

[Dy|
0.6745

the background noise (Donoho and Johnstone, 1994). A lower
threshold could also be used as the thresholding process is
applied on the D,, signal and not on the extracellular signal
itself and, thus, it would not affect the subsequent clustering
process. Moreover, to avoid multiple detections of the same spike,
a minimum sample distance between two detected maxima of
15 samples (equal to the maximum window length used) was
imposed. Finally, due to the sharper form of maxima peaks in
Ds compared to D;5, maxima detection was first performed in
Ds. Afterwards, identification of the maxima amplitude in D5

median[ } is an estimate of the standard deviation of
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(occurring approximately at the same time points as in Ds) was
performed using the same time points detected in Ds.

Datasets

The examples analyzed were taken from two public databases,
one consisting of real extracellular recordings and one consisting
of simulated signals with integrated spike waveforms. The former
is the hc-1 database (Henze et al, 2009) that consists of
simultaneous intracellular and extracellular recordings in the
CA1 hippocampal region of anesthetized rats. It contains both
intracellular and extracellular recordings from the same neuron.
Ten different signals, corresponding to 10 different cells, were
analyzed from this database. For the single channel analysis
the experimental sessions and single recording channels (see
Supplementary Figure 2) were selected in order to account for
various firing patterns (bursting etc.) and to have a reliable
representation of the intracellularly recorded neuron in the
extracellular recordings. Some of the recordings were from
tetrodes and some from hexatrodes settings with two shanks.
In the four-channel analysis that we followed for the estimation
of D,,, in the case of double hexatrodes, only four channels
were used. These were selected based on their distance from the
single electrode that was initially chosen for the single electrode
analysis, in order to avoid problems that have to do with distances
between electrodes (Rossant et al., 2015).

The latter database consists of four different datasets that refer
to different levels of difficulty in terms of spike detection and
identification (Quiroga et al., 2004), hereafter referred as datasets
1, 2 (easy) and 3, 4 (difficult). Moreover, the four different
datasets were constructed using different levels of background
noise (Quiroga et al, 2004). The noise level was determined
from its standard deviation relative to the amplitude of the
integrated spike waveforms. Four levels of noise, associated with
four different standard deviation values, i.e., 0.05 (noise level 1

etc.), 0.1, 0.15, 0.2 were used. For dataset 1, four additional levels
of noise were applied with deviations equal to 0.25, 0.3, 0.35,
and 0.4 (see Supplementary Figure 3), since spike identification
was relatively easy (more information about the construction of
the simulated data used can be found in Quiroga et al., 2004).
It should be noted that simulated data lack, in principle, the
low frequency component, i.e., cannot be considered as raw
(unfiltered) simulated signal. They are primarily used for further
evaluation of the proposed approach for multiple ground truth
neuronal activity.

Classification

For the classification of spikes corresponding to the
intracellularly recorded neuron (hc-1 database) against all
other “noisy” spikes (spikes that do not correspond to that
particular neuron) the k-Nearest Neighbor (k-NN) classifier
(Cover and Hart, 1967) was used. For each one of the ten
different cells (see Supplementary Figure 2) a 100-iteration
procedure was implemented. Every time, 50% of the data were
randomly selected for training and the rest were used for testing.
The mean type I and type II error values were used for the
extraction of Figure 3 (see also Supplementary Table 1 for mean
classification performance for each one of the different cells). For
the k-NN algorithm, the number of nearest neighbors was set
tok = 4.

L,.tio and Isolation Distance (ID) Estimation
In order to evaluate the capacity of the proposed features
to separate the spikes that belong to different neurons we
used the L,u, and the Isolation Distance (ID) measures
(Schmitzer-Torbert et al., 2005). Both measures make use of the
Mahalanobis Distance (MD; Mahalanobis, 1936). The MD of
spike i from cluster C is estimated using the formula: MD; ¢ =
(xi — ,uc)TEE Yx; — i), where x; is the feature vector for spike
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between and within clusters of the simulated dataset (Materials and Methods). Boxplots 1, 2, 3, and 4 depict the IDs of the clusters of neurons 1, 2, 3 and falsely
detected spikes (see Figure 2D), respectively, from the other clusters (between-cluster IDs). Boxplots 5, 6, 7, and 8 are the IDs of the clusters of neurons 1, 2, 3, and
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i, ¢ is the mean of the feature vector values in cluster C, and ¢
is the corresponding covariance matrix. The first measure, i.e.,
Lyatio for cluster C is calculated by L;440(C) = % where n, is the
number of spikes in cluster C. The quantity L for C is calculated

as L(C) = Zi¢c1 — CDFX‘gf(MDi,C) where i ¢ C is the set of
spikes which are not members of the cluster C and CDijf is

the cumulative distribution function of the x? distribution with
degrees of freedom that equal to the length of the feature vector.
Alow value of L indicates that cluster C is well separated from the
rest of the data and vice versa.

The ID value of a cluster C that contains n¢ spikes is defined
as the MD value of the ntch closest noise spike (a spike that
does belong to cluster C). ID estimates how distant the spikes
of cluster C are from the other spikes. In Figure 3A the L4,
and ID values were estimated for the spikes corresponding to
the intracellularly recorded cell (cluster C). For Figure 3B the ID
values were calculated both between clusters and within clusters.
In particular, for the boxplots 1, 2, 3, and 4 (see Figure 3B), ID
was estimated for spikes that belong to cells 1, 2, 3, and spikes
that were falsely detected (black dots), respectively. On the other
hand, for boxplots 5, 6, 7, and 8, ID was estimated within the
same cluster. For instance, in boxplot 5, the spikes that belong to
cell 1 were randomly split into two groups, which consisted of 40
and 60% of the spikes of that cluster, respectively. Subsequently,
ID was estimated using the first group (40%) as the reference
cluster C. This procedure was repeated 10 times and the mean ID
was finally used for boxplot 5. The same process was applied for
boxplot 6, 7, and 8, i.e., for cells 2, 3, and falsely detected spikes,
respectively.

RESULTS

The proposed analysis was applied both on real (Henze
et al, 2009) and simulated (Quiroga et al., 2004) data (see
Section Materials and Methods, Figure 2, and Supplementary
Figures 2, 3) from single and multiple electrode (tetrode)
recordings. Spike detection success rates for single electrode data
reached 94.82 + 9.08 and 92.22 + 2.64 for real and simulated
data, respectively (see Supplementary Tables 1, 2). In both cases,
spike detection parameters were identical (see Section Materials
and Methods) and the feature vectors consisted of the polar
coordinates of the amplitudes of the local maxima in Ds and
D5 signals (Figure 2 and Section Materials and Methods). Spike
detection rates of the proposed method are very similar to those
of a complex, multi-step state-of-the-art method (Quiroga et al.,
2004) applied on the same simulated data, which demonstrated
mean detection rates up to 91.08 & 6.5 (see Supplementary
Table 2). Another important advantage of our method lies in the
thresholding applied for spike detection which in our case is done
in D,, (see Section Materials and Methods), as opposed to existing
methodologies where the thresholding is applied on the filtered
extracellular signal. Since detected maxima are subsequently used
for clustering, false spike detection due to low thresholds would
lead to the formation of additional clusters with very small D,,
values that could ultimately be discarded (e.g., see black dots
cluster in Figure 2D), thus not influencing the performance

of the method and avoiding the process of finding optimum
thresholds for spike detection (Rizk and Wolf, 2009).

In addition to detection accuracy, the discrimination power
of the extracted features (polar coordinates of the amplitudes
of the local maxima in D5 and D;5) was assessed based on the
Lyatio and Isolation Distance (ID) measures (Schmitzer-Torbert
et al., 2005). Both measures reveal the degree of isolation of
a particular data group (in this case the intracellular recorded
neuron, Figure 2C, red dots) from the rest of the data in a feature
space (see Section Materials and Methods and Supplementary
Figure 4). Their relation with the type I and type II error rates
reflects the capacity of the proposed features to isolate spikes
from a particular neuron (Schmitzer-Torbert et al., 2005). Lyatio
and ID were related linearly on the log scale to type I and type II
error rates (see Figure 3A and Section Materials and Methods),
confirming the reliability of the proposed features. Type I and
II errors were estimated using a k-NN classifier (see Section
Materials and Methods).

Moreover, we examined whether the proposed feature space
assigns spike waveforms of different neurons to discrete and
different clusters (see Figure 2D, red, blue, and green dots). Thus,
we estimated the ID of each one of the three ground truth clusters
of the simulated datasets (Quiroga et al., 2004), firstly, between
clusters and then within the same cluster (see Section Materials
and Methods and Figure 3B). In all cases tested, ID values within
the same cluster were significantly smaller than the ID values
estimated between clusters, confirming the initial assumption
that waveforms from different neurons have different support sets
of coefficients, which is, in turn, reflected in the proposed feature
space (D,, maxima).

In the above-mentioned examples, the D, signal was
estimated using recordings from a single electrode. Despite this
radical simplification, the method was shown to achieve reliable
discrimination of the intracellularly recorded neuron in terms of
the ID and L4, measures. The proposed methodology however
can easily expand to account for multi-electrode experiments.
Toward this goal, we reformulated the D,, estimation process
to incorporate tetrode signals. Reformulation amounts to a
simple concatenation of signal segments corresponding to
individual electrodes (see Section Materials and Methods and
Supplementary Figure 1B). We then estimated the ID and Ly,
measures of the isolation of the cluster under consideration
(intracellular recorded neuron) using the new D,, signal. While
median ID and Ly, values were slightly higher and lower
(showing better cluster isolation compared to the single electrode
case), respectively, (Figure4, single: median ID = 2.77,
median Lz, = 4.5; tetrode: median ID = 3.08, median
Lyatio = 1.4) compared to the single electrode analysis, the
mean difference was not significant (ANOVA). Importantly,
though, the distribution of ID and L4, values was narrower
(shorter whiskers of boxplots in Figure 4) exhibiting a relevant
consistency within the 10 different datasets of real recordings
used. Thus, the expansion of the proposed methodology to
tetrode signals both slightly enhanced the isolation of the
cluster under consideration (intracellularly recorded neuron)
and the consistency of the ID and L, values among the
datasets.
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Computational Complexity

To demonstrate the efficiency of the proposed method, we
examined its computational complexity compared to commonly
used state-of-the-art-algorithms for spike detection and feature
extraction (Gibson et al., 2008). With respect to spike detection
(detection of maxima in D,,) the computational complexity of
our method is equal to that of the most widely used thresholding
method for filtered extracellular signals, i.e., 1.058 additions
and multiplications per waveform sample (Gibson et al., 2008)
which is also the one with the lowest complexity. Note that
we by-pass the filtering step as our method is applied on raw
signals. With respect to feature extraction, an explicit comparison
is not possible as the proposed methodology bypasses several
processing steps that would add to the complexity of the ultimate
spike sorting algorithm. Nonetheless, the obvious simplistic
and straightforward calculation of the D,, makes the proposed
approach a very efficient framework in terms of complexity and
comprises a significant step closer to wireless on-chip algorithmic
implementations.

DISCUSSION

In sum, we introduced a novel, simple, and efficient approach
for simultaneous detection and identification of spikes from raw,
unfiltered extracellular recordings. In addition to redesigning
the widely used spike sorting process via bypassing several
processing steps, the proposed method also overcomes important
optimization issues such as the identification of thresholds for
spike detection, the scaling to larger sets of recordings and the
parallelization of the method. Both scaling and parallelization are
straightforward as the D,, signal can be estimated for both single
and multiple electrodes using a very similar algorithmic process
(see Section Materials and Methods).

In this work we did not propose an unsupervised clustering
algorithm for the extracted features. Nevertheless, the cluster

These findings suggest that our methodology and extracted
features can be coupled to any clustering algorithm in order to
complete the spike sorting procedure. Importantly, for datasets
with low noise levels (e.g., simulated datasets, Supplementary
Figure 3) cluster discrimination can be achieved using just
one of the two polar coordinates, thus further enhancing the
efficiency of our method. This is possible because in such
low noise cases, even D,, maxima (before polar coordinates
estimation) lie in different amplitude levels (identifiers) for
different neurons (Supplementary Figure 5), thus, allowing for
the implementation for thresholding based clustering algorithms
that exhibit significantly low computational complexity and
would further support the ultimate goal for on-chip spike sorting
implementations.

Future work will be toward that direction, i.e., to investigate
the possibility of exploiting the proposed method toward small,
wireless, and low-energy consuming recording devices that
would either transmit only the time point and the amplitude
of the detected maxima in the D,, signal or even perform on-
chip, holistic spike sorting realization. Finally, the expansion of
the proposed approach to multi-electrode settings (thousands
of electrodes) will also be investigated, further diffusing its
applicability in contemporary recording settings.
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