
METHODS
published: 15 December 2015
doi: 10.3389/fnins.2015.00464

Frontiers in Neuroscience | www.frontiersin.org 1 December 2015 | Volume 9 | Article 464

Edited by:

Michael Pfeiffer,

University of Zurich and ETH Zurich,

Switzerland

Reviewed by:

Jeffrey L. Krichmar,

University of California, Irvine, USA

Erik A. Billing,

University of Skövde, Sweden

*Correspondence:

Terrence C. Stewart

tcstewar@uwaterloo.ca

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 16 August 2015

Accepted: 23 November 2015

Published: 15 December 2015

Citation:

Stewart TC, DeWolf T, Kleinhans A

and Eliasmith C (2015) Closed-Loop

Neuromorphic Benchmarks.

Front. Neurosci. 9:464.

doi: 10.3389/fnins.2015.00464

Closed-Loop Neuromorphic
Benchmarks
Terrence C. Stewart 1*, Travis DeWolf 1, Ashley Kleinhans 2 and Chris Eliasmith 1

1Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada, 2Mobile Intelligent Autonomous

Systems group, Council for Scientific and Industrial Research, Pretoria, South Africa

Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It

is even more difficult when the task of interest is a closed-loop task; that is, a task

where the output from the neuromorphic hardware affects some environment, which

then in turn affects the hardware’s future input. However, closed-loop situations are one

of the primary potential uses of neuromorphic hardware. To address this, we present

a methodology for generating closed-loop benchmarks that makes use of a hybrid of

real physical embodiment and a type of “minimal” simulation. Minimal simulation has

been shown to lead to robust real-world performance, while still maintaining the practical

advantages of simulation, such as making it easy for the same benchmark to be used

by many researchers. This method is flexible enough to allow researchers to explicitly

modify the benchmarks to identify specific task domains where particular hardware

excels. To demonstrate the method, we present a set of novel benchmarks that focus

on motor control for an arbitrary system with unknown external forces. Using these

benchmarks, we show that an error-driven learning rule can consistently improve motor

control performance across a randomly generated family of closed-loop simulations,

even when there are up to 15 interacting joints to be controlled.

Keywords: neuromorphic hardware, benchmarking, minimal simulation, adaptive control, neural networks

1. INTRODUCTION

Neuromorphic hardware holds great promise for a wide variety of applications. The combination
of massively parallel computation and low power consumption means that there is the potential to
have complex algorithms running in embedded processing situations, without being a significant
drain on available energy. A crucial challenge is to identify what sort of always-on or interactive
functionality can best exploit these devices.

To evaluate applications of neuromorphic hardware, we need benchmark tasks. These tasks
must allow us to compare across different instances of neuromorphic hardware (and potentially
across different algorithms implemented in that hardware). Good benchmarks will allow us to
quantitatively compare systems, letting researchers both measure the progress in the field, and also
directly compare competing approaches.

In this paper, we focus on the development of closed-loop benchmarks. These are dynamic tasks
where the output of the neuromorphic hardware influences its own future input through some
environment. This is in contrast to standard categorization or pattern identification tasks, where
the input is some fixed sequence and the hardware must produce the correct output for each input
(or input pattern).

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00464
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2015.00464&domain=pdf&date_stamp=2015-12-15
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:tcstewar@uwaterloo.ca
http://dx.doi.org/10.3389/fnins.2015.00464
http://journal.frontiersin.org/article/10.3389/fnins.2015.00464/abstract
http://loop.frontiersin.org/people/2589/overview
http://loop.frontiersin.org/people/119606/overview
http://loop.frontiersin.org/people/139384/overview
http://loop.frontiersin.org/people/2498/overview

Stewart et al. Closed-Loop Neuromorphic Benchmarks

We believe closed-loop benchmarks should be of particular
interest to neuromorphic research, given that the most
compelling applications of neuromorphic hardware are likely to
be in this domain of embedded and interactive control of robotic
or other physical systems. However, the closed loop itself raises
a number of issues that complicate the development of such
benchmarks. Rather than simply providing a data file of inputs
and desired outputs, the benchmark must either specify a full
physical system to be controlled, or it must provide software for a
simulation of that system. As we discuss below, both approaches
are problematic. Describing a method for overcoming these
shortcomings is the primary goal of this paper.

2. CLOSED-LOOP BENCHMARKS

A closed-loop benchmark task is one where the system we
are studying has a two-way interaction with some sort of
environment. That is, the outputs from the neuromorphic
hardware are sent to the environment where they cause an effect,
the results of which change the subsequent input. For example,
the outputs might control themovement of a robot, which in turn
affects the sensory data received by the robot.

2.1. Simulation Vs. Physical Instantiation
To define a closed-loop benchmark, we need to be explicit
about the interaction with the environment. If a robot is to be
controlled, we need to specify all of the details of that robot.
What motors does it have? How are they configured? How strong
are they? What sensors are there? Where are they placed? How
accurate are they? However, even if these questions are answered,
there is a fundamental problem in that other researchers need
access to that exact robot. If a benchmark is to be widely used,
other researchers developing their own neuromorphic hardware
should be able to do their own testing on the same benchmark
system.

Furthermore, using a physical robot imposes significant
practical difficulties when performing extensive benchmark
testing. When testing, we often want to run the same task over
and over again, both for robustness and to see the effects of
varying parameters. With a physical robot, this means manually
setting up the task, letting the test run, gathering the resulting
data, and then resetting the robot back to the initial state.
Consequently, issues like battery life become problematic, and
not just because there is a limited amount of time available for
testing. As the battery level changes, the performance of the robot
itself can also change. Futhermore, for any rigorous testing of
the benchmark, we will want to examine situations where the
system fails. This means that some of the testing will involve
parameter settings that lead to poor behavior, which might have
the undesirable result of causing physical damage.

However, not using a real physical embodiment for testing is
also problematic. First and foremost, without an actual real-world
task, why should we have any confidence that the performance
on the benchmark is reflective of the actual usefulness of the
neuromorphic hardware? It is widely known that simulations
of robots (or other physical systems) are often much easier to
control and better-behaved than the real thing (see Jakobi et al.,

1995; Koos et al., 2013). The field of robotics is filled with
algorithms that work well “in theory,” but fail when run on actual
hardware. We do not want a benchmark that falls into this trap,
giving high scores to hardware that does not turn out to function
well when deployed in real situations.

A variety of robotics simulators, such as Webots and
Gazebo, already exist and are intended for evaluating robotics
performance. These are extremely useful, but have two important
limitations. First, they are generally meant to evaluate one
particular robot body, and it is difficult to, for example,
automatically generate a large number of different physical
bodies to evaluate over. This means that such a system is good
for evaluating a particular control system for a particular robot
body, but is not suitable for the more general question of how
well the control system will work over a large space of different
robot bodies. Second, these simulators tend to run slower than
real-time. Typically, when a simulation is too simple to reflect
reality, more details are added to the simulation itself. Incredibly
finely detailed simulations can be created, filling in all of the
details needed. However, accurate modeling of physical systems
can very quickly become impractical to run in real time. This
is a fundamental problem, in that neuromorphic hardware is
often tied to real-time interactions, and there can be no way to
slow down the hardware to match the simulated environment.
This means that even if we spent the considerable amount of
research effort needed to define a simulated environment for
a closed-loop benchmark, running that simulation fast enough
to interact with the desired hardware would require significant
computing resources. Indeed, one of the major efforts in the
Neurorobotics section of the Human Brain Project is to develop
exactly this sort of computing infrastructure (Hinkel et al., 2015),
with a dedicated supercomputer to run the physics simulations.
Until this hardware is publically available (and until software
is available to create a variety of physical robot models), this
approach is problematic for other researchers.

We are thus left with a situation where any benchmark
we might define for a closed-loop task will be impractical
for different researchers to run (if it is physically embodied),
inapplicable to real-world situations (if it is a simulation that
is simple enough to run in real-time), or impossible to connect
to some neuromorphic hardware (if it is a simulation that
runs slower than real-time). We thus need a new approach to
provide a sharable real-time simulation that is robust enough that
neuromorphic hardware that learns to deal with the simulation
might also be able to deal with reality.

2.2. Minimal Simulation
The above considerations could be taken as an argument
that even though using real-world physical hardware for
benchmarking is problematic, it is still better than using
simplistic simulations which may not generalize to real tasks.
However, we do not think this is the case. Instead, we believe
neuromorphic benchmarking can effectively exploit an approach
known asMinimal Simulation (Jakobi, 1997).

This approach was first suggested in the context of
evolutionary robotics. Notably, the problem faced by closed-loop
neuromorphic benchmarking is remarkably similar to that faced

Frontiers in Neuroscience | www.frontiersin.org 2 December 2015 | Volume 9 | Article 464

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

earlier by these researchers. In evolutionary robotics, the goal
is to use genetic algorithms to evolve systems that can control
robots to perform various tasks. These tasks can be as simple
as navigation and obstacle avoidance, but have also included
more difficult tasks such as walking, collecting objects, and visual
tracking (Nolfi and Floreano, 2000).

However, performing evolution on real physical robots is
problematic for the same reasons that benchmarks on physical
robots are problematic. The robots must be reset to the same
state each time; they often involve behavior that can physically
damage the robots; and they take a very long time to run. For this
reason, attempts were made to evolve algorithms using simulated
robots. However, the general finding was that algorithms that
worked on the simulated robots would not work when run on
the real physical robots. If the simulations were improved, adding
complex physical detail, then it was possible to generalize to
real behavior; unfortunately, such complex simulations would
run slower than real-time (see Husbands and Harvey, 1992;
Husbands et al., 1993).

To address this problem, Jakobi (1997) proposed the creation
of “minimal” simulations. These are simulations where there is
variability within the simulation itself. In other words, we make
poor simulations, but ensure that the way in which they are poor
is itself variable. We are then in a position to ensure that the
controllers work across that whole range of variability. “Instead
of trying to eliminate the differences between simulation and
reality, they are acknowledged, and mechanisms are put in place
to prevent evolving controllers from relying on them (Jakobi,
1998, p. 48).”

With this approach, it became possible to build minimal
simulations that would run faster than real-time and yet also be
complex enough that if a system could successfully control the
simulation, it was also likely to successfully control a real robot.
To achieve this kind of transfer, the simulations were made to be
unreliable in almost every respect. For example, for a simulation
of a simple motor it would still be the case that if power is applied
it would generally try to spin, but the exact amount of torque, the
amount of sensory noise, the amount of time needed, the amount
of static and dynamic friction, and so on would all be randomly
chosen. A successful controller would have to deal with this wide
range of variability, and if it could handle that variability then
there would be reason to believe it could also handle the real
physical system.

It is worth noting that a minimal simulation only has to
be a good simulation for successful behavior. That is, “if we
are evolving corridor following behavior, the dynamics of the
simulation might differ wildly from those of reality if the
controller hits a wall or goes round in circles, but this does not
matter, since the controllers we are interested in transferring
across the reality gap will neither hit walls nor go round in circles
(Jakobi, 1998, p. 41).” If the controller is poor, we do not need the
simulation to be at all accurate in exactly how that poor behavior
ismanifest.We do not need an exact detailed physicsmodel of the
collision between a robot and a wall, or a detailed model of what
happens to a robot arm when it starts oscillating wildly due to a
poor control signal. All we need is for the simulation to be just
good enough to indicate that things have gone wrong, and thus

give a low score to that controller. This means that, for example,
in a minimal simulation of an eight-legged walking robot, it is
not necessary to have a physics simulation that correctly models
what happens when two legs collide with each other. Rather,
if legs collide with each other, that is an indication that the
walking behavior is very poor. As long as that result is indicated
we can greatly simplify the simulation by not including all the
details necessary to model these complex physical interactions.
This approach was successfully used to develop models of multi-
legged walking robots (Jakobi, 1998; Meyer et al., 2003) and
vision-based tracking of a moving object (Nolfi and Floreano,
2000).

2.3. Minimal Simulation for Benchmarking
Although minimal simulation has not previously been used
outside the domain of evolutionary robotics, we propose using
minimal simulation for neuromorphic benchmarks. We would
argue that one important use of a benchmark is generalization.
That is, by knowing how well particular hardware performs on a
benchmark, you can reasonably infer how well that hardware will
perform in other situations. For example, if an image recognition
algorithm performs well on the MNIST hand-written digit
recognition benchmark, this suggests that it may also perform
well on a different recognition task. Of course, this inference will
fail if that algorithm has been specifically over-fit to that situation.
For that reason, it is useful to have benchmarks that cover a
wide range of variations on the task. If the hardware performs
well across that variability, then it is more likely to also work in
sufficiently similar new situations.

To achieve this kind of transfer, we need software simulations
of the environment for the task. These simulations must be fast
enough to run in real time (so that they can be controlled by real
neuromorphic hardware), and theymust be extremely variable, to
encourage robustness of the methods being benchmarked. Each
time the simulation is run, different parameters will be chosen to
give significant variability (so one run might have a large degree
of sensor noise while the next run has none at all; one run might
have more delay in the motor response and another might have
less power available). Being successful at the benchmark means
being successful across all this variability.

The result is a benchmark that can be used by any researcher.
The fact that it is a simulation means that source code can be
shared, and that no specialized hardware is needed. Furthermore,
the variability in the simulation itself can be controlled, and
this can help give a rich characterization of the benchmarked
hardware. For example, some hardware might only work with
small amounts of sensor noise, while other hardware might
be most effective when there is significant delay in the motor
response. This flexibility in parameters in the benchmark allows
researchers to explicitly characterize those particular situations
where their hardware excels.

2.4. Cost-Effective Robotics
The minimal simulation described above forms the core of
our method for generating benchmarks. The purpose of these
benchmarks is that is that they should do a reasonable job
of generalizing to real-world physical tasks. Consequently, it is

Frontiers in Neuroscience | www.frontiersin.org 3 December 2015 | Volume 9 | Article 464

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

important to supplement simulation benchmarks with at least
one easy-to-construct physical analog. This physical version
would be one particular instance of the type of situation
the benchmarks are meant to cover. For that reason, the
physical task is much more restrictive in terms of what general
conclusions can be drawn from how well different hardware
performs in that situation. Rather, the purpose is to give an
explicit double-check that hardware that performs well on
the simulation benchmarks also perform well in a physical
environment.

To keep the physical aspect simple, we recommend cheap,
cost-effective, widely-available components. This allows a greater
chance for other researchers to have access to the same
(or similar) hardware. For the particular example benchmark
described in the next section, we use the Lego Mindstorms EV3
kit, a simple robotics platform available at most toy stores.

It is important to note that there is a theoretical advantage to
using simple robotics hardware for benchmarking, in addition
to the practical advantages. In particular, we do not want
benchmarks that rely on high-speed, high-accuracy devices. The
purpose of benchmarks is not to indicate how well this
neuromorphic hardware works to control this particular robot in
this task. Rather, the purpose of a benchmark is to characterize
how well some specific neuromorphic hardware works on a task
in general. The variability introduced in the minimal simulation
means that the hardware should be able to function across a wide
variety of physical embodiments, and so if we are to choose one
particular physical embodiment to test in the real world, then we
should choose one that is not high-precision. For this reason,
we believe using Lego robots is actually more informative for
benchmarking than expensive high-precision robots1.

3. EXAMPLE: ADAPTIVE MOTOR
CONTROL

To demonstrate this approach to creating closed-loop
neuromorphic benchmarks, we now consider a basic control
task. Suppose we have a system with a number of joints with
positions q = [q1, q2, ..., qn] and we want to send a control signal
u = [u1, u2, ..., un] to the motors at each joint such that the joints
move to a particular desired position qd = [qd,1, qd,2, ..., qd,n].
The only output from the controller is the signal u and the
inputs are the current position of each motor q and the desired
positions qd.

The simplest controller for such a situation is a P
(proportional) controller, where u = Kp(qd − q). This is often
supplemented with a D (derivative) term, which helps to slow the
system down as it approaches the desired position, thus avoiding
overshoot and oscillation. This combination of terms leads to the
standard PD controller u = Kp(qd − q) + Kd(q̇d − q̇). Both Kp

and Kd are constants that can be tuned to particular situations.
However, this controller has difficulty in the presence of

significant external forces. For example, consider a single motor
controlling the angle of a single arm. If the arm is held out to

1Of course, for more complex benchmark tasks we may need sensory and motor

capabilities that are beyond that of a simple Lego robot.

the side, gravity acting on the mass of the arm itself will pull
the arm downward. Thus, to hold the arm still at a particular qd
will require the controller to apply a force to counteract gravity.
Since the PD controller always produces an output u = 0 when
q = qd, it cannot compensate for gravity, and so the arm will stay
stationary at some angle below the desired angle (Figure 1).

The standard solution to this steady-state error is to add an
I (integral) term (Ki

∫
(qd − q)dt) to the controller, making it a

PID controller. As the difference between where it is (q) and
where we want it to be (qd) accumulates over time, the Ki term
will gradually increase the extra controlled force u that is being
applied until it is large enough to counteract the external force of
gravity (or whatever other external forces are present). However,
this approach has great difficulty when qd changes, since the
external force due to gravity changes depending on the position of
the arm q. The controller ends up having to “relearn” the correct
amount of extra force needed every time qd changes.

In some robotics applications, this problem is solved by
mathematically analyzing the geometry and mass of the system
to compute exactly how much extra force is needed. In this
particular case, the answer is straight-forward, in that the extra

torque due to gravity is τ = mg l
2 sin(q), where m is the mass

of the arm, l is the length, and g is 9.8m/s2. If the force applied
by the motor is linear in u, then we could simply compute
this value and add it to our controller’s output. However, this
assumes a perfectly even distribution of weight in the arm,
ignores momentum, friction, and other forces, and gets much
more complex as more joints are added. Furthermore, if this
initial computation is slightly off, or if details of the system
change, there is no way to adjust this compensation.

Fortunately, there is an adaptive solution to this problem, and
it is one that fits well with neuromorphic hardware. Slotine and Li
(1987) show that if you express the influence of the external forces
as τ = Y(q)ω [where Y(q) is a fixed set of functions of q, such as
sin(q), and ω is a vector of scalar weights, one for each function
in Y], then you can learn to compensate for these external forces
by using the learning rule 1ω = αY(q)u, where u is the basic PD
control signal.

FIGURE 1 | A simple example of a physical embodiment for control. In

order to hold the joint q at a desired angle qd , a force must be applied to

counteract the pull of gravity. The magnitude of this force is a function of q

which can be learned.

Frontiers in Neuroscience | www.frontiersin.org 4 December 2015 | Volume 9 | Article 464

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

Importantly, as pointed out by Sanner and Slotine (1992)
and Lewis (1996), rather than making explicit assumptions
about the exact functions that should be in Y(q), we can use
a neural network approach where each neuron is a different
function of q. As long as there is enough hetereogenetity (i.e.,
as long as the neural activity forms a basis space that is
capable of approximating the external forces), then the learning
rule will continue to work. This approach has been extended
to biologically plausible neurons and been used in both the
Recurrent Error-driven Adaptive Control Hierarchy (REACH)
model of human motor control (DeWolf, 2014) and quadcopter
control (Komer, 2015).

These considerations suggest that there is a neuromorphic-
friendly family of algorithms to address the general problem of
controlling a wide variety of physical systems. Identifying those
algorithms will allow us to benchmark their performance across
example tasks and physical configurations. To implement these
algorithms, the input to the neuromorphic hardware is q, the
system state. This input is fed to each neuron such that each
neuron produces some output activity that is based on this input.
Since qwill bemulti-dimensional (if there ismore than one joint),
we may give each neuron a random weighting of each q-value
(Ji = ei · q + bi, where Ji is the input to neuron i, and ei is a
randomly chosen vector2, and bi is a randomly chosen bias term).
Given this input, the neurons will produce some output A. We
now form aweighted sum of these outputsAd, where d is amatrix
(number of neurons by number of elements in q) that is initially
all zeros.

To use this controller, we add its output to that of the standard
PD controller. That is, the standard controller has u = Kp(qd −
q)+Kd(q̇d − q̇), and so our actual output to the motor is u+Ad.
We then apply a learning rule on d such that1d = αA×u. Here,
α is a learning rate and the cross product is used so that we are
applying the learning rule on all the joints simultaneously.

Notice that we can think of this system as a three-layer
neural network, where the input and output layers are linear.
The first layer is q, the input state, one value for each joint.
The “hidden” layer is the neurons producing activities A, the
activity of a large number of neurons. The output layer again
has one value per joint, and is the extra added signal to apply
to the motors, Ad. Given that this is a canonical example of
the use of neural networks, we expect that the majority of
neuromorphic hardware is flexible enough to implement this
model. Importantly, it functions well with spiking neuronmodels
as well as non-spiking ones. For spiking neurons, we consider
A to be the instantaneous measure of the output of a neuron
(i.e., whether or not it is currently outputting a spike), filtered
through a low-pass filter. Further discussion of this sort of
learning rule and comparison to biological spiking neurons can
be found in Bekolay et al. (2013). This type of neural modeling
forms the foundation of Eliasmith and Anderson (2003)’s Neural
Engineering Framework, which has shown that spiking and
non-spiking neurons can be used in this manner to implement

2e could also be chosen so as to regularly span the space of possibilities, or could

be learned using some back-propagation of error method. Here, for simplicity, we

only consider the approach of randomly selecting ei and bi.

a wide variety of computations (e.g., Stewart and Eliasmith,
2014).

It should be noted that, while this algorithm fits well into
neuromorphic hardware, other hardware might be better (in
terms of accuracy, energy efficiency, cost, or even development
time). Answering this sort of question is exactly why we
need to use a benchmark that can compare multiple different
hardware implementations of this algorithm. Furthermore,
since some hardware may be better in different situations,
we need a benchmark that has flexible parameters, rather
than one that is based on a single particular physical
system.

3.1. Online and Offline Learning
The rule for modifying the weights d described here is of a
very common form, as the weight update from a neuron is
proportional to the activity of that neuron and an external
error signal. This makes it an instance of the ubiquitous delta
rule. Thus, neuromorphic hardware that has built-in learning
will often be able to natively support this rule. However, some
neuromorphic hardware does not intrinsically have the ability to
update connection weights in this manner.

In that case, there are at least two possible ways to implement
this algorithm. First, the multiplication by d can be done on
the output from the neuromorphic hardware. Any closed-loop
neuromorphic system will have some method that takes the
neural output from the hardware and sends it to the motors (or
to the simulation of the motors). Instead of sending the result of
Ad, the hardware could send A (the activity of all the neurons),
and the interface to the motor can be responsible for doing the
multiplication by d and updating d according to the learning
rule.

Alternatively, it may be possible to use offline learning. That
is, rather than updating the weights d during the simulation, we
record A and u, and after a period of time stop the controller,
compute the sum of the changes to d, load the new value of d
onto the neuromorphic hardware, and start the controller again.

Given this variety of options for implementing adaptive
algorithms of this type, we believe it should be possible to
benchmark most neuromorphic systems on adaptive control
tasks in this manner.

3.2. Minimal Simulation for Adaptive
Control
Now that we have defined the task domain, we can use the
principles of minimal simulation to construct a flexible and
variable simulated environment for testing adaptive control. In
this case, we would like to develop a bare-bones simulation of
the system being controlled, with significant variability. If the
neuromorphic controller works well across this variability, then
it is likely to work well outside of simulation as well.

The basic system variable is a vector of joint angles q. Each
joint has a velocity v. The force applied by each motor is related
to the signal u sent to the motors, but will generally have some
maximum value T, so we use tanh(u)T to determine the force as
a function of the control signal. To account for friction, we scale

Frontiers in Neuroscience | www.frontiersin.org 5 December 2015 | Volume 9 | Article 464

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

the velocity by some factor F every time step. This results in the
simplistic simulation described by:

1v = −vF + tanh(u)T (1)

1q = v (2)

In addition, we add an external perturbing force. In a real system,
this could be the effects of gravity given the current configuration
of the motors, or of other unexpected influences. Rather than
choosing one particular fixed external force for our benchmark,
we randomly generate this force each time the benchmark is run.
This ensures that the benchmark covers a wide range of possible
external forces and motor configurations, rather than just one
particular situation.

Specifically, to generate this force, we start with a small set of
smooth functions f which are often found in dynamics equations
(x, x2, sin(x)). We then generate an external force of Kf (ζ · f (β ·

q + γ) + η) where ζ , β , γ , and η are all random vectors and Kf

is a scaling factor to control how strong the external force is. The
result is added to Equation (1). For example, if q is 4-dimensional
(i.e., if there are four joints being controlled) and if there are three
smooth functions in f , then β , γ , and η are all vectors of length 4
and ζ is a 4×12 matrix. To introduce significant variability, all of
these values are randomly chosen from the normal distribution
N(0, 1).

To complete the simulation, we introduce additional sources
of variability: random noise, delay, and filtering to both the input
and the output of the system. For noise, we add N(0, σu) to the
control signal u and N(0, σq) to the q-value reported back to the
controller. We also use a low-pass filter to smooth both values
(with time constants τu and τq) after this noise is added, giving a
damping effect. Finally, both q and u are delayed by an amount of
time tq and tu to reflect communication delays that are common
in physical systems.

The resulting simulation is not meant to be an accurate
portrayal of a particular physical embodiment. Rather, this
simulation is meant to be extremely fast to simulate, and it is
meant to be similarly difficult to control as a real system. In other
words, if a controller manages to be able to control the various
randomly created minimal simulations of embodiment that are
generated with this approach, then we have reason to believe
that it will also be successful at controlling real embodiments.
With this minimal simulation and modern computers, we can
run real-time simulations of systems with dozens of joints that
have highly complex interactions between them. Consequently,
we can effectively benchmark how well an adaptive controller
deals with these situations.

3.3. Calibrating the Minimal Simulation Via
Cost-Effective Robotics
It is important to ensure that the minimal simulation defined
in the previous section is representative of the sorts of
real-world situations in which we want to use these same
controllers. Importantly, this physical instantiation does not
have to exactly match any particular parameter setting of the
minimal simulation. Rather, we want a physical system that

shares basic functional similarities to the minimal simulation
defined previously.

For example, we want the inputs to the system to act like u,
in that a positive number will increase some velocity v which
will in turn increase some sensor value q. We want there to
be some sort of external applied force that affects q, and we
want that external force itself to be a function of q. We want
there to be communication delays and noise in the sensor and
motor systems, and we want all of these effects to be somewhere
within the ranges covered by the minimal simulation. While
implementing this kind of hardware analog cannot guarantee
that neuromorphic hardware that is successful in simulation will
be successful in every similar real-world task, it does provide an
existence proof that there is at least one real-world task where the
hardware performs similarly to how it performs in simulation.

For our specific demonstration, we describe an easy-to-build
system that can be usefully controlled by this adaptive method. In
particular, we use the Lego Mindstorms EV3 robot kit, organized
as shown in Figure 2. It consists of a single motor, mounted
such that the full weight of a second (unused) motor applies a
significant force on the arm itself. Multiple motors can be added,
and other configurations can be considered and should also be
suitable for benchmarking, but here we consider only this basic
case.

To interface to the physical hardware, we installed the
ev3dev operating system (http://ev3dev.org), a Debian-
based Linux system specifically developed for the EV3. We then
installed and ran the ev3_link program from ev3dev-c

(https://github.com/in4lio/ev3dev-c). This allows
the EV3 to listen for UDP commands that tell it to set motor
values and read sensor values. Communication with a PC
was over a USB link (although the system also supports WiFi
communication). With constant communication, the system is
able to adjust the power sent to the motors u and give position
feedback q from those motors at a rate of around 200Hz.

Figure 3 shows the effects of adaptive control on this physical
system. Without adaptation (i.e., with a simple PD controller),
there system state q (the joint angle) overshoots the desired qd.
This overshoot is largest when q is large. This is because the
external force applied to the joint due to gravity is proportional
to sin(q). The q-value also overshoots and comes back part-way,
due to physical momentum.

However, with adaptation (the right-hand side of Figure 3),
the system learns to counteract this extra force due to gravity.
After the first 5 s, the system is able to bring q much closer to
the desired qd. Figure 4 shows the average improvement over
50 experimental runs with different randomly-generated desired
target paths qd(t). Adaptation provides a clear improvement.

Now that we have this physical example of the task out
minimal simulation benchmark is meant to cover, we can use
it to calibrate the parameters of the simulation. For example, to
characterize the communication delay between the computing
hardware and the EV3 robot, we simply measure the number
of times per second we can send a motor command u and read
the position of the motor q per second. This works because the
ev3_link software is entirely synchronous and only responds
with motor positions when it processes a command to do so. This

Frontiers in Neuroscience | www.frontiersin.org 6 December 2015 | Volume 9 | Article 464

http://ev3dev.org
https://github.com/in4lio/ev3dev-c
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

FIGURE 2 | A simple physical robot embodiment for calibrating the minimal simulation. All components come with the Lego Mindstorms EV3 kit, and are

shown on the left (2 large motors; 2 1x11 beams; 1 1x13 beam; 12 pins; 1 EV3 brick; 1 connector cable). To rotate the central motor to the desired position q, enough

force must be added to u to counteract the weight of the second unused motor.

FIGURE 3 | Adaptive control of the EV3 lego robot used for calibrating the minimal simulation. The effects of adaptation over two different desired

trajectories are shown. Without adaptation, the joints q do not reach the desired qd when qd is large (which is when the external force is largest). With adaptation, q is

closer to qd after about 5 s, showing that the system has quickly learned to compensate. Points in time where the improvement is clearest are circled.

Frontiers in Neuroscience | www.frontiersin.org 7 December 2015 | Volume 9 | Article 464

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

FIGURE 4 | The effect of adaptive control on a single-joint lego robot

(Figure 2). Each run uses a randomly generated desired trajectory qd (t) over

20 s, and root-mean-squared-error is computed over the last 10 s only. The

adaptive algorithm provides a significant improvement (p < 0.05; two-tailed

t-test; 50 samples). Scatterplots show individual runs (with random jitter on the

x-axis to avoid overlap), the shaded area is the mean plus or minus the

standard deviation, and the 95% confidence interval of the mean is shown.

rate of communication averaged 154–156Hz (95% bootstrap
confidence interval over 100 trials) with a standard deviation
of 3.3–4.7Hz (95% bootstrap C.I.). This indicates a round-trip
delay on the order of 0.006 s. Given this, we set the delays in the
simulation to be uniformly chosen between 0 and 0.01, so that
the minimal simulation covers delay conditions even worse than
those seen in the EV3 robot.

For sensor noise, we note that the EV3 rotation encoders for
the motors (the devices that measure q) have a resolution of
0.0175 radians (1 degree). This is a very different sort of noise
than the Gaussian noise used in the simulation, so we set the
simulation noise σq to be much larger (uniformly distributed
between 0 and 0.1). Similarly, the motor resolution is 0.01, as it
accepts integer values up to 100, so we set the motor noise σu to
be uniform between 0 and 0.1.

Finally, we can use the physical system to calibrate the
relationship between T (the maximum torque applied by the
motor) and Kf (the scaling factor of the external force). After
all, we do not want external forces that are so strong that
the system does not have enough strength to counteract them.
To measure this on the physical robot, we applied a standard
PID controller with a target qd of π/2 (the position at which
maximum torque must be applied to counteract gravity). After
giving the system 5 s to stabilize, we recorded the required motor
command sent to the robot (from −1 to +1). On average, this
was 0.11–0.16 (95% bootstrap confidence interval over 50 trials),
with a standard deviation of 0.07–0.12 (95% bootstrap C.I.), and
a maximum value of 0.36. Considering this a worst-case scenario,
if we arbitrarily fix Kf to 1 and randomly generate external forces
given the process described above, then 95% of the time we get
values between−3.75 and+3.75. Since we want the motors to be

strong enough to compensate for forces in that range, we set T to
10 (≈3.75/0.36).

4. BENCHMARK ANALYSIS

To run a benchmark using the proposed minimal simulation
approach, there are four main steps: (1) identify the
neuromorphic hardware to be tested; (2) construct the minimal
simulation; (3) determine a metric (e.g., root-mean-squared
error; rmse) to record; (4) specify distributions for any
parameters in the simulation. We then perform multiple runs
of the simulation, each time choosing different values from the
parameter distributions. For each run, we reset the hardware
to its initial state, so there is no learning from one run to the
next. This means our metric indicates how well the system will
perform on a single environment, rather than attempting to use
the same learned parameters across different environments. We
can then plot how the metric varies as a function of a particular
parameter of interest, or how it compares across different
hardware for a given set of parameter distributions.

For example, Figure 5 shows the root-mean-squared error
(rmse) between q and qd for three different hardware systems.
For this benchmark, tq, tu, τq, and τu are chosen from U(0, 0.01)
(the uniform distribution), σq and σu are from U(0, 0.1), and β ,
γ , η, and ζ are allN(0, 1). As discussed above, Kf is 1 and T is 10.
qd is set to be Gaussian white noise with a maximum frequency
of 1Hz and RMS power of 1. Each simulation is run for 20 s, and
the error is computed on the last 10 s.

For each of three hardware platforms, we implemented the
neural control system with the learning rule described above.
That is, we started with a standard non-neural PD controller
that produced an output u. The state information q was fed into
a group of neurons using randomly generated input weights,
producing output activity A. The actual output to the motor was
u + Ad where d is a vector of learned weights, initialized to all
zeros. The learning rule was 1d = αA× u, and the learning rate
α was fixed at 0.001.

The first hardware tested on this benchmark is an Intel i5-
3337U CPU running at 1.80GHz. This is not neuromorphic
hardware, but provides a useful baseline. The learning algorithm
was implemented using Nengo, a software toolkit for developing
large-scale neural models that can be run on various hardware
platforms (Bekolay et al., 2014). For the neuron model, we used
500 spiking Leaky-Integrate-and-Fire (LIF) neurons.

The second hardware used to generate Figure 5 is an Nvidia
Tesla C2075 GPU, hardware that is often used for special purpose
computing and neural network simulations. The same Nengo
implementation was used, but retargetted to run on the GPU
using OpenCL, with the same neuron model and number of
neurons as the CPU.

The third hardware system benchmarked is SpiNNaker
(Furber et al., 2014). This neuromorphic hardware consists of 18
ARM processors on a single chip, optimized for running neural
models. Thanks to a SpiNNaker implementation for Nengo
(Mundy et al., 2015), the same Nengo implementation that was
used on the CPU and GPU is run on this hardware as well.
Importantly, while the basic neuron model is the same, the actual

Frontiers in Neuroscience | www.frontiersin.org 8 December 2015 | Volume 9 | Article 464

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

FIGURE 5 | Benchmark results comparing three hardware systems. Each system is running 500 neurons. The hardware do not statistically significantly differ,

but are all statistically significant improvements over no adaptation (p < 0.05; two-tailed t-test with Bonferroni correction; 400 samples per condition). Scatterplots

show individual runs (with random jitter on the x-axis to avoid overlap), the shaded area is the mean plus or minus the standard deviation, and the 95% confidence

interval of the mean is shown.

implementation of this neuron model on SpiNNaker is very
different from the implementation on the CPU and GPU, in
that it relies on fixed-point computations and an asynchronous
on-chip communication system.

All three hardware systems drastically improve performance
on this task, as compared to the non-adaptive controller.

4.1. Computational Power Benchmark
In Figure 5, all three systems perform equally well. This means
that the timing and accuracy differences between the fixed-
point asynchronous SpiNNaker implementation and the floating-
point synchronous CPU/GPU impementations do not affect
performance on this task. However, on that benchmark all
three systems are implementing exactly 500 neurons. This
demonstrates that the differences in neuron model across that
hardware does not significantly impact performance. Given
that closed-loop models rely on real-time simulation, it is
also important to determine how many neurons each piece of
hardware is capable of running in real time. This is shown in
Figure 6. With the current implementation, including both the
Leaky Integrate-and-Fire neuron model and the learning rule,
the CPU can run 5200 neurons, the GPU 1500 neurons, and
a single SpiNNaker core can run 500 neurons (or 500 × 16 =

8000 neurons for the whole chip). These values were measured
empirically with the current versions of the reference Nengo
implementation, the Nengo OpenCL implementation, and the
Nengo SpiNNaker implementation (as of August 10, 2015). All
other parameters are as before.

4.2. Computational Efficiency Benchmark
While it is possible to run large neural models on standard
CPUs and GPUs, one of the primary advantages of neuromorphic
hardware is its power efficiency. For this reason, the third
benchmark normalizes the number of neurons based on power

consumption. With a power budget of 1W per chip (with 16
used cores), we estimate 0.0625W for the 500 neurons used
here and round up to 0.1W to be conservative. Neither the
CPU nor the GPU are designed to run on that little power.
For this reason, on this benchmark we scale the number of
neurons by the power consumption of the hardware. For this
power consumption we measure the difference between the idle
power consumption and the consumption when running the
benchmark. For the Intel i5-3337U this was 34–11.5W= 22.5W
and for the Nvidia Tesla C2075 GPU this was 74–70W = 4W.
This value is much lower than the peak power consumption
supported by the GPU (215W), indicating that the current
implementation does not make extensive use of the GPU for this
task. Indeed, initial analysis indicates that the main bottleneck
is communication between the GPU and the environment (i.e.,
the minimal simulation), and we feel it is appropriate that
this benchmark captures that limitation of the current GPU
implementation. The GPU could easily run many more neurons
than this in real time, if those neurons were not connected to an
environment. However, that would not be useful for a closed-loop
task.

Given the above considerations, the benchmark indicates that
the CPU can run 23 neurons per 0.1W, the GPU 38 neurons per
0.1W, and SpiNNaker can run 500 neurons per 0.1W. As shown
in Figure 7, while the GPU outperforms the CPU on this task, the
neuromorphic hardware outperforms both of them.

4.3. Communication Delay Benchmark
We can also use minimal simulation benchmarks to examine the
effects of various parameters in the model. For example, Figure 8
shows the effect of increasing the delays tq and tu. Importantly,
the range on the delay parameters is larger than in previous
benchmarks [U(0, 0.04) rather than U(0, 0.01)]. Figure 8 shows
that if the delay is short (less than 0.02), the controller performs

Frontiers in Neuroscience | www.frontiersin.org 9 December 2015 | Volume 9 | Article 464

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

FIGURE 6 | Benchmark results comparing three hardware systems in terms of their performance when running as many neurons as they are capable

of in real time. Scatterplots show individual runs (with random jitter on the x-axis to avoid overlap), the shaded area is the mean plus or minus the standard deviation,

and the 95% confidence interval of the mean is shown. In this case, there is no statistical difference between the three hardware systems (p > 0.05; two-tailed t-test

with Bonferroni correction; 400 samples per condition).

FIGURE 7 | Benchmark results comparing three hardware systems in terms of their performance when running as many neurons as they are capable

of per 0.1 Watt of power consumption. Scatterplots show individual runs (with random jitter on the x-axis to avoid overlap), the shaded area is the mean plus or

minus the standard deviation, and the 95% confidence interval of the mean is shown. All differences are statistically significant (p < 0.05; two-tailed t-test with

Bonferroni correction; 400 samples per condition).

well, and if it is very large (greater than 0.03), the controller
performs poorly. However, for delays between 0.02 and 0.03,
the controller sometimes performs well and sometimes performs
poorly. The difference is due to the other random parameters
in the system. Interestingly, SpiNNaker performs better on this
task than the CPU (the GPU data is equivalent to the CPU and
is not shown). This is somewhat surprising, as we are currently
using the slow Ethernet interface to SpiNNaker, rather than the
high-speed I/O system that is meant for motor control. Further
analysis is needed to determine exactly why this is the case.

4.4. Scaling Benchmark
As a final comparison, we look at how this algorithm
scales as the number of neurons increases and as the
number of controlled motors N increases. This is a crucial
benchmark, as the complexity of the task itself quickly
increases with N because the function computing the force
applied at each joint is an interaction of all the joint
angles q. Consequently, the number of parameter interactions
in ithe external force that the neural system must learn
to predict increases in exponentially as N increases. The

Frontiers in Neuroscience | www.frontiersin.org 10 December 2015 | Volume 9 | Article 464

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

FIGURE 8 | Benchmark results comparing the effects of communication delay for the CPU and SpiNNaker systems. The delays tq and tu are randomly

varied. Shaded area is the mean plus or minus one standard deviation, smoothed with a Gaussian kernel of σ = 0.005.

FIGURE 9 | Benchmark results examining the relationship between number of neurons and the number of simulated joints N. The benchmark was run on

the Intel i5-3337U CPU. Shaded area is the mean plus or minus one standard deviation, smoothed with a Gaussian kernel of σ = 1 in the log2 domain.

quality of the control is thus dependent on how good an
approximation the neurons can make of this complex non-linear
function.

As shown in Figure 9, adapting for unknown interacting
forces on 15 joints is possible with 500 neurons. This gives an
indication of how many neurons are needed for different tasks,

Frontiers in Neuroscience | www.frontiersin.org 11 December 2015 | Volume 9 | Article 464

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

and suggests that this controller could be used to control larger
systems than those tested here.

5. DISCUSSION

While the primary purpose of this paper is in describing
the benchmarking methodology, it is also worth noting that
these benchmarks indicate that the neuromorphic learning rule
under investigation here is quite robust. As shown in Figure 9,
even just 500 neurons can consistently adapt to control a
randomly generated 15-joint body simulation, and deal with
larger delays and noise than were seen in the example 1-joint
physical embodiment. Since this learning system is robust across
such a wide range of conditions, and since it is efficiently
implementable in a wide variety of neuromorphic hardware,
we feel it is worth further study. This must include both a
wider variety of minimal simulation benchmarks and also a
few more traditional benchmarks. These traditional benchmarks
would be particular real physical systems (specific robot arms, for
example), but testing on those would only reveal performance on
those particular arms. As we argued here, benchmarking against a
wide variety of randomly generated minimal simulation systems
is needed to demonstrate the space of potential situations in
which neuromorphic adaptive control performs well.

The benchmarks described above all use the same underlying
minimal simulation as a way to characterize the overall
performance of particular hardware across a range of situations.
By adjusting the random distributions that define that range
of situations, we generate different benchmarks that explore
the capabilities of the systems in different ways. This allows
for an explicit depiction of the sorts of conditions in which
particular neuromorphic hardware performs well. After all, it is
unlikely that one piece of neuromorphic hardware will be the
best choice in all situations; rather, these benchmarks allow us to
demonstrate the advantages and disadvantages of the hardware
by looking at the same underlying system, but with multiple
different distributions of parameters.

Python software for the minimal simulation and the
full benchmarks are available at http://github.com/

ctn-waterloo/ctn_benchmarks.

5.1. Benchmark Improvements
The benchmarks presented here can be improved and further
developed in several ways. Most obviously, we need to
benchmark more hardware, and in particular we note that none
of the systems tested here are analog neuromorphic hardware.
While getting access to such hardware can be difficult, we believe
the fact that our benchmark is easily shared with others as
source code and interacts with existing hardware using a Python
interface will help this process. Interestingly, it is worth noting
that these benchmarks can also be run on software simulations of
hardware (analog or digital), and could even be used to help form
design decisions about hardware that has not yet been produced.

However, it is also clear that performance on these
benchmarks is a result of a combination of the hardware itself,
the algorithm being run, and the system that interfaces the
hardware to the environment. Thus, for any given hardware,

we can explore improvements to the algorithm (better choices
for e, different learning rules, adaptive learning rates, adapting
Kp and Kd, etc.). For example, in the SpiNNaker hardware
implementation not only can the neuron model be adjusted,
but the distribution of the task across the multiple cores is also
under programmer control. Furthermore, SpiNNaker provides a
custom I/O interface for high-speed communication that could
be used to reduce communication delay.

In addition, other classes of benchmarks could rely on
expanded or completely different minimal simulations. For
example, other physical systems could be used to calibrate the
minimal simulation. This would lead to other classes of randomly
generated external forces that may be more (or less) difficult
for the neuromorphic system to learn. If we identify classes
of tasks that we are likely to want to control, we can create
modify those randomly generated forces to ones that are more
appropriate for different tasks. For example, it may be of interest
to randomly generate N-joint arms with random arm lengths
and randommasses, and derive (an approximation of) the actual
forces that would be seen in those situations. In particular,
we feel benchmarks based on the biologically-inspired “soft-
robotics” systems (e.g., Pfeifer et al., 2013) would be particularly
appropriate for neural control, given the complexity involved in
generating traditional controllers for them.

5.2. Other Benchmarks
While the particular minimal simulation shown here suggests
that this adaptive control algorithm is worth further
investigation, the overall goal of this paper is to present the
general idea of using minimal simulation as a way to benchmark
neuromorphic hardware. That is, we believe this same approach
could be scaled up to other, more complex, closed-loop tasks.
Importantly, benchmarking these other tasks would require both
the creation of new minimal simulations and the specification
of new algorithms suitable for performing those tasks. These
algorithms would then be implemented with the neuromorphic
hardware and connected to the minimal simulations to construct
new benchmarks.

As a first step toward scaling up, consider the more complex
task of controlling a system where the values to be controlled
are not the joints themselves. For example, suppose we want to
control the position of a hand x, but our output u only directly
controls the joints q of an arm. The position of the hand x
is some function of q, but this function may be unknown or
highly complex. This is often expressed as ẋ = J(q)q̇, where
J(q) is the Jacobian. In order to successfully control x (the hand),
the system needs to learn the relationship J that indicates how
adjusting various joints q will affect the position of the hand.
Crucially, there is a learning rule similar to the one discussed
above that can learn this mapping (Cheah et al., 2006), and we
have had some success in using it for particular arm control
tasks (DeWolf, 2014). So far we have only tested this algorithm
in the context of one particular arm, but it was successful in
learning this relationship, and thus learning to correctly move its
hand given an unknown arm geometry. To establish that this is
a generally useful task for neuromorphic hardware, we need to
benchmark this rule against a large family of different arms (and

Frontiers in Neuroscience | www.frontiersin.org 12 December 2015 | Volume 9 | Article 464

http://github.com/ctn-waterloo/ctn_benchmarks
http://github.com/ctn-waterloo/ctn_benchmarks
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

other systems to be controlled). This can be done by generating
minimal simulations very similar to the one presented here; the
main difference is that there would also be a randomly generated
Jacobian function J(q). It should also be noted that in this context,
the dimensionality of x and the dimensionality of q are separate
variables. It may be that some algorithms work well when q is
much larger than x, while others work best when they are similar.
Exploring this relationship is fairly straightforward with minimal
simulation, and would be an important result to know when
choosing neuromorphic hardware for a particular new situation.

Given this, we believe that the combination of minimal
simulation and neuromorphic hardware is useful for adaptive
control problems in general, whether the adaptation is in terms
of an additive bias term to compensate for external forces such
as gravity (as seen in the benchmarks presented in this paper)
or if it is in terms of learning the Jacobian term relating the
controlled variables q to the desired target space x (as in the
adaptive Jacobian model discussed in the previous paragraph).
This should allow systems to adapt to both unknown external
forces and to unknown bodily geometries. However, it is less clear
whether this approach will scale to more complex robotics tasks.

One more complex robotic task where this approach might
be applicable is navigation and obstacle avoidance. Here, we
would need both a more complex minimal simulation for
the environment, and an explicit neuromorphic algorithm
capable of performing this avoidance. The minimal simulation
itself would need to include some sort of sensory modality
(vision, range sensing, or both), and movement in a two-
dimensional environment (probably wheeled movement, for
simplicity). To run such a simulation in real-time, we would
use many of the same optimizations and simplifications used
in Jakobi’s original work (Jakobi, 1997). These included making
separate simulations for corridors and intersections (rather than
generic simulations for any possible geometries), using noisy
lookup tables (rather than detailed physics simulations), treating
collisions as failures (rather than modeling them), and using
shifting random dot patterns for visual stimuli (rather than
high-fidelity image rendering). Given Jakobi’s success at building
high-speed simulations over 20 years ago, we believe real-time
simulations of this type are feasible now.

However, having such a simulation is only half of what is
required. We would also need a control algorithm suitable for
such a situation. This is, itself, a topic of much research, and
there is no clear best approach. We have been exploring the use
of reinforcement learning in neural models (Stewart et al., 2012;
Rasmussen and Eliasmith, 2014), and note that these make use
of the same learning algorithm as described here, with additional
neural components needed to implement action selection. In this
case, the learning rule would adjust the system’s estimate of which
action is most appropriate given the current sensory state. We are
currently investigating this approach further.

As a more speculative possibility, we also intend to apply this
approach to tasks involving classical and operant conditioning.
Conditioning effects are extremely common in living creatures,
and are clearly evident when animals are exposed to novel
environments. As such, it is natural to define benchmark tasks
involving learning the associations between sensory events in the

environment (akin to classical conditioning) and the associations
between actions and desired sensory states (akin to operant
conditioning). In this case, the minimal simulations would
consist of a set of small, controlled rooms with controllable
buttons and stimuli, matching the sort of “Skinner Box”
environments used in experimental psychology. The minimal
simulation will also require a basic simulated body, capable of
movement, pushing buttons, and observing stimuli. The tasks
would consist of pairing stimuli together and determining if the
learning algorithm is able to respond correctly. For example,
a model might have a built-in response where it will salivate
when presented with food. If the sound of a bell is paired
with the presentation of food, it should learn to salivate with
presented with just the sound of a bell. Importantly, there are
extensive results showing the rate at which such associations
are learned and un-learned in various animals. Furthermore, we
would test the ability to learn associations that are separated in
time (delayed conditioning), and to recover associations that had
been previously learned (spontaneous recovery). Interestingly,
there already exist neuron-based classical conditioning learning
rules that may be suitable for such implementation, given their
similarity to the learning rule used in the adaptive control
benchmark (Verschure et al., 2003).

6. CONCLUSIONS

We have described a new method for benchmarking
neuromorphic hardware that addresses the problem of reliably
benchmarking complex tasks that involve interaction with
an environment. This method involves building a minimal
simulation; a simulation that is extremely simple in terms of
required computation, but that has a high degree of adjustable
variability. By benchmarking across a space of possibilities, we
can identify hardware that performs well across that space, and
is thus likely to be useful in real-world situations. In order to
identify which real-world situations are covered by a minimal
simulation, we can tune the variability in the simulation to
particular physical systems.

We demonstrated this approach by defining a minimal
simulation and a task appropriate for adaptive motor control.
We presented an algorithm that can use neuromorphic hardware
to improve performance on this task over that of a standard
non-adaptive controller. Importantly, bymeasuring performance
while adjusting the distributions of parameters in the benchmark,
it is possible to characterize different aspects of the hardware,
identifying how different aspects of the task affect performance
for different hardware. This was demonstrated by providing
five different benchmarks, each based on the same minimal
simulation, but setting parameters in different ways. We believe
this sort of flexibility is important in a benchmark method, as
it lets researchers be explicit about what their hardware is good
at, while still using the same basic and shareable benchmark
framework.

Finally, we note that the benchmarking results show that
this learning rule can consistently improve control performance
across a wide variety of randomly generated situations, and is
suitable for implementation on a wide variety of neuromorphic

Frontiers in Neuroscience | www.frontiersin.org 13 December 2015 | Volume 9 | Article 464

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stewart et al. Closed-Loop Neuromorphic Benchmarks

hardware. Given this promising result, we will be further
evaluating it on specific physical embodiments, and comparing
it to more complex variants of PID control.

FUNDING

NSERC Discovery (grant 261453), ONR (N000141310419),
AFOSR (FA8655-13-1-3084), Mitacs Postdoctoral Fellowship,

Canada Research Chairs, Canadian Foundation for Innovation,
Ontario Innovation Trust.

ACKNOWLEDGMENTS

We thank Andrew Mundy for extensive work on the Nengo
SpiNNaker backend, and James Knight for his prototype
SpiNNaker implementation of the learning rule used here.

REFERENCES

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen,

D., et al. (2014). Nengo: a python tool for building large-scale functional brain

models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.00048

Bekolay, T., Kolbeck, C., and Eliasmith, C. (2013). “Simultaneous unsupervised

and supervised learning of cognitive functions in biologically plausible spiking

neural networks,” in 35th Annual Conference of the Cognitive Science Society

(Berlin: Cognitive Science Society), 169–174.

Cheah, C. C., Liu, C., and Slotine, J. J. E. (2006). Adaptive tracking control for

robots with unknown kinematic and dynamic properties. Int. J. Rob. Res. 25,

283–296. doi: 10.1177/0278364906063830

DeWolf, T. (2014). A Neural Model of the Motor Control System. Ph.D. thesis,

University of Waterloo.

Eliasmith, C., and Anderson, C. H. (2003). Neural Engineering: Computation,

Representation, and Dynamics in Neurobiological Systems. Cambridge, MA:

MIT Press.

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Hinkel, G., Groenda, H., Vannucci, L., Denninger, O., Cauli, N., and Ulbrich, S.

(2015). “A domain-specific language (dsl) for integrating neuronal networks

in robot control,” in Proceedings of the 2015 Joint MORSE/VAO Workshop

on Model-Driven Robot Software Engineering and View-based Software-

Engineering, MORSE/VAO ’15 (New York, NY: ACM), 9–15.

Husbands, P., and Harvey, I. (1992). “Evolution versus design: controlling

autonomous robots,” in AI, Simulation and Planning in High Autonomy

Systems, 1992. Proceedings of the Third Annual Conference of Integrating

Perception, Planning and Action (Perth), 139–146.

Husbands, P., Harvey, I., and Cliff, D. (1993). “An evolutionary approach to

situated ai,” in Prospects for Artificial Intelligence: Proceedings of AISB-93, eds

A. Sloman, D. Hogg, G. Humphreys, A. Ramsay, and D. Partridge (Amsterdam:

IOS Press), 61–70.

Jakobi, N. (1997). Evolutionary robotics and the radical envelope-of-noise

hypothesis. Adap. Behav. 6, 325–368. doi: 10.1177/105971239700600205

Jakobi, N. (1998). Minimal Simulations for Evolutionary Robotics. Ph.D. thesis,

University of Sussex.

Jakobi, N., Husbands, P., and Harvey, I. (1995). “Noise and the reality gap:

the use of simulation in evolutionary robotics,” in Advances in Artificial

Life: Proceedings of the 3rd European Conference on Artificial Life (Granada:

Springer-Verlag), 704–720.

Komer, B. (2015). Biologically Inspired Adaptive Control of Quadcopter Flight.

Masters thesis, University of Waterloo.

Koos, S., Mouret, J.-B., and Doncieux, S. (2013). The transferability approach:

crossing the reality gap in evolutionary robotics. Evol. Comput. IEEE Trans. 17,

122–145. doi: 10.1109/TEVC.2012.2185849

Lewis, F. (1996). Neural network control of robot manipulators. IEEE Expert 11,

64–75. doi: 10.1109/64.506755

Meyer, J.-A., Doncieux, S., Filliat, D., and Guillot, A. (2003). “Evolutionary

approaches to neural control of rolling, walking, swimming and flying animats

or robots,” in Biologically Inspired Robot Behavior Engineering, eds R. J. Duro,

J. Santos, M. Grana, and J. Kacprzyk (Heidelberg: Physica-Verlag GmbH),

1–43.

Mundy, A., Knight, J., Stewart, T. C., and Furber, S. (2015). “An efficient

SpiNNaker implementation of the neural engineering framework,” in

International Joint Conference on Neural Networks (Killarney).

Nolfi, S., and Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence,

and Technology. Cambridge, MA: MIT Press.

Pfeifer, R., Marques, H. G., and Iida, F. (2013). “Soft robotics: the next generation of

intelligent machines,” in Proceedings of the 23rd International Joint Conference

on Artificial Intelligence (IJCAI) (Beijing).

Rasmussen, D., and Eliasmith, C. (2014). “A neural model of hierarchical

reinforcement learning,” in Proceedings of the 36th Annual Conference

of the Cognitive Science Society, eds P. Bello, M. Guarini, M.

McShane, and B. Scassellati (Austin, TX: Cognitive Science Society),

1252–1257.

Sanner, R., and Slotine, J.-J. (1992). Gaussian networks for direct adaptive

control. IEEE Trans. Neural Netw. 3, 837–863. doi: 10.1109/72.

165588

Slotine, J.-J. E., and Li, W. (1987). On the adaptive control of robot manipulators.

Int. J. Robot. Res. 6, 49–59. doi: 10.1177/027836498700600303

Stewart, T. C., Bekolay, T., and Eliasmith, C. (2012). Learning to select actions

with spiking neurons in the basal ganglia. Front. Decis. Neurosci. 6:2. doi:

10.3389/fnins.2012.00002

Stewart, T. C., and Eliasmith, C. (2014). Large-scale synthesis of functional

spiking neural circuits. Proc. IEEE 102, 881–898. doi: 10.1109/JPROC.2014.

2306061

Verschure, P. F., Voegtlin, T., and Douglas, R. J. (2003). Environmentally mediated

synergy between perception and behaviour in mobile robots. Nature 425,

620–624. doi: 10.1038/nature02024

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Stewart, DeWolf, Kleinhans and Eliasmith. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 December 2015 | Volume 9 | Article 464

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Closed-Loop Neuromorphic Benchmarks
	1. Introduction
	2. Closed-Loop Benchmarks
	2.1. Simulation Vs. Physical Instantiation
	2.2. Minimal Simulation
	2.3. Minimal Simulation for Benchmarking
	2.4. Cost-Effective Robotics

	3. Example: Adaptive Motor Control
	3.1. Online and Offline Learning
	3.2. Minimal Simulation for Adaptive Control
	3.3. Calibrating the Minimal Simulation Via Cost-Effective Robotics

	4. Benchmark Analysis
	4.1. Computational Power Benchmark
	4.2. Computational Efficiency Benchmark
	4.3. Communication Delay Benchmark
	4.4. Scaling Benchmark

	5. Discussion
	5.1. Benchmark Improvements
	5.2. Other Benchmarks

	6. Conclusions
	Funding
	Acknowledgments
	References

