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Identifying venous voxels in fMRI datasets is important to increase the specificity of

fMRI analyses to microvasculature in the vicinity of the neural processes triggering the

BOLD response. This is, however, difficult to achieve in particular in typical studies

where magnitude images of BOLD EPI are the only data available. In this study,

voxelwise functional connectivity graphs were computed on minimally preprocessed low

TR (333 ms) multiband resting-state fMRI data, using both high positive and negative

correlations to define edges between nodes (voxels). A high correlation threshold

for binarization ensures that most edges in the resulting sparse graph reflect the

high coherence of signals in medium to large veins. Graph clustering based on the

optimization of modularity was then employed to identify clusters of coherent voxels in

this graph, and all clusters of 50 or more voxels were then interpreted as corresponding to

medium to large veins. Indeed, a comparison with SWI reveals that 75.6±5.9% of voxels

within these large clusters overlap with veins visible in the SWI image or lie outside the

brain parenchyma. Some of the remaining differences between the two modalities can

be explained by imperfect alignment or geometric distortions between the two images.

Overall, the graph clustering based method for identifying venous voxels has a high

specificity as well as the additional advantages of being computed in the same voxel grid

as the fMRI dataset itself and not needing any additional data beyond what is usually

acquired (and exported) in standard fMRI experiments.
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1. INTRODUCTION

Any interpretation of fMRI results as indirect measures of neuronal activation rests on the
assumption that magnetization changes caused by changes in blood oxygenation are due to brain
activity in the immediate vicinity. Whether and to what extent this assumption holds, however,
has been the matter of much debate from the first days of fMRI onwards. While the discussion of
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this “brain or vein” question has generated a wealth of research
on identifying veins and signals originating from them, the
majority of fMRI studies still ignore the issue and take no
measures to assess or reduce the influence of signals from major
vessels (Menon, 2012).

Quantification of the influence of draining veins on fMRI
results has provided evidence that it is most pronounced at
low magnetic field strengths, and the relative influence of
microvasculature to the MR signal increases as the field strength
increases (Duong et al., 2003): while at 1.5 T the signal originates
virtually entirely in the macrovasculature (Lai et al., 1993), the
ratio shifts in favor of the microvasculature as a major signal
source at 3T, 4T, and 7T. Still, even at higher field strengths,
protocols using gradient echo EPI are highly sensitive to signal
changes originating from larger veins, to the point that no
significant improvement can be observed between 3T and 7T
results (Geißler et al., 2013).

Several efforts have been made to reduce the influence
of venous signals on fMRI measurements, and a number of
effective ways for increasing the specificity of signals for the
microvasculature have emerged from them. The use of spin-
echo instead of gradient echo sequences can drastically reduce
extravascular signal contributions (Duong et al., 2003), but only
at a steep cost in terms of signal-to-noise and contrast-to-noise
ratio (Norris, 2012). Specific corrections to eliminate venous
signals based on phase images have also been developed (Menon,
2002; Rowe and Logan, 2005; Curtis et al., 2014), but are rarely
included in the sequences used by typical fMRI studies, and yield
the risk of introducing errors through over-correction (Nencka
and Rowe, 2007).

The development of these methods for identifying veins
is to some extent related to that of methods for eliminating
physiological influences, leading to converging developments.
One of the most common approaches to address physiological
signal contamination is RETROICOR (Glover et al., 2000), which
uses externally measured respiration and cardiac signals for a
regression-based correction of fMRI data. A later method termed
CompCor (Behzadi et al., 2007) eliminates the need for externally
measured signals by identifying potential regressors from either
ventricular and white matter signals, or from signals in voxels
with higher-than-average time course standard deviation—a
feature typically seen in voxels containing larger veins. The most
recent development, Highcor, merges this line of research with
the work on phase-based venous suppression mentioned above
by using the correlation between phase and magnitude image
time series to identify venous voxels that can be used to extract
regressors for physiological noise reduction (Curtis and Menon,
2014).

The reasons for identifying venous voxels are more complex
than the elimination of global physiological noise, however,
as any BOLD effects necessarily carry the potential for signal
changes further downstream along draining veins. It is thus
desirable to not only reduce global physiological noise as
in these regression approaches, but also to reliably identify
voxels with potential venous signal contributions to help
interpreting signal changes seen in and around them. The most
direct way of localizing macrovascular effects might be the

creation of venous maps using susceptibility weighted imaging
(SWI; Reichenbach et al., 2000; Haacke et al., 2004). Still,
extravascular signal influences in fMRI measurements might
extend beyond the delineation of veins in the SWI image, and
imperfect coregistration of SWI to fMRI images can further
limit the precision of this method of localization. An immediate
measure proposed to minimize macrovascular influences is the
elimination of voxels with time series coefficients of variation
much larger than the local average of their surrounding voxels
[a concept related to the second of the two approaches used
by Behzadi et al. (2007) in CompCor, see above], which
empirically corresponds to regions next to large vessels, as
done in the minimal preprocessing pipeline (Glasser et al.,
2013) of the Human Connectome Project (Van Essen et al.,
2013). This method has the advantages of requiring neither
separate protocols nor specialized measurement techniques,
and estimates affected voxels directly from standard fMRI
time series; however, there exists no evaluation of the
correspondence of the time series standard deviation with venous
effects.

The question of which voxels are influenced by large
vessels is not a purely theoretical exercise. While in the
beginnings of fMRI, the brain-vs.-vein debate was settled by a
general acknowledgment that with the imaging resolutions then
available, the practical relevance of knowing whether a signal
originates in the microvasculature in the cortex or in the draining
vein at its surface was limited. There are multiple reasons why
this argument should no longer be used as an excuse for avoiding
the question. First, many veins run in sulci and might cause
a signal change whose causal origin is on the gyrus on one
side of the sulcus be misattributed to the gyrus on the other
side. While earlier imaging techniques might not have allowed
to make such distinctions regardless of whether the measured
signal originated in the parenchyma or in a draining vein, many
current analysis techniques like surface projections for surface-
based analyses rely on correct attribution of signals at this level.
The second, somewhat related, reason is that improvements in
spatial resolution at higher field strengths and with the use of
more sophisticated acceleration techniques (Simultaneous Image
Refocused EPI, Multiband EPI) have led to the possibility of
imaging at sub-millimeter resolutions (Feinberg et al., 2010),
but this improvement in nominal spatial image resolution can
only lead to interpretable gains if the physiological basis for the
measured effect matches this granularity. Indeed, Turner (2002)
suggested that due to dilution effects, draining vein effects might
not be seen at more than a fewmillimeters distance from the gray
matter region drained where the effect originated. But while a
spatial gap between neuronal origin and the immediate source
of the measured BOLD signal of 4 mm might be considered
of limited relevance when imaging at a spatial resolution of
3 mm, the existence of unavoidable spatial discrepancies of
this magnitude would render advances into higher resolutions
entirely pointless. Finally, it is possible to show that at least in
some cases, draining vein effects might occur at much larger
distances from their neuronal origins, as is the case for signal
changes in the basal vein of Rosenthal (BVR) next to the
amygdala (Boubela et al., 2015).
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In the analysis of the BVR signals, it also became apparent that
one distinguishing feature of venous voxels was their resting-state
functional connectivity pattern (Boubela et al., 2015), exhibiting
very strong positive and negative correlations to other voxels in
the macrovasculature. Thus, in an approach similar to functional
parcellation methods of the brain (Eickhoff et al., 2015) this
resting-state connectivity structure between voxels could be used
to distinguish voxels in the macrovasculature from others. One
such approach consists in using graph learning tools on the
connectivity graph (where vertices correspond to voxels or sets
of voxels, and edges link vertices with correlated time courses
together). Previously, connectivity analyses have rarely been
performed on a voxel-wise level, among others for computational
reasons: if, for example, 150,000 voxels lie within the brain mask,
the complete voxel-by-voxel correlation matrix would consist
of 2.25 · 1010 entries, taking up about 167 GB (in practice,
the number of voxels is typically reduced by restricting analysis
to gray matter voxels or by resampling the data to a coarser
resolution). Not all of these entries actually need to be stored
to perform analyses, in particular when analyzing a relatively
sparse connectivity graph, and efficient tools for tackling similar
problems on large datasets have been developed in other fields.

In this work, graph based cluster analysis was performed to
show how these tools can be applied to solve a practical problem
of fMRI data analysis. Voxel-by-voxel correlations are computed
for all in-brain voxels to create a voxelwise connectivity graph.
Resampling to a coarser resolution as well as limiting analysis
to a subset of voxels (e.g., gray matter voxels) are avoided as
they would hamper the specific research question: resampling
would lead to a loss of specificity in that affected voxels would
be averaged with adjacent voxels to form the larger voxels of
the coarser grid, and a gray matter mask might exclude parts of
the venous structure, effectively hindering the identification of
venous voxels based on their connectivity to voxels within other
veins. Based on previous observations (Boubela et al., 2015),
the largest clusters with the strongest (positive and negative)
correlations among their voxel’s time-series emerging from a
clustering of this graph could be expected to reflect medium to
large veins.

2. MATERIALS AND METHODS

2.1. Subjects
Fifteen healthy subjects (8 females/7 males, mean age 35.3, SD
13.3) were recruited at Medical University of Vienna. Exclusion
criteria were prior psychiatric or neurologic illnesses, as well
as the usual exclusion criteria for MR studies. All subjects
gave written informed consent prior to the scan and the
study was approved by the local institutional review board
(Ethikkommission der Medizinischen Universität Wien).

2.2. Data Acquisition Protocols
All MRI scans were performed on a 3 Tesla TIM Trio using
the standard 32-channel head coil and whole-body gradients
(Siemens Medical Solutions, Erlangen, Germany). First, a high-
resolution anatomical image was acquired using MPRAGE with
1× 1× 1.1mm3 resolution, and 160 sagittal slices (TE= 4.21ms,

TR = 2300 ms, flip angle 90◦, inversion time 900 ms). Second,
BOLD fluctuations at rest were measured with a short-TR multi-
band EPI-sequence (Feinberg et al., 2010) using 1.7 × 1.7 ×

2 mm3 resolution, 2 mm slice gap (matrix size 128 × 128, 32
axial slices, TE = 31 ms, TR = 333 ms, flip angle 30◦, multiband
factor 8, bandwith = 1776 Hz/Pixel) collecting 1200 volumes.
Finally, susceptibility weighted images (SWI) were acquired at
0.6 × 0.6 × 2.0 mm resolution (matrix size 384 × 384, 52 slices
per slab, 1 slab, TE = 29 ms, TR = 42 ms, flip angle 15◦) to
visualize medium to large venous vessels.

2.3. Preprocessing
To keep closely to the original images, only minimal
preprocessing was applied to functional data, including
only skull stripping using FSL BET, motion removal using FSL
MCFLIRT, and band-pass filtering. For the latter, the pass-band
used was 0.01–0.2Hz, to avoid as far as possible influence
from high-frequency respiratory or cardiac fluctuations. SWI
images were segmented using FSL FAST for vein delineation,
coregistered to the EPI weighted images, with the vein masks
generated from segmentation also being transformed into EPI
space using the resulting transformation parameters, using
trilinear interpolation to ensure that all voxels in EPI space
with some overlap with veins from the SWI mask have non-zero
values. This vein map in EPI space was then binarized to generate
a vein mask for the EPI images.

2.4. Graph Generation
Pairwise Pearson correlation coefficients were computed between
all voxels within the brain mask, using GPUs for the calculation
of the correlation coefficients (Boubela et al., under revision) and
splitting the dataset into tiles to allow for the computations to fit
within GPU memory (6 GB). For each subject, this correlation
matrix was thresholded to generate the adjacency matrix of a
graph using a correlation threshold such that S < 4, with

S =
logE

logK

(where E is the number of edges and K the average node
degree). This thresholding criterion results in a rather sparse
graph of only the strongest correlations, which are more likely
to reflect adjacent voxels along the same vein or otherwise
highly congruent voxel signals (as opposed to the more subtle
long-distance connections of brain networks of neuronal origin;
see below in the discussion for more details on the effect of
the sparsity criterion). For each subject, the largest correlation
threshold fulfilling S < 4 was computed iteratively by decreasing
the threshold in steps of 0.01, starting at 1. The threshold was
applied to the absolute value of the correlation coefficients to take
into account both positive and negative correlations exceeding a
certain correlation strength. The resulting connectivity graph had
all in-brain voxels as vertices, and each correlation between two
voxels that was above the threshold resulted in edges between
the two corresponding vertices, with the correlation coefficient
used as edge weight. Graphs were represented using the package
igraph (version 1.0.1) in R (version 3.1.1). Self-loops and
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multiple edges were eliminated using the igraph function
simplify.

2.5. Graph Cluster Identification
Community identification on the graph was performed
using the method based on modularity optimization
by Newman (2006) as implemented in the igraph function
cluster_fast_greedy. The optimization of graph
modularity means that the resulting clusters are defined by their
voxels having maximum connectedness among each other and
minimum connectedness to voxels outside their own cluster.
All voxels from all clusters that individually contained 50 or
more voxels were then pooled into a single mask, which thus
contained all voxels with time-courses strongly correlated (either
positively or negatively) with those of a large number of different
voxels. It should be noted that Newman’s method is intended
to detect communities in connected networks and that its
application on sparse networks as used here might result in
some cases in entire connected components being categorized as
clusters. Nonetheless, for our purposes, this is still sufficient to
detect groups of voxels with highest relative connectedness
to each other considering the general sparsity of the
graph.

2.6. Validation
To show that these voxels correspond mostly to vasculature, the
overlap with the vein mask from SWI was computed (in EPI
space); the proportion of voxels from the graph clustering map
that overlaps with the SWI veinmask can be seen as ameasure for
the specificity of the graph clustering method, though it should
be kept in mind that it is not the true specificity because the
segmented SWI is not the ground truth for the identification of
venous voxels: coregistration imperfections can lead to spatial
deviations in the localization of these voxels, and not all low
signal intensities in SWI originate from veins since other factors
like iron levels (higher in the basal ganglia than in the rest of the
brain) or proximity to air cavities or bone affect susceptibility.
The latter observation also implies that it is impossible to make
any meaningful quantification of the sensitivity of the graph
clusteringmethod by using SWI, as it means that an accuratemap
of venous voxels should not indiscriminately include all voxels
with low signal intensity in SWI.

3. RESULTS

Overall, of the voxels within the brain masks (between 142,800
and 172,300 for the different subjects, mean 157,600, SD 10,540),
17,730 ± 5069 voxels (or 11.2 ± 3.0%) were identified by the
graph clustering algorithm as being part of large highly coherent
networks (see Table 1).

Single-subject images of the graph clustering masks overlaid
over SWI are shown in Figure 1. The spatial distribution of the
voxels identified by the method seems to exhibit a consistent
pattern. Most of the voxels within the brain follow the path of
veins visible in the SWI underlay. Another set of voxels delinates
areas of low signal quality in orbitofrontal regions subject to
susceptibility artifacts or at the edge of the brain, in either case
such voxels could be discarded for fMRI analyses interested in
neuronal effects.

This observation can also be quantified by comparing the
mask gained from graph clustering with a binarized mask
gained from segmenting the SWI image (see Figure 2), and the
average proportion of voxels of the mask identified via graph
clustering overlapping with veins in SWI is 0.67± 0.05. A further
significant proportion of voxels not directly overlapping veins
lies on the edge of the brain mask, as identified by eroding
the brain mask with a 5 × 5 × 5-voxel kernel (see Figure 4)
using the R package mmand (Clayden, 2014), outside of what
can be recognized as the brain itself (BET seems to be rather
conservative in skullstripping), possibly reflecting signals from
superficial veins, raising the overlap proportion to 0.77 ± 0.06
(see also Table 1).

In some brain areas (e.g., in the medial prefrontal region
in Figure 1), the locations of the vein recognizable in SWI
on one hand and the voxels of the graph clustering mask on
the other can be observed not to overlap perfectly. Still, the
similarity of the shape between the two features, only shifted by
1–2 voxels, strongly suggests that they are caused by the same
underlying structure (i.e., the same vein). Such discrepancies
are not necessarily worrying. Since the graph clustering mask is
generated from the EPI voxel timecourses themselves as opposed
to the SWI images acquired in a separate measurement, they
can be seen as yielding potentially valuable complementary
information on the effect of a vein on the EPI measurement.

Comparing the time series standard deviations of voxels
within and outside the clustering brain mask reveals that voxels

TABLE 1 | Quantitative overview of the voxels identified by graph clustering, and comparison to segmentation of SWI.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

Correlation threshold 0.63 0.72 0.75 0.79 0.88 0.95

Voxels in brain mask 142,800 148,900 154,400 157,600 167,100 172,300

Voxels in clustering mask 10,470 13,600 18,400 17,730 20,940 26,760

Idem, in % of brain mask 6.5% 9.4% 11.1% 11.3% 12.4% 17.9%

Overlap with SWI veins 58.8% 63.7% 68.4% 67.1% 70.8% 72.5 %

Overlap with SWI veins or brain edge 64.5% 72.9% 78.3% 76.6% 79.7 % 87.6%

The minimum, first quartile, median, mean, third quartile, and maximum across all subjects is given for the correlation threshold obtained for the binarization of the correlation matrix to

a graph adjacency matrix, the absolute numbers of voxels within the brain mask and within the graph clustering mask, the percentage of voxels of the brain mask that were within the

clustering mask, as well as for the percentage of voxels of the graph clustering map that lie within the mask generated from SWI segmentation (which can be interpreted as a measure

of specificity), without and with the additional inclusion of brain edge voxels.
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FIGURE 1 | Example single-subject graph clustering masks overlaid on the respective subject’s SWI. Red areas indicate voxels within the venous voxel

mask gained from graph clustering, each row showing data from a different subject. Structures seen in the graph clustering maps tend to reflect veins seen in SWI.

Note that the delineation of those veins in SWI and the voxels in the EPI influenced by the signal as identified from the BOLD EPI itself can deviate slightly. Slices were

selected to contain larger veins running along the slice orientation in the SWI.

FIGURE 2 | Example comparison between the segmented SWI and graph clustering mask of one subject (the subject shown in the top row in

Figure 1). The underlay is the SWI, coregistered, and resampled to the EPI space. Voxels within the mask gained from the segmented SWI are yellow, voxels from the

graph clustering mask that are within the SWI mask are red, voxels from the graph clustering mask that do not overlap with the SWI mask are blue. Note how the SWI

segmentation mask tends to be rather unspecific to veins in regions with susceptibility-related low signal intensities of different origin, most notably in the basal ganglia

due to their high iron levels.

within the mask indeed have on average significantly higher
standard deviations (p < 2 · 10−16 in all individual subjects),
in congruence with the underlying assumption of the method
used by Glasser et al. (2013). However, the overlap between the

signal standard deviations in macro- and microvasculature is
very pronounced in all subjects, suggesting that a threshold based
on the signal standard deviation alone might not be sufficient to
discriminate between the two types of voxels (see Figure 3).
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4. DISCUSSION

The results presented here show that graph based brain network
analysis on a voxelwise basis can yield important insights on the
origins of the underlying signals. In particular, network clustering
yields a set of voxels defined by strong connections among each
other and weak connectivity to voxels outside of this set that
contains mostly voxels in medium to large veins (as identified
by SWI) as well as extra-cerebral voxels. The very structure of
these clusters, voxels spread across the whole brain with a large
number of connections with correlation strengths above 0.7–0.95
(depending on the subject), strongly suggests that these voxels
contain little information related to local neuronal activity, and
rather reflect blood oxygenation changes on a larger (physiologic)
scale. These voxels thus violate the underlying assumption of
most fMRI analyses that BOLD signal changes in a voxel can be
interpreted as an indirect measure of local neuronal activations,
and should thus be excluded in this type of analysis.

FIGURE 3 | Comparison between the distributions of time series

standard deviation in voxels outside (black) and within (red) the

clustering mask over all subjects. Note that while time series standard

deviations in voxels identified as veins tends to be higher than in those outside

veins, the boudary is not clear-cut, highlighting the limits of venous voxel

identification based on time series standard deviations.

It is worth noting that some correlation patterns typically
arising in fMRI datasets are not reflected in the results computed
here and do not seem to confound the correlation-based vein
identification. The first of those is that in task fMRI, large vessels
often correlate with task signals in active brain regions as they are
draining the blood from those regions. One might thus expect
that conversely, there should be a correlation between the venous
signals investigated here and the signals from voxels within the
parenchyma that are drained by these veins, making it difficult
to distinguish venous voxels from parenchyma voxels. This does
not seem to occur here, as indicated by the overlap of most
voxels in the clustering mask with venous voxels identified by
SWI. One reason for this might be that the correlation strength
between the signals within the vein and each of the individual
regions drained by the vein is substantially below the relatively
high correlation thresholds that emerge from the high S threshold
used in network creation. For medium to large veins, each gray
matter voxel ultimately drained by them contributes only a small
part to the signal in voxels within the vein, thus leading to lower
correlation strengths between parenchyma voxels and veins of
this scale in accordance with theoretical models of downstream
dilution of effects in veins. This might explain why the clustering
mask includes only larger vessels, and fails to identify some of the
smaller vessels appearing in the SWI image. The reason for the
absence of the correlations between signals from large veins and
large areas of activation that typically occur in task fMRI might
be that in task fMRI, there is an artificially high coherence of a
particular (set of) brain region(s) with the signal in the vein due
to the task-induced structure in these activations. In resting-state
data as used in this study, however, the patterns along which all
regions draining into a particular vein contribute to its signal are
less coherent among each other, with different regions potentially
contributing differently to the venous signal, and thus having
lower individual correlations with it.

The second type of correlation pattern that might be expected
to be visible in a functional connectivity graph are resting-
state networks previously described in the literature, such as
the default-mode network (DMN) or the left and right fronto-
parietal networks. The reason for them not appearing in the
cluster mask is that in unblurred datasets as those used in this
study to compute the correlation graphs, the correlations between
parenchyma voxels in these networks are much lower than those
between venous voxels, and the high correlation threshold used
to construct the graphs ensures that only the latter are reflected
in it. This subtlety of voxel time course correlation patterns is
easily lost when using only blurred datasets, but can be visualized

FIGURE 4 | Example of the definition of “brain edge” voxels, marked in red, and defined by erosion of the brain mask by a 5 × 5 × 5-voxel kernel.
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FIGURE 5 | Functional connectivity maps for two adjacent voxels in the PCC: one within a vein as identified by SWI (top subfigure; seed location

marked out in the central zoomed insert), one outside of large veins (bottom subfigure; seed location identifiable as a red dot in the connectivity

map). The underlay is the subject’s SWI, coregistered to EPI space. Voxels exceeding that subject’s correlation threshold for graph binarization (0.63) are marked out

in red, maps are thresholded at a correlation coefficient of 0.25. Only for the venous seed do correlations exceeding this threshold exist; they are shown in zoomed

inserts, along with the corresponding picture detail from the underlay alone. All voxels with a correlation coefficient exceeding the binarization threshold can be

attributed to veins identifiable in the underlay. Correlations to other voxels of the default-mode network, including non-venous voxels, can be seen for both seeds, but

correlation strengths in these voxels do not exceed the binarization threshold.

effectively using the DMN as an example. Figure 5 shows the
functional connectivity of two voxels in the posterior cingulate
cortex (PCC), a main constituent of the DMN, one of them
a voxel clearly in a vein as identified by SWI (its functional
connectivity map being shown in the top part of the figure), the
other being an adjacent voxel outside the vein (its functional
connectivity map is shown in the bottom part of the figure).
For the venous voxel, the correlation coefficients in adjacent
venous voxels exceed 0.63, which was the threshold for graph
construction in that particular subject (based on the network
sparcity criterion of S = 4; this was the lowest connectivity
treshold for all subjects, see Table 1), as well as a number of
other voxels in typical DMN regions in the medial prefrontal
cortex as well as bilaterally in the parietal cortices. On closer
inspection, one notices that all of those voxels can be related

to veins identifiable on the SWI image (see zoomed inserts).
Correlations with other voxels in DMN regions, including voxels
further from large visible veins, also exist, but with far lower
correlation strengths. When using a seed outside of veins, as
exemplified by the connectivity map in the lower part of the
figure of an adjacent voxel in the parenchyma, correlations above
the threshold can be found neither in other DMN regions nor
even in adjacent voxels. Indeed, the highest correlation coefficient
found anywhere in the brain for that particular seed is 0.49—far
away from the threshold of 0.63. This is consistent with results
typically obtained from blurred resting-state datasets: signal time
courses from veins draining one part of a resting-state network
can be seen as reflecting the signal time courses of the voxels
in the gray matter that these veins drain in a way similar to
how the time course of a voxel in a blurred dataset reflects the
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time courses of the voxels in its neighborhood, and time courses
of voxels in the draining veins of different parts of a resting-
state network are more strongly correlated with each other in
the same way as correlation strengths between voxels in different
parts of a resting-state network are increased in spatially blurred
datasets. Correlation strengths between parenchyma voxels of
resting-state networks are lower, and thus, if the correlation
threshold used to generate a binarized graph from the voxelwise
correlation matrix is high enough, these parenchyma voxel
correlations are not reflected in the graph analyses performed
after binarization, and only the connections between venous
voxels remain in the graph and, ultimately, define the graph
modules.

Of course, this work is not the first attempt at identifying
artifactual signals in fMRI datasets. Previous attempts include
both the use of complementary measurements (including
SWI) as well as the localization of its effects based on
EPI measurements alone. The advantage of using EPI-based
identification over complementary measurements is the more
immediate relationship to the application of the results to the
fMRI analyses in question. In the results presented here, this can
be seen in the slight differences in localization of venous voxels
between the clustering and SWI-based masks in the context
of general correspondence between the two (see for example
Figure 1). While the general similarity between the features seen
in the SWI and clustering masks corroborates the theory of
venous origins of the signals seen in the graph cluster voxels, the
difference in location highlights that imperfect correspondence
between two different modalities, emerging from imperfect
coregistration, geometric distortion or other origins, necessarily
limit the use of inference from complementary measurements for
the identification of affected voxels in the EPI image. In this sense,
vein identification methods using EPI and SWI complement
each other as different, independent modalities, and both are
important to provide a link between the results from EPI images
to signal sources not directly visible in BOLD EPI such as most
veins. While SWI yields the more anatomically accurate maps
of the venous architecture in a subjects’ brain, methods based
on post-processing techniques applied on the BOLD EPI data
themselves add to this a more direct view on the immediate effect
of these veins on fMRI measurements.

Among methods based on EPI measurements, two categories
can be distinguished, the first being methods using externally
measured signals and correlating them with time courses from
the EPI measurement, and the second being methods based
on the analysis of EPI time courses by themselves. The first
category typically uses high-frequency physiological nuisance
signals (usually heart rate and respiration monitoring), which,
however, has a different spatial distribution than the venous
signals investigated here (Windischberger et al., 2002): high-
frequency physiological noise tends to be concentrated near
arteries and the CSF, which is subject to the same pulsations,
while the low-frequency physiological signals investigated here
tend to be localized in or near the venous macrovasculature.
Physiological low-frequency signals are acquired and analyzed
only in very few studies, but studies using them have shown
them to be quite useful in identifying blood flow related

phenomena in fMRI datasets (Tong and Frederick, 2012; Tong
et al., 2014). The use of peripheral measurements, however,
has one practical and one more fundamental limitation. The
practical limitation is the necessity of additional hardware
and measurement overhead for their acquisition leading to
such measurements not always being available for all fMRI
datasets, and the potential for additional error sources in their
acquisition. While this issue can be overcome in any given
study if the necessary steps are taken prospectively, it cannot be
employed when analyzing datasets acquired without measuring
these peripheral physiological signals, as is often the case in
investigations using data shared by other researchers (Biswal
et al., 2010; Kalcher et al., 2012). A more fundamental issue,
though, is the time delay involved between the recording of
the physiological signals at the external measurement location
(e.g., the fingertip or toe for pulse oxymetry) and the brain,
or, to be more precise, different locations in the brain. With
standard EPI sequences as currently used, with a TR of
between 2 and 3 s, the effect of this issue is rather limited,
but with the current development toward short-TR multiband
EPI sequences with higher temporal resolutions, the difficulties
arising from the delay between the peripheral acquisition of
physiological signals and their effect in the brain become more
pronounced.

Finally, the use of measures directly derived from the EPI time
series has been mostly confined to computationally less complex
methods (e.g., the voxelwise time course standard deviation, a
variant of which has been used in the Human Connectome
Project), in part due to the lack of tools for tackling the
computational challenges posed by more sophisticated methods
like the voxel-by-voxel graph clustering approach presented
here. Readily available tools from the domain of big data
analysis can be applied to overcome computational obstacles
and open the way to more comprehensive analysis tools. The
comparison of time course standard deviations within and
outside the graph clustering mask (see Figure 3) confirms the
rationale behind theHuman Connectome Project’s preprocessing
step of eliminating voxels with higher than normal standard
deviations, but at the same time suggests that a one-dimensional
measure not taking into account the connection structure
between voxels might not yield a clear-cut discrimination
threshold, as values of this score for normal brain tissue
voxels with relatively high signal standard deviation and venous
voxels with relatively low signal standard deviations overlap
substantially.

In contrast, voxelwise graph analysis can be a useful tool to
identify voxels in the macrovasculature by their highly correlated
low-frequency signals. This latter point should be highlighted,
as the band-pass filter applied (0.01–0.2 Hz) eliminates the
possibility that the correlated signals in those voxels can merely
be attributed to large-scale physiological noise (e.g., of respiratory
or cardiac origin), which would have a higher frequency signal
spectrum. Instead, they might exhibit more problematic signal
fluctuations in the low-frequency domain, easily misattributed
to local low-frequency fluctuations. In addition, the presence of
such fluctuations might also be indicative of a risk of seeing
downstream activations due to venous drainage of activations at
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more distant voxels, as it occurs during some emotional-visual
tasks in the BVR (Boubela et al., 2015). The identification of
voxels at risk is thus a powerful tool to increase specificity in the
interpretation of fMRI BOLD activations.
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