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The melanin-concentrating hormone (MCH) is a peptidergic neuromodulator synthesized
by neurons of the lateral sector of the posterior hypothalamus and zona incerta.
MCHergic neurons project throughout the central nervous system, including areas such
as the dorsal (DR) and median (MR) raphe nuclei, which are involved in the control of
sleep and mood. Major Depression (MD) is a prevalent psychiatric disease diagnosed
on the basis of symptomatic criteria such as sadness or melancholia, guilt, irritability,
and anhedonia. A short REM sleep latency (i.e., the interval between sleep onset and
the first REM sleep period), as well as an increase in the duration of REM sleep and the
density of rapid-eye movements during this state, are considered important biological
markers of depression. The fact that the greatest firing rate of MCHergic neurons occurs
during REM sleep and that optogenetic stimulation of these neurons induces sleep, tends
to indicate that MCH plays a critical role in the generation and maintenance of sleep,
especially REM sleep. In addition, the acute microinjection of MCH into the DR promotes
REM sleep, while immunoneutralization of this peptide within the DR decreases the time
spent in this state. Moreover, microinjections of MCH into either the DR or MR promote a
depressive-like behavior. In the DR, this effect is prevented by the systemic administration
of antidepressant drugs (either fluoxetine or nortriptyline) and blocked by the intra-DR
microinjection of a specific MCH receptor antagonist. Using electrophysiological and
microdialysis techniques we demonstrated also that MCH decreases the activity of
serotonergic DR neurons. Therefore, there are substantive experimental data suggesting
that the MCHergic system plays a role in the control of REM sleep and, in addition, in the
pathophysiology of depression. Consequently, in the present report, we summarize and
evaluate the current data and hypotheses related to the role of MCH in REM sleep and
MD.
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INTRODUCTION

The search for new pharmacological strategies to treat psychiatric
disorders is a “hot topic” in neuroscience. There is also a large
body of evidence suggesting that neuropeptides play a critical role
in these pathologies (Kormos and Gaszner, 2013). In addition,
neuropeptides are also involved in the control of wakefulness
and sleep (Richter et al., 2014). A robust example of the results
of translational neuroscience research was the discovery of the
neuropeptides hypocretins 1 and 2 (also called orexins); the
degeneration of hypocretins-containing neurons produces the
sleep pathology called narcolepsy (Mignot, 2011). Hypocretins
also play a role in mood disorders (Nollet and Leman, 2013).

Research on the neuropeptide melanin-concentrating
hormone (MCH) is currently focused on the study of
physiological and translational possibilities of the neuropeptide.
In the present report, we review the role of the MCHergic system
in the control of REM sleep and the pathophysiology of major
depression (MD).

PATHOPHISIOLOGY OF DEPRESSION:
ROLE OF THE SEROTONERGIC SYSTEM

The Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) lists several depressive disorders. The common features
that characterize them are the presence of sadness, empty
or irritable moods, which are accompanied by somatic and
cognitive changes that significantly affect an individual’s capacity
to function. Major Depressive Disorder or MD is a distinctive
condition that is diagnosed based on symptomatic criteria such
as sadness or melancholia, guilt, irritability and anhedonia. It
is accompanied by several symptoms including insomnia or
hypersomnia, fatigue, alterations in body weight, thought and
concentration impairments as well as recurrent suicidal thoughts
(Fava and Kendler, 2000; American-Psychiatric-Association,
2013). MD is one of the most common psychiatric diseases with
a prevalence of 5-12% in men and 10-25% in women, and it is
considered to be a principal cause of disability, outnumbered only
by cardiovascular diseases (Boyd and Weissman, 1981; Murray
and Lopez, 1996, 1997a,b). In addition, a great deal of attention
has been paid to MD due to its association with suicide; 15-
20% of depressive patients end their lives by suicide (Miret
etal, 2013). Affective disorders are also particularly disabling and
among the most important contributors to the total burden of
disease (Miret et al., 2013).

Several mechanisms have been involved in the neurobiology
of depression, ranging from synaptic plasticity to epigenetic,
and from postnatal neurogenesis to immunological processes
(recently reviewed by Palazidou, 2012; Saveanu and Nemeroff,
2012; Palagini et al., 2013; Willner et al., 2013; Ménard et al.,
2015). In the present report, we review the role of MCH
in depression with an emphasis on its interaction with the
serotonergic system. However, it is important to note that
in addition to serotonin, other neurotransmitters such as
dopamine, noradrenaline, and glutamate have been involved in
the pathophysiology of depression; in fact ketamine, a N-methyl-
d-aspartate (NMDA) glutamate receptor antagonist can alleviate

depressive symptoms in patients within hours of administration
(Saveanu and Nemeroff, 2012; Dutta et al., 2015).

The serotonergic system comprises one of the most widely
distributed neurochemical systems in the central nervous
system (CNS). The majority of the somata of serotonergic
neurons are located within the dorsal raphe nucleus (DR);
another important group of serotonergic neurons is located
in the median raphe nucleus (MR). Due to its projections
throughout the CNS, serotonergic neurons are capable of
playing an important role in the regulation of emotional
states and in several functions including motor activity and
the control of sleep and wakefulness (Monti, 2010a,b; Olivier,
2015).

Numerous studies have shown that the serotonergic system
is involved in the pathophysiology of MD. Low levels of
serotonin and/or its principal metabolite (5- hydroxy-indol-
acetic acid) have been found in the urine and cerebrospinal
fluid (CSF) of MD patients (Praag, 1977; van Praag and de
Haan, 1979; Young, 1993). In addition, the number of attempted
suicides by MD patients and its lethality are correlated with
a reduced CSF concentrations of serotonin (Roy et al., 1989;
Triskman-Bendz et al., 1992; Nordstréom et al., 1994; Mann
et al., 2001; Kalia, 2005; Berton and Nestler, 2006). Furthermore,
abnormalities in serotonergic receptors, serotonin reuptake
proteins and other alterations in serotonergic neurotransmission
have been related to the susceptibility to commit suicide (Arango
et al, 1995; Mann, 1998; Courtet et al., 2005; Hamet and
Tremblay, 2005; Bondy et al., 2006). Depressive-suicide patients
show significant differences in serotonergic markers in the DR
compared to control individuals. Therefore, it has been suggested
that disruption of the functioning of serotonergic neurons
in the DR underlies MD (Underwood et al,, 1999; Arango
et al., 2001, 2002; Boldrini et al., 2005; Bach-Mizrachi et al.,
2006).

The serotonergic system is also involved in the mechanisms
of action of antidepressant drugs. The selective serotonin
reuptake inhibitors (SSRI) such as fluoxetine or escitalopram,
produce its therapeutic action upon the enhancement of
central serotonergic neurotransmission (Keller et al, 1992;
Holtzheimer and Nemeroff, 2006). A problem related with
antidepressant drugs treatment is the delayed onset of the
therapeutic effects, despite the fact that these drugs cause an
immediate increase in extracellular levels of monoamines.
This fact suggests that the acute biochemical effect does
not directly determine the therapeutic effect, which is likely
produced by slower neurobiological modulations, such as
the desensitization of serotonergic receptors, the modulation
of intracellular pathways, gene expression of growth factors
such as brain-derived neurotrophic factor (BDNF) and
the regulation of postnatal neurogenesis (Palazidou, 2012;
Saveanu and Nemeroft, 2012; Willner et al., 2013). In spite
of the previous statements, it is important to take into
account that a meta-analyses study showed that the placebo
effect for antidepressant treatment is exceptionally large,
and antidepressant medications have reported only modest
benefits over placebo treatment (Kirsch et al., 2008; Kirsch,
2014).
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REM SLEEP

Sleep remains one of the great neurobiological mysteries.
Humans spend one third of their life sleeping, without awareness
of the outside world. However, during dreams, there is bizarre
cognitive activity that is disconnected from reality and is ruled by
internal stimuli (Pace-Schott, 2005).

In mammals, sleep is comprised of two different behavioral
states: slow wave sleep, also called non-REM (NREM) sleep and
REM (rapid eyes movements) sleep (Carskadon and Dement,
2005; Brown et al., 2012). Polysomnography is the basic tool to
study behavioral states; it consists in the simultaneous recording
of the electroencephalogram (EEG), electromyogram (EMG),
and eye movements (electrooculogram). During wakefulness,
there is an optimal interaction with the environment that enables
to carry out different behaviors that optimize survival. An
EEG consisting of high frequency rhythms and low amplitude
waves characterizes wakefulness. In normal adults, NREM sleep
occurs at sleep onset. During this period, there is a marked
decrease in the interaction with the environment, the adoption
of a suitable position to conserve heat, an increase in the
threshold of reaction to external stimuli and a decrease in
muscle activity and tone. During NREM sleep, the EEG exhibits
low frequency (0.5-4Hz), high amplitude waves and “sleep
spindles.” NREM sleep is accompanied by a tonic increase in
parasympathetic activity, which results in a decrease in visceral
activity (Parmeggiani, 1994). In the deepest stage of NREM sleep,
cognitive processes (dreams) are absent or minimal (Pace-Schott,
2005).

During a typical nights sleep in a young adult, REM sleep,
which occurs with an ultradian rhythm of approximately 90 min,
is always preceded by NREM sleep. During REM sleep the
EEG is similar to wakefulness (consequently, this state is
also called paradoxical sleep). REM sleep is also characterized
by the absence of muscle activity (muscle atonia), rapid
eyes-movements, ponto-geniculo-occipital (PGO) waves, theta
waves in the hippocampus electrogram, and phasic changes
in autonomic activity (Carskadon and Dement, 2005; Siegel,
2011). The arousal threshold for sound stimulation in humans
during tonic REM sleep is similar than NREM sleep stage 2, and
increases during phasic REM sleep (when rapid eyes movements
are present) to the same level as NREM sleep stage 4 (Ermis
etal,, 2010). Dreams are present mostly during REM sleep (Pace-
Schott, 2005).

It is well established that the activating system, which is
a neuronal network centered in the mesopontine reticular
formation, the postero-lateral hypothalamus and basal forebrain,
is critical for generating and maintaining wakefulness (Torterolo
and Vanini, 2010). The activating system comprises various
neurochemical groups of neurons including glutamatergic,
serotonergic, dopaminergic, noradrenergic, histaminergic,
cholinergic and hypocretinergic (Torterolo and Vanini, 2010;
Monti, 2013). On the other hand, the preoptic area is essential for
the generation of NREM sleep, while the thalamus is responsible
for the generation of slow waves and sleep spindles (Steriade
et al., 1993; Torterolo et al., 2009a; Torterolo and Vanini, 2010;
Benedetto et al., 2012).

The neuronal network that is “necessary and sufficient” for the
generation of REM sleep is located in the mesopontine reticular
formation (Siegel, 2011). Within this region, cholinergic neurons
of the latero-dorsal and pedunculo-pontine tegmental nucleus
(LDT-PPT) as well as glutamatergic neurons of the nucleus pontis
oralis (NPO, that is considered the executive area for REM
sleep generation) are active during REM sleep (REM “on,” or
wake and REM “on” neurons), whereas noradrenergic neurons
of the locus coeruleus (LC) as well as serotonergic neurons of the
DR and MR suppress their firing (REM “off” neurons; Monti,
2010b; Siegel, 2011; Brown et al., 2012; Chase, 2013a; Boucetta
et al.,, 2014). Neurons of the ventrolateral periaqueductal gray
may also play a role in REM sleep generation (Vanini et al,
2007). Mutual interactive models that include REM “on” and
REM “off” neurons have been presented in order to explain the
generation of REM sleep (Lu et al., 2006; Luppi et al., 2007; Brown
et al,, 2012). The mesopontine REM sleep-generating neuronal
network is strongly modulated by forebrain sites. This region
receives important MCHergic and hypocretinergic projections
from the hypothalamus (Torterolo et al., 2009b, 2013).

DEPRESSION AND REM SLEEP

A decrease in the latency to the first episode of REM sleep is a trait
of MD, and is considered to be one of the most robust and specific
biological markers of this condition (Adrien, 2002; Palagini et al.,
2013). Furthermore, MD patients have an increase in the total
time spent in REM sleep, in the length of the first episode of
REM sleep and in the density of rapid eye movements during
this state. The fact that most antidepressant drugs decrease or
eliminate REM sleep and that selective REM sleep or total sleep
deprivation are effective in the treatment of MD, highlights the
relationship between MD and REM sleep (Adrien, 2002; Benca,
2005; Palagini et al., 2013). In relation with preceding concepts,
serotonergic neuronal activity in the DR is reduced in animal
models of depression, while the firing rate of such DR neurons
is exacerbated during total sleep deprivation (which appears to
be correlated with its antidepressant effect; Yavari et al., 1993;
Gardner et al., 1997).

One of the most widely used preclinical paradigm for
assessing antidepressant activity is the forced swimming test
(FST) (Porsolt et al., 1977; Porsolt, 2000). When rodents are
placed in an inescapable container of water, they swim or climb
more following the systemic administration of antidepressant.
Thus, these agents prevent an immobility state called “behavioral
despair.” Passive (immobility) or active (swimming and/or
climbing) responses should be independent from alterations in
locomotive activity that the drug may also induce. Strikingly,
24-h of sleep deprivation in rats results in a decrease in the
immobility time, which is consistent with an antidepressant effect
(Lopez-Rodriguez et al., 2004). Sleep deprivation also enhances
the effect of antidepressant drugs treatment (van Luijtelaar and
Coenen, 1985). The antidepressant effect of sleep deprivation
has been linked to an increase in serotonergic activity (Lopez-
Rodriguez et al., 2004).

In conclusion, it has been proposed that patients with MD
have an increased “pressure” to generate REM sleep; in other
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words, the generation of REM sleep is abnormally promoted or
facilitated in these patients. The relationship between REM sleep
and MD depends, at least in part, on the activity of serotonergic
neurons of the DR. These neurons are involved both in the
generation of REM sleep and in the pathophysiology of MD
(Adrien, 2002; Palagini et al., 2013).

ROLE OF THE SEROTONERGIC SYSTEM
IN REM SLEEP

Serotonergic neurons of the DR have a slow and regular firing
during wakefulness, there is a decrease in their activity during
NREM sleep, and an almost complete inactivation during REM
sleep (“REM-off” neurons; Monti, 2010b). A decrease in the
release of serotonin in brain areas during REM sleep correlates
with the electrophysiological data of DR neuronal activity (Portas
and McCarley, 1994). GABAergic neurons of the DR are involved
in the inhibition of serotonergic neurons during REM sleep,
and the consequent promotion of this behavioral state (Nitz
and Siegel, 1997; Torterolo et al.,, 2000; Monti, 2010a). On the
other hand, experimental activation of DR serotonergic neurons
prevents the generation of REM sleep (Monti, 2010a). Hence,
the generation of REM sleep depends on the inactivation of the
serotonergic neurons; these neurons are considered “permissive”
for the generation of this behavioral state.

THE MELANIN-CONCENTRATING
HORMONE

MCH is a 19-aminoacids cyclic peptide, which was initially
characterized as a circulating factor that mediated color changes
in teleost fishes (Torterolo et al., 2011; Macneil, 2013; Monti et al.,
2013). MCH was subsequently identified as a neuromodulator
in mammals, including humans (ibid.). MCH is synthesized in
neurons whose somata are located in the lateral sector of the
posterior hypothalamus, dorsomedial hypothalamus and zona
incerta; the location of the MCHergic neurons is shown in a
coronal section of the hypothalamus of the cat in Figure 1. These
neurons project to different regions of the CNS (Bittencourt et al.,
1992; Torterolo et al., 2006, 2009b). A small number of MCHergic
neurons have been also identified in the olfactory tubercle and the
pontine reticular formation (Bittencourt et al., 1992). In addition,
MCHergic neurons are present in the medial preoptic area of
lactating rats and in the latero-dorsal tegmental nucleus of female
rats (Rondini et al., 2007, 2010). MCH is also present in the
gastrointestinal tract and pancreas (Pissios et al., 2007; Kokkotou
et al., 2008).

The biological functions of MCH are mediated by two G-
protein coupled receptors known as MCHR-1 and MCHR-2. Of
note, the MCHR-2 gene is a pseudo-gene in rodents but it is
functional in carnivores and primates including humans. It has
been determined that MCHR-1 activates Gi and Gq proteins and
inhibits Ca>* currents. MCH has mainly an inhibitory role, both
at the presynaptic level where it decreases the release of GABA
and glutamate, and at the post-synaptic level (Gao, 2009; Macneil,
2013).

MCH Regulates the Energy Homeostasis
The MCHergic system was traditionally related to the control of
energy homeostasis; i.e., feeding and metabolic activity (reviewed
by Macneil, 2013). In this regard, chronic infusion of a synthetic
MCHR-1 receptor agonist induces obesity in mice, which is
accompanied by hyperphagia, a reduction in body temperature
and stimulation of lipogenic activity in the liver as well as white
adipose tissue (ibid.). At the same time, genetically-modified
animals with over-expression of MCH are obese, whereas animals
lacking MCH are hypophagic and lean. These data suggest
that by increasing food intake and promoting anabolism, MCH
promotes the conservation of body energy.

The MCHergic System Promotes Sleep
Conservation of energy is one of the main functions of sleep
(Siegel, 2005). Since MCHergic neurons are critical in the
control of energy homeostasis, it is expected to be involved
in sleep regulation. MCH, via regulation of the activating
and somnogenic systems, promotes sleep, especially REM sleep
(reviewed by Torterolo et al., 2011; Monti et al., 2013; Konadhode
etal., 2015).

The arguments that support MCH as a sleep promoter are
described below. The main experimental results are summarized
in Table 1.

FIGURE 1 | MCHergic neurons are located in the hypothalamus. (A)
Low magnification photomicrographs that exhibit MCHergic neurons at the
tuberal level of the hypothalamus of the cat. (B) The inset in (A) is shown at
higher magnification. This photomicrograph shows MCHergic neurons of the
perifornical region. The photomicrographs were taken from 20 pm -thick
sections that were processed for immunofluorescence. Fx, fornix; 3V, third
ventricle. Calibration bars: (A) 1 mm; (B) 100 um. Original microphotographs
taken from the data set of Torterolo et al. (2006).
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TABLE 1 | MCH and sleep.

Site

Main effect

References

MCH MICROINJECTION
Intracerebroventricular (rat)

Dorsal raphe (rat)

Locus coeruleus (rat)

Nucleus pontis oralis (cat)

Basal forebrain (rat)

Ventro-lateral preoptic nucleus (VLPO) (rat)
MCHR-1 ANTAGONIST MICROINJECTION
Systemic (rat)

Increases REM sleep. Moderate increase in NREM sleep

Increases REM sleep. Moderate increase in NREM sleep

Increases REM sleep

Increases REM sleep

Decreases wakefulness. Increases REM sleep in the first 2-h of the recordings
Increases NREM sleep

Decreases REM and NREM sleep. Increases wakefulness

Verret et al., 2003
Lagos et al., 2009
Monti et al., 2015
Torterolo et al., 2009b
Lagos et al., 2012
Benedetto et al., 2013

Ahnaou et al., 2008

Type
KNOCK-OUT ANIMALS
Prepro-MCH (mice)

Main effect

Sleep less in basal condition. Decreases REM sleep during fasting more than
wild-type controls

References

Willie et al., 2008

MCHR-1 (mice) Hypersomniac phenotype both in basal conditions and after total sleep deprivation Adamantidis et al., 2008

MCHR-1 (mice) Increases wakefulness and reduces NREM sleep. Restraint stress reduced both Ahnaou et al., 2011
NREM and REM sleep more than wild-type controls

Optogenetic Main effect References

STRATEGY

Stimulation of MCHergic neurons (mice)

Stimulation of MCHergic neurons at the onset
of REM sleep (mice)

Stimulation of MCHergic neurons (mice)

Inhibition of MCHergic neurons at the onset of
REM sleep (mice)

Inhibition of MCHergic neurons (mice)

Increases NREM and REM sleep
Increases REM sleep duration

Induces transitions from NREM to REM sleep and increases REM sleep time
Reduces the frequency and amplitude of hippocampal theta rhythm

No effect

Konadhode et al., 2013
Jego et al., 2013

Tsunematsu et al., 2014
Jego et al.,, 2013

Tsunematsu et al., 2014

Electrophysiology
IN VIVO RECORDINGS
|dentified MCHergic neurons (rat)

Main effect

Firing rate: REM >NREM sleep>W

Reference

Hassani et al., 2009

In vivo Microdialysis
SITE
Amygdala (human)

Main effect

MCH release increases during NREM sleep onset

Reference

Blouin et al., 2013

MCHergic Neurons Project to the

Activating and Limbic Systems
Classical studies have linked the postero-lateral hypothalamus,
where MCHergic neurons are located, with the control of sleep
and wakefulness (Torterolo and Vanini, 2010). These neurons
have a close anatomical relationship with hypocretin-containing
neurons, whose somata are also located within the postero-
lateral hypothalamus and project to comparable brain sites
(Torterolo et al., 2006, 2009b, 2013; Torterolo and Chase, 2014).
Hypocretinergic neurons are considered part of the activating
system, and are essential for the maintenance of wakefulness
(Torterolo and Vanini, 2003; Chase, 2013b; Torterolo and Chase,
2014). Hence, it is likely that MCHergic and hypocretinergic
neurons interact, in a complementary mode, in order to regulate
wakefulness and sleep (Torterolo and Chase, 2014).

MCHergic neurons send dense projections to activating and
somnogenic regions (Monti et al, 2013). Using retrograde

tracers, we have characterized the MCHergic neuronal
projections to the NPO (Torterolo et al., 2009b). There is
also a high density of MCHergic fibers in activating regions
such as DR and LC (Torterolo et al., 2008; Lagos et al., 2011b;
Yoon and Lee, 2013). MCHergic fibers in the DR and their
anatomical relation with serotonergic neurons are shown in
Figure 2. Regions of the limbic system involved in the control
of emotional states including amygdala, nucleus accumbens,
septum and hippocampus also receive MCHergic fibers and
express MCH receptors (Bittencourt et al., 1992; Hervieu et al.,
2000; Chee et al., 2013).

We have also documented that tanycytes in the DR of
the cat exhibit immunoreactivity to MCH (Torterolo et al,
2008). Tanycytes are specialized cells whose somata lies in
the ependymal or sub-ependymal region that present long
basal processes that projected deeply into the subventricular
parenchyma. These cells absorb substances present in the CSF
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FIGURE 2 | Images of dual-immunostaining for 5-HT and MCH in the
dorsal raphe nucleus. Coronal sections (30 wm thickness) were
double-labeled to visualize 5-HT- (red) and MCH—immunoreactivity (green). (A)
MCH-+ fibers were observed as small beaded processes around 5—HT+
neurons, intermingled with 5—HT+ neurons located in the mid-rostral level of
the DR of the rat, according to Paxinos and Watson (2005). Arrow indicates
the neuron in (B) that is shown at a high magnification (100X). (B) Orthogonal
views (xz and yz) reveal apposition between MCH-+ fibers and 5-HTergic
soma. Image in (B) is comprised of 45 optical sections of 0.1 wm. Scale bars
(A) 20 pm; (B) 5 um. Original microphotographs taken from the data set of
Urbanavicius et al. (2015b).

and transport them to the neuronal parenchyma (Rodriguez
etal., 2005). These data, together with the presence of MCH in the
CSF of the rat, sheep and humans (Peyron et al., 2011; Ungerfeld
et al., 2011; Pelluru et al, 2013), suggest that the MCHergic
system regulates the activity of the DR through a neurohumoral
pathway (by volume conduction through the ventricular system)
complementing its regulation via direct neuronal projections
(Torterolo et al., 2008).

A wide distribution of MCHR-1 has been identified in the CNS
of the rat, which coincides with the distribution of MCHergic
fibers (Lembo et al., 1999; Saito et al, 2001). By a novel
approach, utilizing intra-cerebro-ventricular administration of
MCH labeled with a fluorescent tag (Rhodamine), Devera et al.
(2015) have recently shown in cats and rats that neurons
of the DR internalize MCH-rhodamine, indicating that they
express receptors for MCH (Figures 3A1,A2). In the cat, there
is a particularly high density of neurons with MCH receptors
surrounding the basal processes of tanycytes within the DR
(Devera et al., 2015; Figures 3B,C). MCHR-1 are present both in
serotonergic and non-serotonergic neurons of the DR (Figure 4).
Some of the non-serotonergic neurons were demonstrated to be
GABAergic (Devera et al., 2015). Recently, MCHR-1 mRNA has
been identified in serotonergic neurons of the ventro-medial and
lateral wing areas of the DR of mice (Spaethling et al., 2014).

MCHergic Neurons are Active during Sleep
Using the Fos protein as a marker of neuronal activity, it has been
shown that MCHergic neurons are active during REM sleep in
the rat (Verret et al., 2003). Furthermore, Hassani et al. (2009)
have recorded MCHergic neurons in non-anesthetized animals.
These neurons have a very low frequency of discharge during
wakefulness, their firing rate increases slightly during NREM
sleep and reaches the maximum level of activation during REM
sleep (Hassani et al., 2009). However, even during this state the
average discharge rate was still quiet low (approximately 1 Hz)
comparing with other neuronal groups (ibid.).

FIGURE 3 | MCH-rhodamine is internalized by DR neurons. (A1)
Photomicrographs of the DR of the cat illustrating serotonin immunolabeled
neurons. (A2) DR neurons of the same field as in (A1) that are labeled with
rhodamine (these neurons internalized MCH-rhodamine). Note that these
MCH-rhodamine labeled neurons are mainly located in the same area as
serotonergic neurons. The internalization of MCH strongly suggests that these
neurons present MCH receptors. (B,C) sections were immunolabeled to
detect vimentin, a marker of tanycytes in the adult cat. These
photomicrographs of the DR show rhodamine fluorescence within DR neurons
(red). The rhodamine-labeled neurons indicate that these neurons internalized
MCH-rhodamine. Note that these neurons are located in close relationship to
tanycytes (green). 4V, fourth ventricle; mif, medial longitudinal fascicle.
Calibration bars: 100 pm. Original microphotographs taken from the data set
of Devera et al. (2015).

Quantification of MCH during Wakefulness
and Sleep

The concentration of MCH in the CSF of rats increases during
the light phase, when the animals are predominantly asleep,
while it decreases during the dark period when rats are mainly
awake (Pelluru et al., 2013). Utilizing the in vivo microdialysis
technique, it has been shown that the release of MCH in the
amygdala of patients with treatment-resistant epilepsy is minimal
during active wakefulness with social interactions, increases after
eating (consummatory behavior), and reaches a maximum level
at sleep onset (Blouin et al., 2013).

Studies with Genetically Modified Animals
Studies of preproMCH and MCHR-1 knockout mice indicate that
the sleep architecture of these animals is altered. Mice lacking
MCH, sleep less than wild-type animals (Willie et al., 2008).
Moreover, in response to fasting, MCH deficient mice became
hyperactive and show a marked decrease in REM sleep.

A study in MCHR-1 knockout mice showed an unexpected
hypersomniac-like phenotype, both in basal conditions and
after total sleep deprivation, compared to wild-type mice
(Adamantidis et al., 2008). According to the authors, these
surprising effects might be produced by compensatory
mechanisms that have been identified as potential limitations
of the gene-targeting approach. In contrast, Ahnaou et al
(2011) described an increase of wakefulness and a reduction of
NREM sleep in MCHR-1 knockout mice, which agrees with the
currently proposed role of MCH in the regulation of sleep-wake
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FIGURE 4 | MCH-rhodamine is internalized in DR serotonergic
neurons. In (A1,B1), the photomicrographs shows that MCH-rhodamine (red)
was internalized by DR neurons in the cat. Photomicrographs in (A2,B2)
depict neurons with serotonin immunoreactivity (green). Superimposition of
both photomicrographs is shown in (A3,B3). It is readily observed that
MCH-rhodamine is present in serotonergic (arrows) and non-serotonergic
neurons (arrowheads). Calibration bars: 20 um. Orginal microphotographs
taken from the data set of Devera et al. (2015).

states. Moreover, restraint stress further increases wakefulness
and reduces both NREM and REM sleep in these mutant mice
(Ahnaou et al., 2011).

Administration of MCH or MCHR-1

Receptor Antagonists

Intracerebroventricular administration of MCH in the rat
produces a marked increase in REM sleep and a moderate
enhancement in the time spent in NREM sleep (Verret et al.,
2003). Furthermore, the systemic administration of MCHR-1
antagonists decreases both REM and NREM sleep and increases
wakefulness (Ahnaou et al., 2008).

Microinjection of MCH into the DR of the rat facilitates
the generation of REM sleep (Lagos et al.,, 2009). Conversely,
the immunoneutralization of endogenous MCH within the DR
(through the microinjection of anti-MCH antibodies) produces
the opposite effect (Lagos et al., 2011a). Preliminary studies in
cats (where the two types of MCH receptors are active) have
also shown that MCH microinjections into the DR produced an
increase in REM or NREM sleep depending on the exact location
of the microinjection sites (Devera et al., 2007).

MCH also promotes REM sleep when microinjected into
either the basal forebrain of the rat or the NPO of the cat, two
areas related to the generation of this behavioral state (Torterolo
et al, 2009b; Lagos et al, 2012). Noradrenergic “REM-off”
neurons of the LC are critically involved in the generation of
REM sleep and in the pathophysiology of MD (Itoi and Sugimoto,
2010; Brown et al., 2012). Interestingly, microinjections of MCH
into this nucleus also produce a marked increase in REM sleep
(Monti et al.,, 2015). In contrast, the administration of MCH
into the ventro-lateral preoptic area (VLPO), a NREM sleep
promoting area, induced NREM sleep (Benedetto et al., 2013).

Experimental Activation of MCHergic

Neurons Induces Sleep

Recent optogenetic studies have confirmed the role of MCH
in sleep generation (Jego et al., 2013; Konadhode et al., 2013;
Tsunematsu et al., 2014). Konadhode et al. (2013) inserted
the gene for the photosensitive rhodopsine-2 cation channel
in MCHergic neurons of mice, and specifically stimulated
MCHergic neurons. Stimulation induced a decrease in the
latency to sleep, reduced the duration of wakefulness and
increased the total time spent in NREM and REM sleep during
the night, whereas it increased the depth of sleep during the
day (ibid.). The authors hypothesized that MCHergic neurons
are able to counteract the actions of the activating systems.
Consequently, it was concluded that MCHergic agonists might
be useful for the treatment of insomnia.

Jego et al. (2013) found that acute optogenetic activation of
MCH neurons at the onset of REM sleep extended the duration of
REM sleep episodes. In contrast, their acute optogenetic silencing
reduced the frequency and amplitude of the hippocampal theta
rhythm during REM sleep without affecting the duration of the
episodes.

Tsunematsu et al. (2014) showed that acute optogenetic
activation of MCH neurons at 10 Hz induced transitions from
NREM to REM sleep and increased REM sleep time. Acute
optogenetic silencing of MCHergic neurons had no effect on any
vigilance state. On the contrary, temporally-controlled ablation
of MCH neurons by cell-specific expression of diphtheria toxin
A increased wakefulness and decreased NREM sleep duration
without affecting REM sleep (Jego et al, 2013; Konadhode
et al., 2013; Tsunematsu et al., 2014). The authors concluded
that acute activation of MCHergic neurons is sufficient, but not
necessary, to trigger the transition from NREM to REM sleep
and that MCHergic neurons also play a role in the initiation and
maintenance of NREM sleep.

Effect of MCH on Serotonergic Neurons of
the Dorsal Raphe

Utilizing in vivo extracellular recordings, we determined that
the intracerebroventricular or juxtacellular application of MCH
inhibits the discharge of the majority of DR neurons (Devera
et al., 2015); some of these neurons were presumed to
be serotonergic, according to their electrophysiological and
pharmacological characteristics. Figure 5 presents an example
of the inhibitory effect of the juxtacellular application of MCH

Frontiers in Neuroscience | www.frontiersin.org

December 2015 | Volume 9 | Article 475


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Torterolo et al.

MCH Role in REM Sleep and Depression

A Interval Histogram

| 200 uVv
5ms
seconds
B
) MCH
Raw recording l

Frecuency histogram

55 100‘ ‘
OLL;
0 1 00 5

0NN 0 DO |

FIGURE 5 | Juxtacellular administration of MCH reduces the activity of DRN neurons. The action potential average, the interval histogram and the
autocorrelation histogram of a representative DR neuron are presented in (A). The raw recording and frequency histogram are shown in (B). Note that the application
of MCH (indicated by the arrow) produced a decrease in the firing rate. Original Figure taken from the data set of Devera et al. (2015).
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on a representative DR neuron. In agreement with these
electrophysiological results, in vivo microdialysis studies have
shown that the perfusion of low concentrations (30 M) of
MCH into the DR elicited a significant decrease in extracellular
serotonin levels within this region (Urbanavicius et al., 2013,
2015b).

ROLE OF THE MCHergic SYSTEM IN THE
PATHOPHYSIOLOGY OF DEPRESSION

As mentioned above, the large density of MCHergic fibers in
the DR, the expression of MCHR-1 in serotonergic neurons, as
well as MCHergic projections toward the limbic system, suggest
a relevant role of MCH in the control of emotional states. At the
same time, MCH facilitates REM sleep (REM sleep is increased
in MD) and stimulates the hypothalamus-pituitary-adrenal axis
(which is over-activated in MD). These data also suggest that
hyperactivity of the MCHergic system is related to certain aspects
of MD.

There are several evidences that relate MCH and MD (see
below); however, most of the data are from preclinical studies.
Hence, it is important to be cautious, because the results from
animal models of depression may not correspond with clinical
findings (recently reviewed by Belzung, 2014).

Borowsky et al. (2002) demonstrated that the MCHR-1
antagonist, SNAP-7941, possesses antidepressant and anxiolytic
effects in animal models of MD (Borowsky et al., 2002). Similar
results have been presented by other authors (Shimazaki et al.,
2006; David et al, 2007; Chung et al, 2010). In addition,
following a 5-week exposure to repeated chronic mild stress (an
ethologically relevant animal model of depression), in C57Bl/6]
mice there is an increase in the hippocampal gene expression

of MCHR-1. This increased gene expression was reversed by
chronic fluoxetine treatment (Roy et al., 2007).

The importance of the MCHergic system in MD is emphasized
in a recent study which suggests that an increase in the expression
of preproMCH and consequent MCH receptor down-regulation
could be a biomarker of the severity of depressive disorders
(Garcia-Fuster et al., 2012).

Because MCHergic neurons regulate energy homeostasis, it
is expected that this function would be altered during MD; in
fact, changes in body weight are characteristic of patients with
MD (American-Psychiatric-Association, 2013). At the same time,
preclinical studies have demonstrated that MCHR-1 antagonists
are not only antidepressants, but also have strong anti-obesity
effect (Shimazaki et al., 2006; Chung et al., 2010).

As mentioned before, MCH is expressed in neurons of the
medial preoptic nucleus of the female rat, which is a critical
area in the control of maternal behavior, but only during the
post-partum period (Rondini et al., 2010). Recently, Benedetto
et al. (2014) have shown that microinjections of MCH into this
preoptic nucleus decrease active maternal behaviors during the
early post-partum period. Hence, it would be important to know
whether a dysfunction of MCH-containing neurons, which are
exclusively present during the post-partum period is related to
emotional imbalances that take place in 75-80% of mothers
between 3 and 5 days after delivery (Lee, 1998).

MCH and Raphe Nuclei: Role in Depression
In Table 2, we summarized the effects of MCH agents applied
into the DR and MR. In direct relation with MD, we explored
the role of MCH within the rat DR in the generation of
depressive-like behaviors (Lagos et al, 2011b; Urbanavicius
et al, 2015a). MCH microinjections into the DR induce

Frontiers in Neuroscience | www.frontiersin.org

December 2015 | Volume 9 | Article 475


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Torterolo et al.

MCH Role in REM Sleep and Depression

TABLE 2 | MCH and the raphe nuclei.

Substance Site Strategies Main effect References

MCH DR Microinjection and sleep recording Increases REM sleep. Moderate Lagos et al., 2009
increases in NREM sleep

Anti-MCH antibody DR Microinjection and sleep recording Decreases REM sleep. Increases Lagos et al., 2011a
wakefulness

MCH DR Microinjection, FST Increases immobility time. This effect is Lagos et al., 2011b;
blocked by systemic administration of Urbanavicius et al.,
fluoxetine and nortriptyline 2015a

Anti-MCH antibody DR Microinjection, FST Decreases immobility time Lagos et al., 2011b

MCHR1 antagonist (ATC0175) DR Microinjection, FST Reverts the pro-depressive effect of Urbanavicius et al.,
microinjections of MCH into the DR 2015a

MCH MR Microinjection, FST Increases immobility time Lopez Hill et al., 2013

MCH DR Unit recording, intraventricular and Inhibit serotonergic and non-serotonergic Devera et al., 2015

juxtacellular administration of MCH neurons
MCH DR Microdialysis of serotonin, local perfusion At low doses decreases serotonin release Urbanavicius et al.,

of MCH

2013, 2015b

All the experiments were performed in rats. FST, forced swimming test.

a pro-depressive response evaluated in the FST. MCH
produced a significant increase in immobility time without
affecting locomotor activity; this response is opposite to
the prototypical antidepressant effect. The response was
blocked when the animals were pretreated systemically with
fluoxetine or nortriptyline, which are selective serotonin and
noradrenergic reuptake inhibitors antidepressant, respectively
(Lagos et al., 2011b; Urbanavicius et al., 2015a). Furthermore,
the pro-depressive effect was also suppressed by the intra-DR
microinjection of ATC-0175, a selective MCHR-1 antagonist.
Additionally, immunoneutralization of endogenous MCH
produced an antidepressant effect, since a significant reduction
of immobility time was observed (Lagos et al., 2011b). This
response was accompanied by an increase in the swim time;
this effect is associated with an increase in serotonergic
neurotransmission (Lagos et al., 2011b).

Considering the electrophysiological and in vivo microdialysis
results described above, the pro-depressive effect induced by
MCH could be generated by the inhibition of DR serotonergic
activity elicited by this neuropeptide.

Recent studies have also shown that the MR is also involved
in the pro-depressive effect induced by MCH (L6pez Hill et al,,
2013). Serotonergic neurons of the MR express are also inhibited
by the intracerebroventricular or juxtacellular administration of
MCH (Pascovich et al., 2011).

In this regard, Roy et al. (2006) demonstrated that the
chronic deletion of MCHR-1 have altered serotonergic
neurotransmission in the prefrontal cortex, one of the main
target structures of the serotonergic system and highly associated
with the control of emotional processes (Roy et al., 2006).
Of note, other areas such as the nucleus accumbens and the
basolateral amygdala, have been also proposed to be involved in
the pro-depressive effect of MCH (Georgescu et al., 2005; Kim
etal., 2015).

Our working hypothesis is that MD is associated with an
increase in the activity of MCHergic neurons. In accord with this

hypothesis, the antagonism of MCH would be effective in treating
MD (Shimazaki et al., 2006; Chung et al., 2010). If our hypothesis
is correct, we would expect that antidepressants would decrease
the activity of these neurons. Interestingly, it has been observed
that the acute treatment with escitalopram (an antidepressant of
the SSRI group) inhibits REM sleep rebound that follows a sleep
deprivation protocol and promotes a reduction in the activity of
MCHergic neurons (Katdi et al., 2013). Both set of data support
our hypothesis. In addition, in electrophysiological recordings
of identified MCHergic neurons in vivo, we observed that
the juxtacellular application of fluoxetine decreases MCHergic
neuronal activity (Pascovich et al, 2014). Interestingly, in
accordance with our results, Kim et al. (2015) showed that the
antidepressant effect of exercise is associated with the suppression
of MCHergic activity within the basolateral amygdala (Kim et al.,
2015).

CONCLUSIONS AND FUTURE
DIRECTIONS

Preclinical studies suggest that the MCHergic system is involved
in the control of REM sleep and depression. The role of
MCHergic system in the regulation of sleep, especially REM sleep
is well-established. In fact, Luppi et al. (2013) introduced a new
model of REM sleep in which the MCHergic neurons plays a
REM sleep promoting effect. However, the electrophysiological
effect of MCH on the mesopontine areas critical for REM sleep
generation (according to this model), such as the ventro-lateral
periaqueductal gray and the sublaterodorsal nucleus are still to be
tested. Another important issue in the research agenda is to know
the role of the other neurotransmitters and neuromodulators
(such as neuropeptide E-I, neuropeptide G-E, GABA) that are
co-localized with MCH (Macneil, 2013).

Our working hypothesis is that an abnormal increase in the
activity of MCHergic neurons is involved in the pathophysiology
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of depression. Hence, it would be important to determine
whether depressive patients have higher levels of MCH in the
CSF as compared to normal subjects. In this respect, Schmidt
et al. (2015) have shown that MCH serum levels decrease in
major depressive disorder following 4 weeks of antidepressant
treatment (Schmidt et al,, 2015). However, measurements of
MCH within the CSF are of rule.

Finally, preclinical studies have demonstrated that MCHR-1
antagonists have an enormous potential as antidepressant drugs
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