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Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate

the nervous system in health and disease. Among these tools are nanoparticle-based

probes and sensors that detect biochemical and physiological properties of neurons

and glia, and generate signals proportionate to physical, chemical, and/or electrical

changes in these cells. In this context, quantum dots (QDs), carbon-based structures

(C-dots, grapheme, and nanodiamonds) and gold nanoparticles are the most commonly

used nanostructures. They can detect and measure enzymatic activities of proteases

(metalloproteinases, caspases), ions, metabolites, and other biomolecules under

physiological or pathological conditions in neural cells. Here, we provide some examples

of nanoparticle-based and genetically engineered probes and sensors that are used to

reveal changes in protease activities and calcium ion concentrations. Although significant

progress in developing these tools has been made for probing neural cells, several

challenges remain. We review many common hurdles in sensor development, while

highlighting certain advances. In the end, we propose some future directions and ideas

for developing practical tools for neural cell investigations, based on the maxim “Measure

what is measurable, and make measurable what is not so” (Galileo Galilei).

Keywords: gold nanoparticles, nanosensors, microglia, neurons, quantum dots, Ca2+, MMP, caspases

INTRODUCTION TO SENSORS AND THEIR APPLICATIONS IN
NEUROSCIENCE

Recent advances in nanotechnology have provided neuroscientists with powerful new tools. Among
these are some probes and nanosensors constructed with materials ranging from organic molecules
to metallic nanostructures to engineered fluorescent proteins. Probes are defined as small devices
used to explore, investigate or measure something by penetrating or being placed in the cells,
cell lysate, and extracellular media. A sensor is an assembly required to detect and communicate
a particular event: a device or biological structure which (i) recognizes an entity of interest
(e.g., molecules, ions, or physical changes such as temperature) and (ii) transduces an event of
recognition into a measurable signal. Recognition and signal transduction is followed by signal
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detection in the process of biosensing (see Figure 1). In case
of nanosensors, the terms “probe” and “sensor” often overlap,
because nanostructures are penetrating or “in-place” devices and
usually serve as a recognition element, a transducer and even a
signal amplifier at the same time.

Neural cells respond to dangers and noxious stimuli with
a cascade of events involving diverse classes of molecules
and ions. So far, probes and sensors have been designed to
detect proteins such as signaling molecules and enzymes,
ions (e.g., Ca2+, K+, Na+, H+, or pollutants such as Hg2+

and Cd2+), simple molecules which are critically important
for cell metabolism (e.g., glucose, lipids), DNA, changes in
pH, redox, and neurotransmitters as well as morphological
(e.g., shape and size of neuronal and glial soma, neurites and
post-synaptic spines) and functional changes (e.g., action
potentials, mitochondrial potential, inter and intracellular
organellar communication). “Biofriendly” nanosensors seem
to be suitable candidates for intracellular sensing since they
are significantly smaller than the size of cells, and chemically
inert so as not to interfere with cellular functions during
measurements (Howes et al., 2014). However, only few
nanosensors have been tested in neural cells. Recent review
by Howes et al. (2014) provides a general overview of
nanoparticle-based sensors, their use and limitations in
biology.

In this review, we focus on several nanoparticle-based
and bioengineered sensors mainly for proteases (e.g.,
metalloproteases and caspases) and biomolecules implicated
in disrupted homeostasis in neural cells. To highlight the
advantageous features of these nanoparticle-based tools, as
well as to discuss critically some of their limitations, we
have chosen a few examples from research on inflammatory
processes in the nervous system (e.g., caspase-1). First, we
provide a brief overview of nanostructures used as probes or
components of nanosensors, then we discuss nanosensors and
genetically engineered sensors for proteases and aromatase. We
then highlight probes and sensors for ions and ion channels
focusing on calcium, a principal regulator of many neuronal
functions. We provide examples of neural stimulation using
nanostructures. To emphasize the complexity of the sensing
in the nervous system, we comment on glia as “natural
biological sensors” and finally summarize current approaches
and challenges in designing suitable nanostructured sensors
to detect biomarkers under physiological and pathological
conditions.

FIGURE 1 | A simplified presentation of a sensor’s components. (A)

Components of a sensor. (B) Steps of the biosensing process.

NANOPARTICLE-BASED AND
BIOENGINEERED SENSORS FOR NEURAL
CELLS

Many neurological impairments are associated with different
chemical and physical insults that disrupt cell homeostasis.
Numerous attempts has been made to follow the progression
of pathological processes non-invasively, but only a few
established and commonly used bioengineered sensors are able
to monitor biochemical and morphological changes in neural
cells longitudinally. Moreover, no nanostructured materials are
dedicated solely to the development of nanosensors for the
detection and monitoring of changes specifically in neural cells,
because: (1) noxious stimuli are deleterious to various cell types
aside from neural cells, (2) cell responses to danger and harmful
stimuli are often similar in different cell types, and (3) availability
of primary human and animal neural cells is limited. Examples
of organic and metal-based nanostructures for measurement
of biomolecules in cells and tissues of the nervous system are
provided in Table 1.

Most of the nanostructures shown in Table 1 have to be
internalized by cells to detect and measure the intracellular
changes of biomolecules. Endocytosis and cooperative
transmembrane penetration of nanoparticles are the ways
by which nanoparticles can enter cells (Cleal et al., 2013;
Yameen et al., 2014; Shang et al., 2014a,b; Beddoes et al.,
2015; Kafshgari et al., 2015; Tan et al., 2015; Zhang et al.,
2015b). Although endocytosis of nanoparticles (NP) has
been studied for quite a while, the precise mechanisms are
still not defined due to the complexities of these processes
and technical problems associated with them. The emerging
picture is that different cells engage in different, and sometimes
complementary routes of internalization. This conclusion
was derived from studies employing pharmacological agents,
knockdown approaches using siRNA and knockout technologies
taking advantage of selective deletion of the selected protein
anticipated to be involved in the endocytic process (e.g.,
Iversen et al., 2011). To enhance the chance of nanoparticle
entry into cells, various surface modifications were made
including the attachment of cell penetrating peptides (Jones
and Sayers, 2012; Onoshima et al., 2015). Penetration of
lipid bilayers in membranes (cooperative transmembrane
penetration) is considered an alternative pathway of NP entry
aside from endocytosis (Zhang et al., 2015b). Translocation
efficiency via this non-endocytic route depends on NP quantity,
NP surface properties, NP aggregation and agglomeration
state as well as the properties of cell membranes. It is
conceivable that cooperative penetration contributes to the
internalization of NP-based sensors. Simulation studies by
Zhang et al. suggest that the particle quantity, NP surface
properties and membrane structures are closely linked with
NP-membrane forces and efficiency of NP penetration (Zhang
et al., 2015b).

Traditionally, detection and quantification of intracellular
analytes were achieved by employing fluorescent dyes (probes;
Haugland, 2005; Lakowicz, 2006) and examples are listed in
Table 2.
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TABLE 1 | Examples of physiologically relevant molecules in neural cells or tissues measured by various nanoparticle-based probes and sensors.

Analyte Nanoparticle type Cell/tissue type Detection principle References

Oxygen QD Hippocampal slice The sensor is based on FRET between QDs and a fluorescent

dye. The QDs are immobilized in a thin layer of polymer

matrix, which is deposited either on glass (hippocampal slices

are then placed directly on top of the film) or on a

microelectrode (placed into the extracellular matrix of the CA1

stratum pyramidale). Luminescence intensity ratio between

the QD and dye changes according to the O2 content in the

artificial cerebral spinal fluid bathing the brain slices.

Ingram et al., 2013

Oxygen Anionic NPs of

acrylic co-polymer

Primary neural cells,

multi-cellular aggregates

(3D spheroids) and cultured

organotypic brain slices

NPs are impregnated with a phosphorescent dye, internalized

by endocytosis, and are transported to lysosomes. The

phosphorescence lifetime of the dye correlates with the

intracellular O2 concentration.

Dmitriev et al.,

2015

Reactive oxygen

species

AuNP Post-ischemic rat brains Fluorescein-labeled hyaluronic acids (HA) are immobilized on

AuNPs. The probes are injected locally into the focal ischemic

brain of a brain stroke animal model. When ROS degrades

the HA, the fluorescence dye is released from the AuNPs and

is unquenched.

Hyun et al., 2013

Sodium PAMAM-CG Primary neurons A sodium dye is encapsulated in a PAMAM dendrimer

nanocontainer. When loaded into neurons in live brain tissue,

it homogenously fills the entire cell volume, including small

processes. The fluorescence intensity correlates with sodium

concentration.

Lamy et al., 2012

Nitric oxide Carbon nanotubes Microdialysate from rat brain

(in vivo)
Hemin and multi-wall carbon nanotubes are covalently

attached to chitosan; the chitosan is electrodeposited on the

surface of carbon fiber microelectrodes. Exogenously applied

NO is measured by square wave voltammetry in the rat brain

in vivo.

Santos et al., 2013

Ascorbate Carbon nanotubes Microdialysate from rat brain

(in vivo)
A glass carbon electrode modified with heat-treated

single-walled carbon nanotubes (SWNTs) is capable of

electro-oxidizing the ascorbic acid (AA). Brain microdialysate

is directly delivered into a thin-layer radial electrochemical flow

cell for the continuous measurement of AA concentration.

Liu et al., 2008

Glucose AuNP Microdialysate from rat brain ssDNA modified AuNPs aggregate in the presence of glucose

resulting in an absorbance peak shift (in vitro colorimetric

detection).

Jiang et al., 2010

Cysteine AuNP Microdialysate from the

striatum of rat brain

Cysteine causes the aggregation of citrate stabilized AuNPs,

resulting in an absorbance peak shift (in vitro colorimetric

detection).

Qian et al., 2012

Lead Graphene quantum

dot

Cerebrospinal fluid of rats A rigid structure is formed between tryptophan and

GQD-DMA conjugates in the presence of Pb2+ (acting as a

cross-linker). The resulting increase in fluorescence allows for

the detection of Pb2+ in brain microdialysate (in vitro
measurement).

Qi et al., 2013

Inducible Nitric

Oxide Synthase

AuNP Lysed A172 neuronal cell An electrode is modified with AuNPs and anti-iNOS

antibodies. The attachment of iNOS causes changes in

chronoamperometric measurements in a concentration

dependent manner.

Koh et al., 2011

Caspase-1 QD Glial cells QDs and a fluorescent dye are linked through a caspase-1

substrate peptide (FRET condition). In the presence of

caspase-1 activity, FRET is lost and fluorescence ratios

change (in vitro measurements from cell lysates).

Moquin et al.,

2013a

(Continued)
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TABLE 1 | Continued

Analyte Nanoparticle type Cell/tissue type Detection principle References

Tumor specific

receptor, EGFR

QD Glioma (cell-culture, animal

model and ex vivo human

tumor biopsies)

Living glioma and normal cells or tissue biopsies are

incubated with QDs coupled to EGF and/or monoclonal

antibodies against EGFR). Visualization is done by various

microscopies.

Kantelhardt et al.,

2010

Tumor specific

receptor, EGFR

QD Medulloblastoma and

glioma cancer cells

EGF receptors are labeled with QD-antiEGFR conjugates.

QDs are internalized together with the receptors,

quantitatively revealing the population of activated EGFR.

Dudu et al., 2011

Metabotropic

glutamate receptor

1a (mGluR1a)

AuNP Cultured hippocampal

pyramidal cells

AuNPs are used as cell surface labels to evaluate the

somatodendritic and axonal distribution of mGluR1a.

Fraire et al., 2014

NMDA and AMPA

surface receptors

QD Hippocampal neuron

cultures

Using QDs coupled to antibodies directed against the

N-terminus of the NR1 subunit of NMDA receptors or the

GluR2 subunit of AMPA receptors, single QDs are tracked in

the extrasynaptic and synaptic membranes of hippocampal

neurons.

Michaluk et al.,

2009

Tumor

microenvironment

(MMP-2, low pH)

AuNP Glioma, in spheroids (C6)

and animals

Doxorubicin (DOX) and Cy5.5-decorated AuNP are integrated

into matrix metalloproteinase-2 (MMP-2) degradable gelatin

nanoparticles. DOX and Cy5.5 linked to AuNPs through a

hydrazine bond to enable pH-triggered cargo release. Active

glioma targeting is enabled using surface modification with

RRGD, a tandem peptide. At glioma sites, MMP-2 degrades

the gelatin nanoparticles and the release of DOX and Cy5.5 is

triggered by low pH.

Ruan et al., 2015

QD, Quantum dots; AuNP, Gold nanoparticles; PAMAM-CG, polyamidoamine dendrimer course grain.

These dyes are non-invasive probes and relatively simple-to-
follow, but rapid bleaching, the requirement of organic solvents
(dissolution of lipophilic dyes) or the unpredictable interactions
with intracellular molecules often limit their usefulness. QDs,
carbon nanomaterials and PEBBLEs are good alternatives to
avoid some of the problems associated with fluorescent dyes.

QDs
Among different nanotechnological products, quantum dots
(QDs) attracted special attention because of their unique
physicochemical and optical properties, some of which supersede
certain qualities of fluorescent organic probes (Mattoussi and
Cheon, 2009; Howes et al., 2014; Breger et al., 2015; Moloney
et al., 2015; Silvi and Credi, 2015; Wegner and Hildebrandt,
2015). These properties include high fluorescent quantum yield,
size-tunable emission and a broad absorption spectrum, ranging
from ultraviolet to infrared wavelengths. QDs are composed of
a semiconductor core (e.g., cadmium selenide (CdSe), cadmium
telluride (CdTe), and are often capped with a shell [e.g., zinc
sulfide (ZnS)] to improve core stability. There are also silica
(Si)-based QDs which are highly stable and have long lifetime
(Cooper et al., 2009). Figure 2 shows the anatomy of the QDs and
a comparison between their lifetimes with those of fluorescent
dyes and cell autofluorescence. In addition, the narrow emission
spectra and broad excitation spectra allow for simultaneous
detection of several different analytes in vitro and in vivo.

The exceptional photostability of QDs, relative to organic
fluorescent dyes, makes them more suitable for biomedical

labeling and imaging applications, particularly for longitudinal
(repeated) imaging (Lidke et al., 2004; Cui et al., 2007; Rajan
et al., 2008; Fichter et al., 2010; Vermehren-Schmaedick et al.,
2014; Kovtun et al., 2015; Vu et al., 2015). For example,
after binding to their receptor, TrkB, the internalization and
intracellular trafficking of QD-BDNF (quantum dots with brain-
derived neurotrophic factor ligand) was visualized. Generally,
2-h incubation with 1 nM QD-BDNF in the axon compartment
led to 5–20 QD-BDNF-containing endosomes being transported
in a 60mm long axonal segment. It took ∼40min for the first
QD-BDNF to reach the cell body and the accumulation of QD-
BDNF in the cell body was observed within 2 or 3 h. This method
can be used to address whether peripheral neurons in diabetic
animals have impaired axonal transport (Xie et al., 2012; Zhao
et al., 2014). Nerve growth factor (NGF), an important trophic
factor for the survival and function of peripheral sympathetic
and sensory neurons, has also been studied by employing QDs
(Cui et al., 2007; Echarte et al., 2007). Results from these
studies showed that NGF is retrogradely transported in axons
of the rat dorsal root ganglia. Neural and other cells use
tunneling nanotubes for intercellular communication ranging
from electrical signaling to the transfer of organelles (Wang
et al., 2012; Austefjord et al., 2014; Tosi et al., 2014; Wang
and Gerdes, 2015). Tunneling nanotubes mediated transport of
functional mitochondria can reduce the impact of ultraviolet
light-induced insults. QDs can also be transported through
tunneling nanotubes as shown by Zhang’s group. Their studies
show that QDs move bi-directionally with a mean velocity of
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TABLE 2 | Common molecular probes for the detection of intracellular biomolecules, ions and reactive oxygen species in neural cells.

Name of Probe Analyte Function Ex/Em (nm)

CM-H2DCFDA ROS Indicator of ROS status in cells. Oxidation of DCF by ROS increases

fluorescence signal

492–495/517–527

DHE ROS Superoxide indicator. Oxidation of hydroethidine causes it to intercalate

DNA and switch from blue to red fluorescence

518/605 (DNA bound)

Mito-SOX ROS Mitochondrial superoxide indicator. Localizes to mitochondria and reactive

to superoxides. Oxidized Mito-SOX excites at ∼400 nm. Not sensitive to

other reactive oxygen or reactive nitrogen species

510/580

C-11 Bodipy 581/591 Lipid Peroxidation Sensor for lipid peroxidation. Oxidation of C-11 Bodipy changes

fluorescence emission spectra from red to green

Normal: 581/591 Oxidized: ∼ 485/520

Fluo-3 Ca2+ Calcium indicator, increase fluorescence upon calcium binding 506/526

Calcium GreenTM-1 Ca2+ Calcium indicator, increase fluorescence upon calcium binding. Brighter

resting cell fluorescence than fluo-3 but less phototoxic than fluo-3

506/531

Fura Red Ca2+ Binding to calcium decreases fluorescence emission when excited at

488 nm. Allows ratiometric measurements of calcium levels by measuring

the emission when exciting at 420 nm and 488 nm in the same field

Free: 488/670 Bound: 420/670

SBFI/PBFI Na+/K+ Sodium/potassium ion sensitive fluorescent probe. Comprised of a

benzofuranyl fluorophore linked to a crown ether chelator. The crown ether

pore size is ion selective. Fluorescence increases upon ion binding

340, 380/500

Sodium GreenTM Na+ Sodium ion sensitive fluorescent probe. Greater fluorescence quantum yield

then SBFI. Fluorescence increases upon Na+ binding

510/530

MitoImageTM NanO2 Probe O2 Probe phosphorescence is reversibly quenched by O2 inside cells. Probe

signal decreases with increasing O2 and increases with decreasing O2

385/640

1.23 um/s (He et al., 2010). The velocity of the QD movement
along the nanotube varies from 4.27 um/s to 0.054 um/s (mean
velocity= 1.23± 0.01 um/s). Although most of the QDs reversed
their directions of movement every few seconds, more than
80% of the QDS moved along the nanotube toward one of
the connected cells. The likely microtubule associated motors
mediating bidirectional transport of QDs are kinesins and
dyneins.

One concern in using QDs with a Cd-based semiconductive
core as sensors for live imaging is the potential cytotoxicity of
Cd2+. To mitigate this concern, we investigated other types of
QDs as potential candidates for sensors to probe neural cells.
We showed that Indium-gallium phosphate/ZnS QDs (InGaP-
QDs), core sizes of 5.0 nm and a fluorescence emissionmaximum
at 680 nm, have low toxicity when tested in primary nerve cell
cultures and in PC12 cells (Behrendt et al., 2009); indicating
that these QDs are promising candidates for live cell and ex
vivo imaging in the far red light spectrum. The strong signal
that we observed from the internalized InGaP/ZnS QDs suggests
that these nanoparticles aggregate in the cytoplasm, but not in
the nucleus. In primary neural cultures enriched with astrocytes
and glia, InGaP/ZnS QDs were internalized most avidly in
microglia, followed by astrocytes, and were barely detectable in
neurons. Quantitative analyses of internalized InGaP/ZnS QDs
at the organellar level indicated that these NPs were mainly
present in lysosomes but not in mitochondria (Behrendt et al.,
2009).

Interestingly, we found that the subcellular distribution
of InGaP/ZnS QDs is altered by oleic acid, a common
ingredient of our daily diet (Behrendt et al., 2009). This
finding suggests that changes in membrane structures by fatty

acids (endogenous or exogenous) modulate the uptake and
distribution of nanostructures in neural cells.

PEBBLEs
Kopelman’s team developed an interesting array of NP-based
sensors called PEBBLEs (photonic explorer for biomedical use
with biologically localized embedding; Sasaki et al., 1996; Clark
et al., 1998; Lee et al., 2009). PEBBLEs are 1-1000 nm diameter
nanoparticles that include both fluorescent analyte-sensitive
indicator dyes and analyte-insensitive reference dyes (Lee and
Kopelman, 2012b). As such, these sensors allow for ratiometric,
reversible measurements and they are protected from interaction
with the cellular environment. Two types of PEBBLEs are
distinguished. Type 1 PEBBLE uses a single sensing entity,
serving as both analyte recognizer and signal transducer, while
in Type 2 PEBBLE the analyte recognizer and optical transducer
are distinct. PEBBLEs have been developed to measure a
number of physiologically relevant parameters, including ion
concentrations (protons, calcium, copper, iron, magnesium,
potassium, sodium, lead, zinc, chloride), small molecules
(oxygen, singlet oxygen, peroxyl radical, hydrogen peroxide),
enzymatic intracellular processes (apoptosis), and physical
properties (temperature, electric field; Lee and Kopelman,
2012a). PEBBLEs have been used as sensors for intracellular pH
and calcium concentration measurements in neural cells (Clark
et al., 1999).

A good example of Zn ion sensor constructed as a
PEBBLE (Type 2) is based on CdSe/ZnS QDs covalently
linked with three different azamacrocycles, non-fluorescent
Zn2+ ligands: TACN (1,4,7-triazacyclononane), cyclen
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FIGURE 2 | The anatomy of quantum dots. (A) QDs contain a semiconducting core-shell. The surface can be coated with hydrophilic, hydrophobic, and

amphiphilic ligands (common coating molecules are shown) which can be further linked with proteins, drugs, antibodies, and other compounds. (B) The emission

spectra of QDs can be tuned by adjusting the size. (C) Fluorescence lifetimes of QD in comparison with other flurophores (Berezin and Achilefu, 2010; Gu et al., 2013).

(1,4,7,10-tetraazacyclododecane), and cyclam (1,4,8,11-
tetraazacyclotetradecane; Ruedas-Rama and Hall, 2008). As
the surface-conjugated azamacrocycles disrupt the radiative
recombination process of the QDs, the QDs’ fluorescence is
quenched. The binding of Zn2+ with the azamacrocycles switches
on the QD emission, resulting in an increase in fluorescence
intensity. Three zinc ion sensors based on CdSe-ZnS core-shell
QDs showed a very good linearity in the range 5–500µM,
with detection limits lower than 2.4µM and relative standard
deviation∼3%.

Although promising, one limitation of such zinc sensors
is that interference from autofluorescence decreases their
sensitivity. One-way to improve the intracellular sensitivity of the
PEBBLEs is to avoid interference from cellular autofluorescence
by using near infrared (NIR) fluorescent probes/reporters, two-
photon excitation, and “MOON (modulated optical nanoprobe)”
type PEBBLEs (Lee et al., 2009). MOONs are microscopic
photonic probes that look like moons; one side appears bright
and reports on the local microenvironment whereas the other
side is dark. The MOONs rotate in response to thermal
or magnetic fields (MagMOONs; Anker et al., 2005). The
MOONs allow for sensitive chemical analyses where signal
to background ratio can reach up to 4000-fold. Magneto-
fluorescent MOONs have been more recently developed by
Bawendi’s group (Chen et al., 2014a). Their studies show that
after surface PEGylation, these fluorescent “super” nanoparticles
can bemagnetically manipulated inside living cells. PEGylation is
the covalent conjugation of poly-ethylene glycol to polymers and
drug molecules. PEGylation prolongs the circulation half-life of
drugs, reduces the immunogenicity of molecules, and stabilizes
nanoparticles (Ginn et al., 2014; Kolate et al., 2014).

Carbon Nanomaterials (CNM)
Carbon nanomaterials have emerged as alternatives to QDs,
molecular sensors, and bioengineered sensors (see Table 1).
Carbon nanomaterials have unique electronic, magnetic and
optical properties (Ding et al., 2014; Baptista et al., 2015;
Wen et al., 2015; Zheng et al., 2015). In addition, carbon
nanostructures such as graphenes, C-dots and nanodiamonds
have relatively low toxicity, although there are some safety
concerns regarding these materials (Bayat et al., 2015; Boyles
et al., 2015; El-Sayed et al., 2015; Himaja et al., 2015; Jeannet et al.,
2015; Lim et al., 2015; Misra et al., 2015; Pierrat et al., 2015; Qin
et al., 2015b). To achieve the full potential of these structures as
bionanosensors, further improvement is necessary. In particular,
low sensitivity is a significant limitation (for example, detection
of dopamine by graphene-based sensors). On the other hand,
nanotubes seem to be useful tools for detecting DNA- drug
interactions and could eventually become useful diagnostic aids
in oncology (Health Quality, 2006). Developments in carbon
nanomaterial based sensors were reviewed (Baptista et al., 2015).

An interesting example of a simple construct employing C-
dots was used as a neuroanatomical retrograde tracer (Zhou
et al., 2015). Cholera toxin B–carbon dot conjugates were
taken up and retrogradely transported both in differentiated
pheochromocytoma cells (PC12) and in vivo in Balb-c mice.
Results from these studies suggested that cholera toxinB-
modified C-dots were mainly taken up by dorsal root ganglia
at the lumbar level L3–L5. Due to their superior properties
(e.g., low toxicity, high signal intensity) over the Cd-containing
QDs, C-dots are promising as multifunctional nanodevices for
simultaneous multiple imaging modalities, drug delivery and
sensing. However, currently available C-dot-based nanodevices
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have not yet reached this level of sophistication (Ding et al.,
2014).

New fluorescent nanodiamonds are attracting considerable
interest in the design of biological nanosensors due to their high
resistance to photobleaching and low toxicity (Yu et al., 2005;
Montalti et al., 2015). Compared to QDs and typical organic
probes, nanodiamonds have high quantum yield and lifetime,
although a limited tunability of emission spectrum and a larger
emission width (Schirhagl et al., 2014). When tested in dorsal
root ganglia cultures, nanodiamonds were highly fluorescent, but
unfortunately, they also reduced growth cone extensions and
neurite outgrowth (Huang et al., 2014). Similarly, when single-
walled carbon nanotubes were tested in dissociated cultures
of the peripheral nerves (Belyanskaya et al., 2009), they were
found to be particularly toxic to Schwann cells, although less
so for neurons. Current information on carbon nanodiamonds
and carbon onions suggests that these morphologies may be
better suited for nanosensors than carbon nanotubes due to
their lower toxicity (Ding et al., 2005; Schrand et al., 2007). The
morphology of carbon-based NP plays a role in internalization
and intracellular trafficking (Chu et al., 2015). Importantly,
neither prickly nanodiamonds nor morphologically similar Au-
nanourchins are markedly cytotoxic (Hutter et al., 2010). Thus,
both of these NP morphologies might be used for nanosensors to
detect changes in cytoplasmic proteins under physiological and
pathological conditions. Comparisons between different studies
using such nanomaterials are difficult because experimental
conditions including cell types, method of carbon nanomaterial
preparation, and duration of exposure were different.

In summary, carbon-based nanosensors, particularly
nanodiamonds and carbon onions seem to be promising
nanomaterials for the construction of sensors to investigate
neural cells under physiological and pathological conditions,
once they are converted into fully biocompatible “biophils.”

AuNP
Gold nanoparticles (AuNP) have several unique properties that
make them attractive as components in biological nanosensors
(Dykman and Khlebtsov, 2012; Jin, 2014). These include: a
high absorption coefficient (e.g., 40 nm gold nanospheres show
an absorption cross-section 5 orders of magnitude higher than
organic dyes), scattering flux (e.g., 80 nm gold nanospheres
scatter light 5 orders of magnitude compared to some fluorescent
dyes), luminescence and conductivity, the ability to enhance
electromagnetic fields, quench (or enhance) fluorescence, and
catalyze reactions. As such, these nanosensors are the most
common (e.g., see Table 1).

Many shapes and various surface modifying molecules have
been exploited for AuNP-based nanosensor construction (Vo-
Dinh et al., 2013; Liu et al., 2015; Qin et al., 2015a; Zhang
et al., 2015c). Gold nanorods, nanoshells and nanourchins are
particularly attractive tools for in vivo applications, since their
optical resonance lies in the near-infrared spectral window,
away from the region of biomolecular excitation transitions,
which precludes photochemical damage and allows for deeper
penetration of light in living systems. It is important to note,
however, that cellular internalization of NPs depends on the

shape, size and surface properties of the NPs just as much as on
the cell type. For example, when spherical, rod and urchin GNPs
were added to primary hippocampal neurons andmicroglial cells,
Au nanourchins were found to be taken up preferentially by
microglia, while only Au nanorods were internalized by neurons
(Hutter et al., 2010).

Characterization of AuNPs is essential for any sensor
construction (Leifert et al., 2013; Conde et al., 2014). The
most common techniques to determine the particle size and its
distribution (core and shell) and the successful ligand attachment
are electron microscopy, absorption spectroscopy, dynamic light
scattering, asymmetric flow-field flow fractionation (Moquin
et al., 2013b, 2015), and zeta potential measurements. Elemental
analysis, thermogravimetric analysis/differential scanning
calorimetry, nuclear magnetic resonance spectroscopy, infrared
spectroscopy and X-ray photoelectron spectroscopy can
provide some quantitative information about the ligand shell
composition and functionality (Leifert et al., 2013).

To generate a sensor, the ligand is covalently attached to
the AuNP surface by a dative metal-thiol bond (Howes et al.,
2014). The bond dissociation energy for AuNP—S bonds is
∼40–50 kcal/mol, approximately half of that for a typical C—C or
C—H bond. In contrast, AuNP—N (∼8 kcal/mol) and AuNP—
COO—∼2 kcal/mol) dissociation energies are considerably
weaker, comparable in strength to a hydrogen bond, and can
easily be displaced (Muddineti et al., 2015).

AuNPs can function in conjunction with many traditional
biological probes such as antibodies, nucleic acids, ligands and
receptors, and are used for a highly sensitive and selective
detection of various biomarkers (see Table 1). Some of these
assays have already been commercialized (Nanosphere, Merck,
BBInternational, etc.). Measurements revealing changes in the
cellular environment components and enzymatic activities are
important in the exploration of physiological and pathological
processes such as neuroinflammation. Enzymes often activated in
neural cells in inflammation are caspase-1, cyclooxygenases and
matrix metalloproteinases (MMPs), among others. Nanosensors
for MMPs based on AuNP and their brief description are
included in Table 1 and are discussed in Section Nanosensors for
Proteases and Aromatase.

Bioengineered Sensors
With genetically encoded fluorescent proteins, one can study
dynamic changes in intracellular processes in live cells, and
quantify the expressions of proteins which are difficult tomeasure
by other means (Enterina et al., 2015). Fluorescent protein based
biosensors are useful tools for the study of signaling processes
in neurons (Shen et al., 2015). This approach was recognized as
an invaluable contribution to biological investigations including
those in neuroscience by the Nobel Prize in chemistry granted
to Osamu Shimomura, Martin Chalfie and Roger Y. Tsien.
Genetically encoded proteins are either used to label and
image proteins of interest without fundamental changes in their
properties (imaging tools) or to “sense” complex biochemical
processes in living cells (Frommer et al., 2009; Oldach and
Zhang, 2014). Some examples of genetically engineered sensors
and their properties that can be exploited in investigating neural
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cells under physiological and pathological conditions are shown
(Table 3).

Bioengineered sensors presented in Table 3 are useful sensors
for the detection of cell metabolites, ions, and enzymes. Similarly,
bioengineered sensors provide the means of detection for
different kinases and their participation in spatially restricted
areas and their function in macro-compartments (i.e., dendritic
spines) or micro-compartments (i.e., AKAP signalosomes;
Willoughby et al., 2010; Yasuda, 2012). They can be used to
determine enzymatic activities in real-time and in a cell specific
manner. Transgenic expression of reactive oxygen species (ROS)

generating proteins (RGPs) as fusions to native proteins allow for
exertion of spatial and temporal control over ROS production
and ROS signaling (Wojtovich and Foster, 2014).

NANOSENSORS FOR PROTEASES AND
AROMATASE

AuNP-Based Sensors for MMPs
Matrix metalloproteinases (MMPs) are pleiotropic
endopeptidases involved in a variety of neurodegenerative

TABLE 3 | Examples of genetically engineered biosensors for the detection of ions and enzymes in neural cells.

Analyte Sensor Measured in Detection principle Reference

Glucose FRET FLII12PGLU-700u16

glucose nanosensors

(Ratiometric)

Dissociated rat astrocytes Recognition based. Binding of glucose to the

glucose/galactose binding domain (Mg1B) causes a

conformational shift that increases FRET efficiency

between CFP and YFP. The transcript was

chemically transfected into cells and constitutively

expressed.

Prebil et al., 2011

Lactate Laconic (Ratiometric) In vivo, cortical slices,
dissociated cultures from

mice

Recognition based. Binding of lactate to LldR

causes a conformation change that decreases

FRET efficiency between mTFP and venus. The

transcript was chemically transfected into

dissociated cultures, and introduced into slice

cultures using n adeno-viral vector.

Sotelo-Hitschfeld et al., 2015

Calcium FRET-based Ca2+ sensor

(TN-XXL) (Ratiometric)

In vivo (mice brain) Recognition based. Binding of calcium to troponin C

(TnC) causes a conformational shift that increases

FRET efficiency between CFP and cpCitrine. The

transcript contained a Thy1 promoter and was

constitutively expressed in vivo in neurons.

Siffrin et al., 2015

Calcium Twitch (Ratiometric) Neurons in vivo (rat visual

cortex)

Recognition based. Binding of calcium to TnC

causes a conformational shift that increases FRET

efficiency between CFP and cpCitrine. The

transcript was expressed in mouse primary visual

cortex (V1) using an adeno-viral vector.

Thestrup et al., 2014

Calcium sPA-GCaMP6 (Single

wavelength)

Rat hippocampal slices,

in vivo fruit fly, zebrafish

Recognition based. Illumination at 405 nm activates

the sensor while calcium binding to GCaMP

increases fluorescence at 510 nm. The transcript

was expressed in primary rat hippocampal slices,

fruit fly, and zebrafish through various means.

Berlin et al., 2015

Caspase Fluorescent protein

exchange (FPX) biosensor

(Ratiometric)

Dissociated rat neural cells Enzymatic cleavage. Dimerization-dependent

fluorescent proteins RA and B are linked by a

caspase substrate peptide. Caspase activity in the

cytosol lead to a decrease in red fluorescence due

to separation of RA and B. Subsequent nuclear

translocation of B lead to the association of GA and

B, which increases green fluorescence in the

nucleus. The protein sensor was injected into the

cytosol of neurons using a microinjector.

Ding et al., 2015

Chloride Clomeleon (Ratiometric) Dissociated rat neurons Change in fluorescence intensity. YFP fluorescence

is dependent on chloride levels while CFP

fluorescence is not. Increasing Cl- decreases YFP

fluorescence resulting in an increase in CFP/YFP

fluorescence ratio. The transcript was expressed in

primary dissociated cultures by using

electroporation.

Kuner and Augustine, 2000
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processes including neuroinflammation (Sonderegger and
Matsumoto-Miyai, 2014; Yamamoto et al., 2015). They interact
with a large number of substrates (Malemud, 2006). Most of the
MMPs are synthesized as inactive latent enzymes. Conversion
to the active enzyme is generally mediated by activator systems
that include plasminogen activator or the pro-hormone
convertase, furin. MMPs are active at physiological pH and they
catalyze the normal turnover of extracellular matrix (ECM)
macromolecules. The endogenous inhibitor of MMPs (TIMP-2)
is constitutively expressed in microglia and markedly inhibited
by proinflammogen lipopolysaccharide (LPS) treatment (Lee
and Kim, 2014). Knockdown and overexpression experiments
in microglial cell line BV2 suggest that endogenously expressed
TIMP-2 plays an anti-inflammatory role. Overexpression
or knockdown of TIMP-2 in BV2 cells leads to reciprocal
expression and release of inflammatory biomarkers after LPS
treatment. Overexpression of TIMP-2 in BV2 cells doubles
the expression of the anti-inflammatory IL-10 and markedly
decreases the expression of pro-inflammatory cytokines TNF-α,
IL-1β, as well as nitric oxide. Conversely, siRNA knockdown
of TIMP-2 in BV2 cells reduces the expression of IL-10 by
∼ 30% and increases ROS, nitric oxide, and TNF-α. An
overexpression of TIMP-2 suppressed microglial activation
through inhibition of the activity of mitogen-activated protein
kinases (MAPKs) and transcription factor NF-κB. The results
from these studies indicated an enhancement of the activity
of anti-inflammatory Nrf2 and cAMP-response element
binding protein (CREB) transcription factors in microglia with
overexpressed TIMP-2. Microglia activation contributes to
the degradation of extracellular matrix proteins by increasing
metalloproteinases activities (Lively and Schlichter, 2013). In the
transgenic 5X FADmouse model of Alzheimer’s disease (AD) the
expression of MMP-2, MMP-9, and MT1-MMP was upregulated
concomitantly with the tissue inhibitor of MMPs-1 (TIMP-1)
and several markers of inflammatory/glial response (Py et al.,
2014). Data from these studies suggest a regulatory interplay
between MMPs and the amyloid precursor protein (APP). The
role of astrocytes and MMP-9 in synaptic dysfunction has been
reviewed (Kamat et al., 2014).

In fluorescence-based assays, including these for MMPs,
AuNPs are employed as acceptors, quenching the emission of
donor chromophores. Because of their large absorption cross
section, AuNPs have a superior quenching efficiency in a broad
range of wavelengths compared to other organic quenchers.
Therefore, they can be used for studies in which donor-acceptor
distances are expected to extend beyond 10 nm, or studies in
which multiple dyes need to be quenched. Since they have no
defined dipole moment, energy transfer takes place for any
orientation of the donor relative to the surface of the AuNPs.
For instance, even if the distance between AuNPs and fluorescent
dyes are as large as 22 nm, the quenching efficiency can be as high
as 95% (Mayilo et al., 2009).

An example of one such assay detects MMP-7. MMP-
7 is an extracellular protease that exerts a broad range of
biological functions including important roles in synaptic
plasticity (Sonderegger and Matsumoto-Miyai, 2014). In the
assay for MMP-7 detection, carboxy AuNPs (5 nm in core

diameter) are used as both quenchers and metal chelators, and
are strongly associated with the hexahistidine regions of dye-
tethered peptides in the presence of Ni(II) ions; this leads to
fluorescence quenching of the dye by AuNPs. Upon adding
MMP-7, the peptide is cleaved and the fluorescent intensity of the
dye is efficiently recovered. The degree of dequenching is directly
dependent on the MMP-7 concentration in a hyperbolic manner,
ranging from as low as 10–1000 ng mL−1 (Park et al., 2012).

MMP-2 is a constitutive protein found in the normal brain
cardiovascular systems and glioma (Lebel and Lepage, 2014;
Mittal et al., 2014; Wang et al., 2014, 2015c; Ruan et al., 2015;
Yang and Rosenberg, 2015). Experimental evidence suggests
that MMP-2 may contribute to early brain enhancement of
the cytokine interleukin-1 beta concentrations in transient
ischemia thereby promoting cortical neuron damage (Amantea
et al., 2014). MMP-2 measurements in vivo can be achieved
by exploiting near-infrared-fluorescent dye functionalized gold
nanoparticles. The fluorescent dye is quenched until the protease
cleaves its link to the AuNP and releases it. Tumors with
high protease activity can be visualized by the near infrared
fluorescence signals from gold nanoparticle probes uponMMP-2
activation (Lee et al., 2008).

MMP-9 has been recognized as a regulator of dendritic spine
morphology. Dendritic spines are dynamic structures that change
their morphology in response to various stimuli (Stawarski
et al., 2014b). Spine remodeling occurs in many degenerative
disorders and MMP-9 seems to play a critical role. Stawarsky
et al. developed a biosensor to measure MMP-9 activity in
living cell (Stawarski et al., 2014a). This biosensor can be
used to monitor the changes of MMP-9 activity and correlate
them with plastic changes of dendritic spines. Considering the
accessibility of AuNP sensor to the spines, it is likely that AuNP
sensors would be useful in assessing MMP-9 activity and be
correlated with spine morphology and function. Extracellular
proteolytic cleavage at synapses is executed by a relatively small
number of peptidases which have a limited set of target proteins.
MMP-9 is one of the peptidases which plays critical roles in
synaptic structure and function. MMP-9 expression is enhanced
by reactive oxygen species (ROS; e.g., post injury, high glucose;
Hsieh et al., 2014). MMP-9 might play a dual role in epilepsy
(Michaluk and Kaczmarek, 2007). It is also highly expressed in
microglia in response to inflammatory stimuli (Gottschall et al.,
1995) and can induce neuronal cell death (Murase and McKay,
2012; Gao et al., 2015). Analyses ofMMP-9 deficientmice showed
a significant reduction in neuronal damage in the hippocampus
after transient global cerebral ischemia (Lee et al., 2004), but in
dendritic spines conflicting results (enlargement and thinning)
were reported. These controversial issues, as well as the roles
of metalloproteinase 2 and 9 in the development, plasticity and
repair of the nervous system were reviewed (Verslegers et al.,
2013).

MMPs increase the permeability of the blood–brain barrier
as part of the neuroinflammatory response in hypoxia–ischemia,
multiple sclerosis and infection (Rosenberg, 2009). Recent studies
have also implicated MMPs in the chronic neurodegeneration
associated with vascular cognitive impairment, Alzheimer’s
disease, and Parkinson’s disease. Therefore, both the identity
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of the active MMPs and their cellular origin could determine
whether disease pathogenesis or regeneration occurs. Thus,
synthetic MMP inhibitors might be valuable for treating some
CNS diseases (Rosenberg, 2009).

Bioengineered Sensors for MMPs
Only recently an MMP-9 sensor has been developed using
mCherry fusion protein to quantify intracellular protein and
secreted protein in the extracellular medium (Duellman
et al., 2015). This microplate reader-based mCherry
fluorescence detection method had a wide dynamic range
of 4.5 orders of magnitude and a sensitivity that allowed
detection of 1–2 fmol fusion protein. The rate of secretion
was calculated from the linear region of data from 8 to
24 h post-transfection. Comparison with the Western blot
protein detection method indicated greater linearity, wider
dynamic range, and a similar low detection threshold for the
microplate-based fluorescent detection assay of secreted fusion
proteins.

AuNP and QD-Based Sensors for
Caspases
Many neurological disorders are associated with inflammation
(Cardoso et al., 2015; Crotti and Glass, 2015; De Felice and
Lourenco, 2015; Franco and Fernández-Suárez, 2015; Freeman
and Ting, 2015; Hayashi and Cortopassi, 2015; Hoogland et al.,
2015; Maphis et al., 2015; Ward et al., 2015); consequently,
enzymes implicated in inflammatory processes are likely good
targets for therapeutic interventions (Py et al., 2014; Kaushal
et al., 2015; Savard et al., 2015; Yang and Rosenberg, 2015; Wang

et al., 2015a). The initiation of inflammatory responses involves
the formation of cytosolic structures named “inflammasomes”
(Martinon et al., 2002; Fang et al., 2015; Frank et al., 2015;
Freeman and Ting, 2015; Guo et al., 2015; Szabo and Petrasek,
2015; Yang and Chiang, 2015). Inflammasomes are multiprotein
complexes that enable the activation of pro-inflammatory
caspases, mainly caspase-1 (Gross et al., 2011). Mechanism
of caspase-1 and caspase-11 activity was reported (Kayagaki
et al., 2015; Shi et al., 2015). Different caspases recognize
different peptide sequences and cleave them. These caspase-
specific peptides (substrates) can be incorporated in sensors
as linkers between fluorogenic and/or quenching entities. As
a consequence of enzymatic cleavage, there is a change in
fluorescence intensity. Since the identification of sequences that
are cleaved in various caspase substrates (McStay and Green,
2014; Kang et al., 2015; Parsons et al., 2015) and the development
of synthetic substrates, these sensors became attractive to reveal
enzyme-specific reactions in different cells, including neural cells,
but mainly in lysed cells. Real-time measurement of caspase
activity in live cells and animals is more challenging, but with
the advancement of technology (particularly nanotechnology)
it has become possible (Ai et al., 2008; Hutter and Maysinger,
2013; Moquin et al., 2013a). Examples of QD- based nanosensors
for measuring enzymatic activities were reviewed (Hutter and
Maysinger, 2013) and are given in Table 1.

The basic principles of enzymatic activity measurements using
QDs and AuNP are changes in fluorescence intensities (due to
the substrate cleavage) or shift in absorbance maximum (due to
the change in aggregation status of nanoparticles), as illustrated
(Figure 3).

FIGURE 3 | Nanosensor measurements based on absorbance and fluorescence. (A) Principle of a fluorescence-based nanosensor where a quantum dot (QD)

is linked to quencher molecules through substrate linkers. An active protease cleaves off the link leading to dequenching (enhanced fluorescence proportional to

protease activity). (B) The principle of an absorbance-based nanosensor using gold nanoparticles (AuNP) functionalized with cross-linked peptides [causing the

aggregation of the AuNP which have an absorbance peak around 600–700 nm (OD)]. An active protease chews the substrate peptide, causing the disaggregation

and a blue shift in the peak absorbance (500 nm).
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To investigate how microglia respond to proinflammatory
stimuli, our laboratory has developed a QD-based assay for
caspase-1. Caspase-1 activity in this assay is determined by
ratiometric measurements of fluorescence signals based on FRET
(Figure 4; Moquin et al., 2013a). An attractive feature of our
assay is that we could follow caspase-1 activity over time, because
the signals from QDs are more stable than conventional organic
fluorophores. Our sensor is suitable for measuring changes in
caspase-1 activity at the single cell level.

Aside from QD, AuNPs could also be used for caspase sensor
construction. The SPR peak of AuNPs is very sensitive to their
environment, shifting toward the longer wavelengths (red shift)
and broadening significantly upon the aggregation of AuNPs,
i.e., the absorption peak of dispersed particles changes toward
longer wavelengths when the particles are aggregated. This color
change is easily measured by conventional spectrometers. The
color shift can also occur in the reverse direction: breaking the
AuNP aggregates into individual particles causes a blue shift
in the absorption spectrum of dispersed particles. The basic
principle of AuNP-based colorimetric assays is that the extent
of aggregation/separation is proportional to the absorption peak
shift, and therefore the signal is quantifiable. By monitoring the
ratio of the area under the surface plasmon peak of aggregated
AuNPs (spanning from 490 to 540 nm) and the area under that
of dispersed particles (550–700 nm), it is possible to obtain a
ratiometric quantification of enzymatic activity. Although rarely
used, the power of this approach has provided an extremely
high detection limit of 90 zeptograms/mL(10−21 g/mL) for

thermolysin (Laromaine et al., 2007). A similar approach could
be used for sensors consisting of AuNPs assembled through
protease cleavable peptides and dispersed in the presence of
the active enzyme. Such a sensor could be easily applied to
the measurement of enzymatic activities of various proteases,
particularly those imbedded in plasma membranes with their
active site exposed to extracellular environment.

Bioengineered Sensors for Caspases
In addition to nanoparticle-based sensor for caspases, there are
several bioengineered sensors for this class of proteases (Table 3
and Figure 5). The suitability of a FRET-based sensor for caspase-
3 was demonstrated in 3D-cultures using breast cancer cells,
but similar construct could be used for the determination of
caspase 3-activity in neural cells (Anand et al., 2015). Caspase-
3 has been implicated not only in cell death but also in synaptic
failures in the absence of cell death (D’Amelio et al., 2011).
The molecular mechanisms underlying synaptic failure are still
incompletely understood, but studies byD’Amelio et al. identified
a caspase-3-dependent mechanism that drives synaptic failure
and contributes to cognitive dysfunction in Alzheimer’s disease
mouse model and possibly in humans (D’Amelio et al., 2011).

Multiple roles of caspase-1 in neuroinflammation have
been reported in several animal models (Alfonso-Loeches
et al., 2014; Freeman and Ting, 2015). For example, CNS
human neurons express functional NLRP1 inflammasomes,
which activate caspase-1 and subsequently caspase-6. Studies by
LeBlanc (Kaushal et al., 2015) reveal a fundamental mechanism

FIGURE 4 | QD-based nanosensor for the detection of caspase-1 activity. (A) In the absence of caspase activity, FRET between the quantum dot (QD) and

rhodamine (Rh) results in the latter’s fluorescence emission at 582 nm (shown in red). Active caspase cleaves the substrate peptide linking the QD and rhodamine and

FRET is abolished. This results in the loss of Rh fluorescence and the gain of QD emission (shown in green). (B) Representative measures of caspase-1 sensor activity

using QD-based sensor. LPS induces caspase activation which leads to rapid cleavage of the peptide link between QD and Rh an increase in the fluorescence ratio of

IQD (550 nm)/IQD-RCP (582 nm). RCP, Rhodamine conjugated peptide.
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FIGURE 5 | Components of protein dimerization-based sensors for

caspase-1 and caspase-3. The dimerization-based caspase biosensor relies

on the expression of two plasmid-encoded, dimerization-dependent

fluorescent proteins: (1) a green fluorescent protein tagged with a nuclear

exclusion signal (GFP-NES) and linked to a partner protein “B” tagged with a

nuclear localization signal (B-NLS) by a caspase substrate peptide (Caspase-1:

YVAD; Caspase-3: DEVD), and (2) a red fluorescent protein tagged with a

nuclear localization sequence (RFP-NLS). Caspase activation causes the

substrate cleavage. B-NLS translocates to the nucleus, where it binds to

RFP-NLS. The binding of B-NLS, which itself is non-fluorescent, to GFP-NES

or RFP-NLS increases the fluorescence of either dimerization-dependent

fluorescent proteins many folds. Thus, cells expressing the caspase biosensor

show green fluorescence in the cytoplasm when caspase activity is low and

red fluorescence in the nucleus with increased caspase activity.

linking intraneuronal inflammasome activation to caspase-
1-generated interleukin-1-β-mediated neuroinflammation and
caspase-6-mediated axonal degeneration. The basic principle of
protein dimerization-based bioengineered sensors for caspase-1
and caspase-3 is illustrated (Figure 5).

Using sensors for caspase-1 and caspase-3 (Figure 5), we
showed that human cells exposed to lipopolysaccharide markedly
activated caspase-1, but not caspase-3. In turn, caspase-3,
but not caspase-1, was activated when cells were exposed

to staurosporine (Ding et al., 2015). These bioengineered
sensors for caspase-1 and 3 can be a great help assessing the
microenvironment-modifying agents and antineoplastic agents
in glioblastoma and also in neurodegenerating CNS.

Aromatase Function and Measurements
Neural-active steroids play a critical role in the development of
the central nervous system and in the maintenance of functional
circuitries (Melcangi et al., 2011; Remage-Healey et al., 2011;
Arevalo et al., 2015; Frankfurt and Luine, 2015; Hojo et al.,
2015; Krentzel and Remage-Healey, 2015). Aromatase is the
key enzyme which transforms testosterone into estradiol (Yague
et al., 2010). The measurements of aromatase enzymatic activity
are mainly indirect and based on radioactive measurements
of tritiated water. There are currently no ways to measure
aromatase activity in neural cells directly and non-invasively.
Some neurological disorders, particularly in postmenopausal
women are ascribed to inadequate estrogen concentrations in
certain brain structures, e.g., hippocampus (Danilovich et al.,
2003; Markham et al., 2005; Spence and Voskuhl, 2012; Daniel,
2013). Aromatase inhibition by letrozole is used in breast cancer
therapy and there are reports that such therapeutic interventions
can cause memory impairments in certain female populations;
however, it is not clear what makes them more vulnerable
to letrozole treatment (Zhou et al., 2007; Chang et al., 2013;
Turnbull et al., 2015; Vierk et al., 2015). In this context, we
have shown that in organotypic hippocampal cultures treated
with letrozole, post-synaptic dendritic spines are reduced in
number, resulting in dysfunctional neural circuitry (Chang et al.,
2013). We propose a FRET-based assay for the measurement of
aromatase enzymatic activity by using nanoparticles (Figure 6).

In theory, AuNPs and QDs can be combined in a FRET-based
assay. A good example is the design to detect the activity of
aromatase (Figure 6). In this strategy, the substrate of aromatase,
testosterone is covalently conjugated to the surface of quantum
dots (“QD-testosterone”). AuNPs are modified with a complex of
thiol-terminated estradiol-binding aptamers (“AuNP-aptamer”)
and their fluorophore-labeled complementary DNA strand
(reporter DNA; Alsager et al., 2015). In the presence of aromatase
some of the QD-conjugated testosterone is converted to estradiol;
then, upon addition of AuNP-aptamers, the fluorescently labeled
reporter DNA is released and the aptamer binds to the
estradiol, bringing the AuNPs into a close proximity of QDs.
The fluorescence of QDs is quenched by the AuNP, while
the fluorescence of the released reporter DNA is restored.
In addition, the aggregation of AuNPs and QDs results in
a very distinct change in the surface plasmon absorption
spectrum of AuNPs. This elegant triple detection system (QDs,
fluorophore and AuNP) allows for monitoring of the testosterone
to estradiol conversion by three parallel ways (by QD quenching,
fluorophore turn-on, NP aggregation). Such an assay is not yet
available but it would be very useful in experiments and clinical
studies addressing questions related to the role of aromatase in
neurological disorders.

In summary, we have identified a number of nanoparticle-
based sensors for enzymes relevant in the nervous system and
we have highlighted both their advantages and limitations.
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FIGURE 6 | A schematic of the aromatase AuNP-based sensor. Aromatase converts testosterone to estradiol. (1) The substrate of aromatase, testosterone is

covalently conjugated to the surface of quantum dots, QDs (“QD-testosterone”). (2) Thiol-terminated estradiol-binding aptamers are allowed to form a complex with

their fluorophore-labeled complementary DNA strand (reporter DNA). This complex is attached to the surface of AuNPs through the thiol groups of the aptamer

(“AuNP-aptamer”). The fluorophore is quenched by the AuNP. (3) In the presence of aromatase some of the QD conjugated testosterone is converted to estradiol. (4)

Upon addition of AuNP-aptamers, the fluorescently labeled reporter DNA is released and the aptamer binds to the estradiol. The fluorescence of QDs is quenched by

the close proximity of AuNP, while the fluorescence of the released reporter DNA is restored. In addition, the aggregation of AuNPs and QDs results in a very distinct

change in the surface plasmon absorption spectrum of AuNPs. The triple detection system (QDs, fluorophore and AuNP) allows for monitoring conversion of

testosterone to estradiol separately (by QD quenching, fluorophore turn-on, NP aggregation).

The most common sensors are those for caspases and MMPs.
These enzymes are particularly relevant because of their roles
in synaptic plasticity and neurodegenerative disorders. Being
extracellular enzymes, MMPs are relatively more easily accessible
by nanomaterials than intracellular enzymes such as caspases.
MMPs, acting as extracellular matrix and spine “sculptors,” play
essential roles in neural cell functions; therefore, further in-
depth studies are warranted to unravel the intricate roles of

MMPs, particularly their potential beneficial contributions in
post-injury repair of the nervous system. Nanosensors that allow
simple and reproducible measurements of MMPs enzymatic
activities could facilitate these investigations. These assays would
be of value for designing new therapeutic interventions in
neurological disorders where abnormal regulation of these
proteases contribute to neural malfunction and death. Analyses
of various MMP substrates incorporated into nanoparticle-based
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sensors could certainly help delineate preferable specific
substrates in neural cells and downstream pathways leading
to beneficial or detrimental MMP-mediated functions. Finally,
understanding MMP-mediated proteolysis in neural cells would
go far beyond these cell types.

SENSORS FOR IONS AND CELL
METABOLITES

In this section, we will highlight several examples that
incorporate genetically engineered or NP-based sensors. We
will focus mainly on pH, O2 and Ca2+ measurements using
nanosensors.

Bioengineered Sensors for the Detection
of Calcium Ions
Ever since Ringer’s serendipitous observation that Ca2+ caused
the contractions of isolated hearts, physiological roles of
this ion were intensively investigated (Ringer, 1883). The
extracellular calcium concentrations are high (about 1mM),
whereas intracellular pools are low (100 nM). The most
important calcium stores are the endoplasmic reticulum and
mitochondria. Special temporal patterns of calcium are regulated
by pumps, channels, and buffering proteins. Regulation of
calcium signaling and the role of mitochondria in its regulation
contributing to cell metabolism, and cell survival has been
reviewed (Rizzuto et al., 2012).

In neurons calcium is in constant flux to facilitate
neurotransmission and even modest alterations in calcium
signaling can cause cellular stress and negatively impact cell
function (Kawamoto et al., 2012). For instance, in Alzheimer’s
disease, neuronal calcium disturbances and abnormally regulated
calcium signaling proteins are speculated to play a major role in
causing mitochondrial dysfunctions (Supnet and Bezprozvanny,
2010). The variety of cellular responses to calcium signaling
depends on the duration, subcellular location, and the amplitude
of the change. Calcium signaling can occur in microdomains
or macrodomains. Local increases in calcium concentration
in neuronal presynaptic terminals triggers neurotransmitter
release (Neher and Sakaba, 2008). Global changes such as
elevated calcium levels can trigger autophagy, apoptosis amongst
other processes in neural cells (Matute et al., 2006; Wojda
et al., 2008; Brini et al., 2014). Activation of different signaling
pathways depends on the extent of calcium influx; the strength of
NMDA-dependent calcium influx determines whether long-term
potentiation or depression occurs in hippocampal neurons
(Lüscher and Malenka, 2012).

Currently, synthetic calcium flurophores such as Fluo-3 or
Fura Red (see Table 2) are popular tools for quantifying calcium
concentrations since they allow short term spatiotemporal
monitoring of Ca2+ concentration. However, these synthetic dyes
require loading, have limitations related to variable dye entry
and leakage from cells and thus are not suitable for long-term
or in vivo monitoring of calcium levels (Kantner et al., 2015;
Thomas and Oliver, 2015). Furthermore, these dyes are not tissue
or organelle specific. Genetically encoded calcium indicators

(GECI) are used as a non-invasive alternative to measure
calcium levels; being genetically expressed, no dye loading step
is required and the protein is constantly replenished which is
favorable for long term live cell imaging. Another advantage
of genetically encoded sensors is the potential for tissue or
organelle targeting, which can be achieved by modifying the
promoter region or tagging with a localization signal moieties.
For example, the ER targeted GECI D1ER was used to measure
ER calcium levels in primary hippocampal astrocytes (Williams
et al., 2013).

GECI follow two design paradigms: (1) Single fluorescent
protein based or (2) FRET-based sensor. Single fluorescent
protein based sensors report calcium concentrations based
on the intensity of a single fluorophore. The most popular
single fluorescent protein based calcium sensors belong to
the GCaMP family (Nagai et al., 2001). Recently, a family of
ultrasensitive GCaMP calcium sensors have been developed that
outperformed other sensors in cultured neurons and in zebrafish,
flies and mice in vivo (Chen et al., 2013). GCaMP6 sensors
can detect synaptic calcium transients in individual dendritic
spines and have proven to be extremely useful for investigations
on the organization and dynamics of neural circuits over
multiple spatial and temporal scales. FRET-based sensors detect
calcium concentration based on ratiometric measurements. An
interesting ratiometric tripartite FRET-based Ca2+ sensor is
shown below (Figure 7).

FIGURE 7 | A tripartite calcium ion biosensor. The tripartite calcium

biosensor relies on the expression of one plasmid-encoded polypeptide: a red,

dimerization-dependent fluorescent protein (RFP) linked with calmodulin

(CaM), a non-fluorescent partner protein “B,” the calmodulin-binding domain

of skeletal muscle myosin light chain kinase (M13), and a green,

dimerization-dependent fluorescent protein (GFP). In the absence of

intracellular calcium (Ca2+) increase, “B” binds with either RFP or GFP, and

the ratio of red-to-green signal is in equilibrium. Upon an intracellular increase

in calcium (Ca2+), CaM binds Ca2+ and undergoes a conformational change,

allowing it to bind M13. The binding of CaM with M13 causes a shift in the

binding equilibrium of “B,” and an increase in the red-to-green ratio of the

biosensor. Thus, cells expressing the calcium biosensor display red and green

fluorescence in equilibrium in the absence of intracellular calcium release.

Following an increase in calcium levels, red fluorescence increases in the

cytoplasm.
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A recently optimized family of FRET-based ratiometric
GECI “Twitch” showed greater signal amplitude and
signal-to-background ratio compared to commercially available
synthetic calcium dye Fura-PE3. The overall FRET of Twitch
sensors upon calcium binding was improved from 10–20% ratio
change initially to >1000%. As with other GECIs, a trade-off
can be seen in Twitch sensors between high-affinity binding
and fast response kinetics; sensors with lower affinity such as
Twitch-5 (Kd = 9.25µM, τ = 0.16 s) show relatively fast kinetics,
whereas the higher affinity binding Twitch-3 (Kd = 250 nM,
τ = 1.5 s) shows slower kinetics. Twitch-2B was able to measure
tonic action potentials in mouse visual cortex neurons in vivo,
exhibited low cytotoxicity and high signal to noise ratio after 141
days post transfection, demonstrating its usefulness as an in vivo
calcium sensor (Thestrup et al., 2014). Since the quantification of
calcium depends on ratiometric measurement between a donor
and acceptor molecule, FRET-based GECI are less sensitive
to artifacts arising from variability in sensor expression, laser
intensity, cell thickness, and are preferred for long-term in vivo
studies. Detailed procedures describing the calibration, common
pitfalls, and organelle specific quantification of calcium levels
using FRET-based ratiometric GECIs’ was recently published
(Park and Palmer, 2015a,b,c).

Advantages of single fluorescent protein GECI are a
defined narrow optical spectrum and smaller construct size.
A photoactivatable GCaMP GECI was recently designed for
selective activation of GECI inside individual cells (Berlin et al.,
2015) providing a powerful tool for investigations of neuronal
signaling and synaptic plasticity. Recently, an elegant approach
was proposed for monitoring brain activity with protein voltage
and calcium sensors (Storace et al., 2015). Results from their
studies suggest that the voltage sensor ArcLight has certain
advantages over GCaMP6 calcium sensors such as optical
electrophysiology of mammalian neuronal population activity
in vivo.

Bioengineered Sensors for the Detection
and Measurements of pH
In neural cells, as with most other cell types, pH is tightly
regulated since both structure and function of cellular proteins
depends critically on changes in pH, and changes in pH drive post
translational protein modifications, such as phosphorylation.
Phosphorylation of protein substrates changes their physical
properties (e.g., charge), function (activation and inactivation)
and intracellular fate (e.g., translocation from the cytosol to
the nucleus and vice versa). Furthermore, detecting changes in
H+ is critical for the function of sensory neurons which use
acid-sensing ion channels for nociception andmechanoreception
(Omerbašic et al., 2015; Sluka and Gregory, 2015). For instance,
extracellular acidification to a pH of 6.9 generates a rapid inward
current from acid-sensing ion channels (Waldmann et al., 1997).
Properties of acid-sensing ion channels are reviewed elsewhere
(Gründer and Pusch, 2015; Krishtal, 2015).

To monitor changes in pH, researchers have turned to
fluorescent dyes and fluorescent proteins (probes and sensors).
For some studies, it is important to correlate changes in
pH with changes in some other intracellular process, such as

adenosine triphosphate (ATP) levels. For these studies, one can
use dual probes with non-overlapping excitation and emission
wavelengths (Tantama et al., 2011). For example, in diabetes
research, it has been shown that one can use a GFP-ATP
sensor in conjunction with a RFP- pH sensor to measure
ATP and cytoplasmic pH simultaneously in glucose deprived
cells. Dual biosensors that exploit fluorescent dyes are superior
to single pH measurements, but they are more difficult to
generate (Fisher and Campbell, 2014). Among the most common
measurements of pH changes relate to the endosomal and
lysosomal vesicles. The difference in pH between an early
endosome and a lysosomes is enormous and can cover 2 pH units
corresponding to approximately a 100-fold difference in proton
(H+) concentration (Paroutis et al., 2004).

Bioengineered Sensors for the Detection
of Lactate
Neurons and other cells with high energy demand (e.g., heart)
become functionally impaired when metabolic processes that
normally produce ATP are disrupted. For example, the buildup
of lactic acid can lead to neurodegeneration (Ruffin et al., 2014)
but can also be neuroprotective when acting on GPR 81 or
possibly related receptors (Lauritzen et al., 2014; Tang et al.,
2014; Morland et al., 2015; Mosienko et al., 2015). L-lactate is
produced by both neurons and astrocytes; moreover, there is a
strong evidence that neurons use L-lactate as a supplementary
fuel and signalingmolecule, and genetically encoded fluorescence
nanosensors exist to monitor energy metabolites, such as lactate
(Sotelo-Hitschfeld et al., 2015). These sensors are valuable new
tools to investigate the lactate pools in models such as dissociated
astrocytes in cultures, cortical slices and even in vivo. The result
obtained with these sensors show that astrocytes in vitro and
in vivomaintain a cytosolic reservoir of lactate, which in response
to plasmamembrane depolarization, is immediately released into
the extracellular space through a lactate-permeable ion channel.
These findings support the roles for lactate in neuronal fueling
and in gliotransmission (Sotelo-Hitschfeld et al., 2015).

AuNP-Based Biosensors for Detection of
Glucose
A good example of a simple AuNP-based colorimetric assay
is that used to detect biological thiols (Ghasemi et al., 2015).
The low-molecular-weight biological thiols show high affinity
to the surface of AuNPs; this causes the replacement of
AuNPs’ shells with thiol containing target molecules, leading
to the aggregation of the AuNPs through intermolecular
electrostatic interaction or hydrogen-bonding. As a result of
the predetermined aggregation, AuNPs’ color and UV-visible
spectra change. The principle of AuNP-based aggregation assays
(with an example of protease detection) is illustrated in Figure 3.
These AuNP-based colorimetric assays have been used to detect
oxidative stress in neurons and non-neuronal cells (Kumar et al.,
2013; Wang et al., 2015b). Glucose not only represents the
primary energy source for the brain, but also plays important
roles in synaptic transmission. In this assay, the aggregation
of AuNPs was induced by glucose through cascade reactions
involving glucose, H2O2, and ∗OH (Jiang et al., 2010).
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NEURONAL AND GLIAL RESPONSES TO
NANOSTRUCTURES

Neural Stimulation Using Nanostructures
Recent developments in NP technologies provide new
approaches for recording and stimulating nerve cells. Among
these are the incorporation of carbon nanotubes (CNTs) to
improve implantable three-dimensional (3D) microelectrode
arrays (MEA) to record nerve activity in large numbers of
neurons in regional circuits (Gabay et al., 2007; Kim et al., 2014;
Monaco and Giugliano, 2014). The advantage of using CNTs in
the design of MEAs is that CNTs are chemically inert and stable.
Furthermore, CNTs exhibit excellent electrical conductivity and,
most importantly, biocompatibility with neurons (Lin et al.,
2009; Gerwig et al., 2012; Musa et al., 2012; David-Pur et al.,
2014; Samba et al., 2014). When embedded in polymer film,
these CNT electrode arrays provide a flexible device to record
activity that can be implanted in the brain.

In addition, promising new developments with NPs have
demonstrated the feasibility of using heat generated from
targeted NPs to control the activity of specific populations of
neurons within a particular brain region. In one approach,
neurons were stimulated with localized heat from gold nanorods
(AuNRs) after irradiation with NIR laser light (Paviolo et al.,
2014; Nakatsuji et al., 2015). Briefly, AuNRs are plasmonic
nanoparticles that absorb minimally invasive NIR light and
achieve highly localized photothermal heat generation (Paviolo
et al., 2014). AuNRs can be targeted to the plasma membrane
by coating them with a genetically cationized form of high-
density lipoprotein (HDL; Nakatsuji et al., 2015). Not only
does this complex reduce the cytotoxicity of the AuNRs but
it also localizes the generated heat to neurons to enable the
activation of heat-sensitive membrane ion channels, such as
transient receptor potential vanilloid (TRPV) family members
(Tominaga et al., 1998). This interesting approach has been used
to stimulate cultured mouse sensory neurons from dorsal root
ganglia, neurons that express TRPV1 endogenously, yet, this
method has not been applied to neurons in vivo. One limitation
is the poor penetration of NIR in intact neural tissue.

An interesting alternative technique uses magnetic
nanoparticles (MNPs) to generate heat. Briefly, MNPs convert
alternating magnetic fields into biological stimuli by dissipating
heat through hysteretic power loss. Low-radiofrequency
alternating magnetic fields (100 kHz to 1MHz) can penetrate
into the body without substantial attenuation and thus enable
signal delivery into deep brain regions. Moreover, radiofrequency
(RF) magnetic fields can be applied remotely, allowing for non-
invasive remote stimulation of neurons in awake behaving
animals (Huang et al., 2010; Chen et al., 2015). In addition to
neuroscience, targeted magnetic NPs are being investigated in
cancer therapy; as well, this method can be applied to manipulate
remotely signal transduction pathways and other cellular
machinery (Bonnemay et al., 2015).

The feasibility of using magnetic hyperthermia to stimulate
neurons was demonstrated using coated manganese ferrite
(MnFe2O4) MNPs conjugated with streptavidin (Huang et al.,
2010). These particles were targeted to the surface of cultured

hippocampal neurons overexpressing TRPV1. When exposed
to low RF magnetic fields, the MNPs generated sufficient heat
to activate the TRP channels and depolarize neurons without
causing cell damage (Huang et al., 2010). This work established
magnothermal stimulation as an attractive non-invasive method
to excite specific neurons.

There has been some concern, however, that MNPs
conjugated with proteins could become internalized and/or
reduce the effectiveness of targeting and heat dissipation
in vivo. To overcome these potential issues, Fe3O4 MNPs
replaced MnFe2O4 MNPs. Untargeted Fe3O4 MNPs that
have been optimized for efficient heat dissipation at clinically
relevant alternating magnetic fields (Chen et al., 2015). These
Fe3O4 MNPs have high heating rates, and when exposed to
therapeutically relevant frequencies, they can trigger widespread
firing of cultured hippocampal neurons expressing TRPV1. An
attractive aspect of magnetothermal stimulation is its ability to
stimulate neurons in deep brain structures; a good example is use
in stimulating neurons in the ventral tegmental area (VTA; Chen
et al., 2015). Since VTA neurons do not express TRPV1 channels
endogenously, neurons were infected with lentivirus expressing
TRPV1 cDNAs, the region was injected with Fe3O4 MNPs, and
the animals were exposed to alternating magnetic fields. Even
after 1 month of MNP injection, magnetic field stimulation
triggered a significant increase in neural activity in the vicinity
of the MNP injection site, as indicated by immediate early gene
c-fos expression (Chen et al., 2015).This work demonstrates the
feasibility of remote, wireless magnetothermal stimulation to
activate neurons in deep brain areas.

Both NIR-AuNR and RF-activation of MNPs provide
interesting approaches for stimulating neurons. However, this
method can be applied only to neurons that express heat-
sensitive ion channels, either endogenously, such as peripheral
sensory neurons, or after expression with virally-mediated gene
transfer. To enhance these approaches, it might be attractive
to adapt them for use in exciting new implantable wireless
fluidic devices that have been developed for programmable
in vivo pharmacology (Jeong et al., 2015), thereby providing
an interesting alternative to established optogenetics techniques
(Warden et al., 2014). Optogenetic approaches and their
attractions and limitations have been extensively reviewed
elsewhere (Williams andDeisseroth, 2013; Thompson et al., 2014;
Fan and Li, 2015; Kale et al., 2015; Lüscher et al., 2015; Tonegawa
et al., 2015; Webber et al., 2015).

Glial Response to Nanostructures
Collectively, glial cells (microglia and astrocytes) are equipped
with sophisticated sensing, transducing and amplifying
machinery that outperforms any artificial sensors. Microglia
and astrocytes use toll–like receptors (TLRs) to sense pathogen
signals, and those from nanoparticles. TLRs will recognize
the “stranger” (e.g., nanoparticle) similar to the recognition
of a pathogen (e.g., bacteria; Hanke and Kielian, 2011; Okun
et al., 2011; Harry, 2013; Schaefer, 2014). TLR4 recognizes
lipopolysaccharide (LPS) produced by Gram-negative bacteria
and also nanoparticles associated with LPS (Lalancette-Hébert
et al., 2010). TLR4 responds transiently to cerium oxide NPs
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(nanoceria). In contrast, unprotected (“naked”) CdTe QDs
cause a strong microglia activation leading to robust luciferase
activation as shown in vivo in transgenic mice expressing
luciferase driven under the control of glial fibrillary acidic
protein promoter (Maysinger et al., 2007). Similarly, when
microglia are exposed to AuNPs, the intensity and temporal
pattern of the TLR2 responses varies with the configuration of
the NP. For example, in transgenic mice, gold nanorods exert a
bimodal activation of microglia in transgenic mice with TLR2
promoter-luciferase reporter (Hutter et al., 2010).

Once TLRs have “sensed” the nanoparticle and other
danger signals, the transduction system becomes engaged. This
system includes IkB kinases, MAP-kinases and a number of
transcription factors such as NFkB, AP-1 and interferon regulator
factor (IRF) families (Takeuchi and Akira, 2010). Following
the initial detection and transduction stages, signals recruit
highly inducible genes, such as cytokines (e.g., interleukine
1beta, tumor necrosis factor alpha and others), which serve as
amplifiers of the inflammation program (Glass et al., 2010).
Under pathological conditions, microglia commonly assume a
macrophage phenotype; however, in the healthy central nervous
system,microglia do not behave asmacrophages and their precise
functions are currently under intense investigation (da Fonseca
et al., 2014; Chen and Trapp, 2015; Tremblay et al., 2015).

CHALLENGES AND LIMITATIONS

Fluorescent Dyes
Fluorescent molecules (“dyes”) have played a major role
in intracellular sensing and imaging in neural and other
cells, in large part, because they respond rapidly to stimuli,
have high signal intensities, and enter neural cells non-
invasively. Consequently, these molecules are considered the
current standard method for the quantification of intracellular
analytes (Haugland, 2005; Lakowicz, 2006); none the less, some
limitations compromise their usefulness. These include: (1)
Possible interference with cellular processes and cytotoxicity; (2)
organic solvents required for the dissolution of lipophilic probes;
(3) unpredictable cellular responses when dyes interact with
intracellular constituents; (4) relatively rapid bleaching limits
their usefulness for time lapse experiments; (5) Only few dyes
allow for ratiometric measurements.

QDs
Although the photophysical advantages of QDs for experiments
at the single cell level or in vivo experiments are greater than those
of fluorescent dyes, the current generation of QD-based sensors
has some drawbacks. For example: (1) the highest quantum yields
are from QDs that contain toxic components, such as Hg; (2)
QDs that emit signals in the near infrared spectrum are currently
too large to enter neural cells unless their surfaces are adequately
modified QD-based sensors, (3) and most QDs are not readily
eliminated from the body and accumulate in liver and kidneys.

Ideas to reduce or prevent QD toxicity have been reviewed
recently (Winnik and Maysinger, 2013). The extent of QD
toxicity depends on its core composition, size, shape, surface
coating, ligand arrangement, and charge (Hoshino et al., 2004;

Jiang and Asryan, 2008; Verma and Stellacci, 2010; Kauffer et al.,
2014). The mechanisms that account for the toxicity have not
been fully resolved. They may involve the formation of reactive
oxygen species (ROS) due to the degradation of the QD core
and the release of free cadmium ions (Derfus et al., 2004),
followed by oxidative stress and inflammation (Lovric et al., 2005;
Manke et al., 2013). Or, exposure to QDs may cause cell growth
inhibition and lipid peroxidation (Choi et al., 2007) as well as
epigenetic and genetic changes (Choi et al., 2008; Stoccoro et al.,
2013).

AuNP and Other NPs
AuNP-based sensors and enzymatic assays are not widely
used and exist mainly as basic research tools. Colorimetric
assays have a good potential for high-throughput applications:
they are robust, simple, inexpensive, and require minimal
instrumentation. However, colorimetric measurements are not
always easily adapted for complex biological environments,
such as tissues or living organisms, due to the substantial
interference from cellular macromolecules. The detection
limits of AuNP-based assays are surprisingly low, suggesting
remarkable sensitivity and are promising for high throughput
screening of enzyme inhibitors and activators. For measurements
of enzymatic activities employing AuNPs in cells, FRET-
based assays are more suitable then colorimetric measurements
(Freeman et al., 2013; Lindenburg and Merkx, 2014; Chou and
Dennis, 2015; LaCroix et al., 2015; Shamirian et al., 2015).

The ratio of acceptor to donor fluorescence is usually used
as a surrogate for actual FRET efficiency. FRET efficiency can
also be inferred from the rate of photobleaching of the donor or
acceptor. Both of these approaches are qualitative and difficult
to quantitate because the concentrations of fluorophore at the
specific intracellular site is unknown. A more sophisticated
approach, one that overcomes the problem of inconsistent
fluorophore concentrations is fluorescence life time imaging
(FLIM), an approach that relies on lifetimes of fluorophores and
QDs (Murakoshi et al., 2008; Ueda et al., 2013; Doré et al., 2014;
Chen et al., 2014b; Datta et al., 2015; Kaur et al., 2015; Yellen and
Mongeon, 2015).

With any nanoparticle-based sensor, of course, it is important
to take into consideration the possibility of nonspecific binding
and ligand exchange. For example, in the case of AuNPs, with
thiolated ligands, the ligands can be exchanged with intracellular
glutathione. To prevent ligand exchange and nonspecific binding,
AuNPs can be PEGylated. The main challenge still is monitoring
the enzymatic processes in vivo, in a longitudinal, real-time
manner; for these purposes, cell type specific expression of
genetically engineered proteins remains a promising alternative.

LOOKING AHEAD TO NEW WAYS TO
SENSE NEURAL CELLS UNDER
PHYSIOLOGICAL AND PATHOLOGICAL
CONDITIONS

Many pharmacological interventions in neurological disorders
fail because the initiation of intervention started too late and
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the damage to the tissues was too extensive and irreversible.
One of the reasons for such a failure is the lack of adequate
tools to detect the changes in neural and other cells early
enough when pathology can be arrested and deleterious
consequences minimized. Nanosensors are beginning to change
the diagnostic arena but they are still at an early stage of
development. Nanoparticle-based and bioengineered sensors
as well as fluorescent molecular probes should be used in a
complementary manner. New nanoparticle-based lipase sensor
sparked interest in development of sensors for other lipases and
could be used to reveal the role of lipids in neurodegeneration
(Tang et al., 2015).

As opposed to the well-studied and most frequently used
spherical particles, many other particle morphologies have
optical resonances in the near-infrared spectral window,
allowing a deeper penetration within tissues and an absence of
photochemical damage; these features are highly advantageous
for intracellular or in vivo imaging applications. Only a few
designs employing gold nanorods (Cheng et al., 2015; Park et al.,
2015; Zhang et al., 2015a) or nanocages (Chen et al., 2005a,b)
exploit the tunability of surface plasmon absorption peak and
optimize the sensitivity of AuNP-based assay.

For two-photon luminescence (TPL) gold nanorods and other
anisotropic morphologies should be exploited. TPL imaging,
which is superior to dark-field imaging in terms of signal-to-
noise ratio, is an attractive option for intracellular imaging,
where a strong background signal often hampers the detection
of low concentrations of AuNPs. TPL has been employed mainly
for bioimaging (Vo-Dinh et al., 2013; Yellen and Mongeon,
2015), but it should be considered for detection of changes
in enzymatic activities in neural cells under physiological
and pathological conditions. Luminescent AuNPs with high
quantum yields are attractive candidates to replace QDs or
some organic fluorophores (Maysinger and Hutter, 2015). A
“plasmonic resonance energy transfer (PRET)” can be exploited

for measurements of enzymes engaged in disrupted redox
homeostasis, neuroinflammation and protein shedding (cleavage
of the ectodomain of membrane proteins; Altmeppen et al., 2013;
Saftig and Bovolenta, 2015).

Nanoparticle-based and bioengineered sensors presented
here were mostly tested in non-neural and some neural cells
but their employability under true pathological conditions
remain to be investigated. Currently available sensors require
considerable improvements to provide reliable, reproducible
and simple measurements of biomarker concentrations,
duration of the processes and their precise location. The
internalization of nanoparticle-based sensors still remains a
challenge.

Nanosensing is a very dynamic field, and the employability of
the new designs and the proportions of targeted application areas
keep changing. In the near future, advances in nanotechnology
and imaging techniques combined with electrophysiological
recordings, could elucidate critical signaling players under
physiological and pathological conditions thereby providing the
way of more successful testing of new therapeutic interventions
in neurological disorders. Combined approaches employing
electrophysiology, bioengineering and nanotechnology could
contribute to finding ways of getting “out of clutter and finding
simplicity” (Albert Einstein).
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