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The purpose of this work was to demonstrate the feasibility of building recurrent
artificial neural networks with hybrid complementary metal oxide semiconductor
(CMOS)/memristor circuits. To do so, we modeled a Hopfield network implementing
an analog-to-digital converter (ADC) with up to 8 bits of precision. Major shortcomings
affecting the ADC’s precision, such as the non-ideal behavior of CMOS circuitry and
the specific limitations of memristors, were investigated and an effective solution was
proposed, capitalizing on the in-field programmability of memristors. The theoretical work
was validated experimentally by demonstrating the successful operation of a 4-bit ADC
circuit implemented with discrete Pt/TiOo_ /Pt memristors and CMOS integrated circuit
components.

Keywords: Hopfield network, recurrent neural network, hybrid circuits, memristor, resistive switching,
analog-to-digital conversion

INTRODUCTION

Recurrent artificial neural networks are an important computational paradigm capable of solving a
number of optimization problems (Hopfield, 1984; Tank and Hopfield, 1986). One classic example
of such networks is a Hopfield analog-to-digital converter (Tank and Hopfield, 1986; Lee and Sheu,
1989; Smith and Portmann, 1989). Although such a circuit may be of little practical use, and inferior,
for example, to similar-style feed forward-type ADC implementations (Chigusa and Tanaka, 1990),
it belongs to a broader constrained optimization class of networks which minimize certain pre-
programmed energy functions and have several applications in control and signal processing (Tank
and Hopfield, 1986). The Hopfield network ADC circuit also represents an important bridge
between computational neuroscience and circuit design, and an understanding of the potential
shortcomings of such a relatively simple circuit is therefore important for implementing more
complex recurrent neural networks.

An example of a 4-bit Hopfield network ADC is shown in Figure 1 (Tank and Hopfield, 1986).
The originally proposed network consists of an array of linear resistors (also called weights or
synapses) and four peripheral inverting amplifiers (neurons). Each neuron receives currents from
the input and reference lines and from all other neurons via corresponding synapses. The analog
input voltage Vs is converted to the digital code V3V, V; Vy, i.e.,
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FIGURE 1 | (A) Conventional Hopfield network implementation of a 4-bit ADC
and (B) specific implementation of a neuron as considered in this paper.

3
Vs :Zz"v,- (1)
i=0

by first forcing all neuron outputs to zero (Lee and Sheu, 1989)
and then letting the system evolve to the appropriate stationary
state.

To understand how the Hopfield network performs the
ADC operation, let us first describe its electrical behavior.
Assuming leakage-free neurons with infinite input and zero
output impedances, the dynamic equation governing the system
evolution of the input voltage U; of the j-th neuron is
described as:

CUj = =) TVi— T;Uj+1; (2a)
i

Vi = g(U), (2b)

where g(-) is a neuron activation function, C is the neuron’s input

capacitance, Tj; is a conductance of the synapse connecting the

output of the i-th neuron with the input of the j-th neuron, while

Ij = TsjVs — Tg; Vk, (3)

Tj TSj + TRj + EiT,']' (4)

are the corresponding effective offset input current and effective
input conductance for the j-th neuron. HereVy is a reference
voltage, while T and Ts are conductances of reference and input
weights, respectively (Figure 1A). Note that neuron input U; can
be either positive or negative, but the output of the neuron is
either zero or positive. The inverted outputs of the neurons,
which are fed back to the network, are therefore either negative
or zero. One activation function suitable for such mapping is

the sigmoid function 1/(1+exp[-U]). Neuron output needs to be
inverted to keep the feedback weights positive and thus to allow
physical implementation with passive devices, such as resistors'.

Alternatively, the Hopfield network operation can be
described by an energy function. The evolution of the dynamic
system described by Equation (2) is equivalent to a minimization
of the energy function:

1 v,
EZEZTUVi‘/j_Z‘/}IJ'_E:D/ g Mdv (5
- : _
Y ) )

where the last term can be neglected for very steep transfer
functions (Hopfield, 1984). In Tank and Hopfield (1986), showed
that a 4-bit ADC task (Equation 1) can be described by the
following energy function:

3 3
1 , 1 A
E=_(Vs—) 2V’ = =) 2%vy(vi—1 6
2( S o 1) 21.:0 1( i ) ()

Here the first term tends to satisfy Equation (1), while the second
tends to force each digital output V; to be either “0” or “1.” After
rearranging the terms in Equation (6) and comparing the result
with Equation(5), the appropriate weights for performing the
ADC task are:

le — 2(1"5'1')7 TS]=215TR] = 2(2j_ 1). (7)

In the Hopfield ADC network, the number of synapses
grows quadratically with the number of neurons. Compact
implementation of the synapses is therefore required if such
circuits are to be practical. This is certainly challenging to
achieve with conventional CMOS technology, because, according
to Equation (7), it requires analog weights with a relatively
large dynamic range, i.e., in the order of 22N, where N is
the bit precision. Weights can be stored digitally, but this
approach comes with a large overhead (Moopenn et al.,
1990). On the other hand, analog CMOS implementations
of the synapses have to cope with the mismatch issues
often encountered in CMOS circuits (Indeveri et al., 2011).
Consequently, several attempts have been made to implement
synapses with alternative, nonconventional technologies. In some
of the early implementations of Hopfield networks, weights
were realized as corresponding thin film (Jackel et al., 1987) or
metal line (Graf et al., 1986; Schwartz et al., 1987) conductance
values, patterned using e-beam lithography and reactive-ion-
etching. The main limitation of these approaches was that the
weights were essentially one-time programmable, with rather
crude accuracy. A much more attractive solution was very
recently demonstrated in Eryilmaz et al. (2014), which describes a
Hopfield network implementation with synapses based on phase
change memory paired with conventional field-effect transistors.
That work, together with other recent advances in device

!The sign of the first term on the left in Equation (2a), and of all right hand terms
in Equation (5), is different from that of the original paper (Hopfield, 1984). In this
work we assume that all weights are strictly positive, making it necessary explicitly
to flip the neuron feedback signal sign.
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technologies (Wu et al., 2012; Zhang et al., 2012) revived interest
in the theoretical modeling of recurrent neural networks based
on hybrid circuits (Waser et al., 2009; Strukov and Kohlstedst,
2012; Lehtonen et al., 2014; Rakkiyappan et al., 2014; Walls and
Likharev, 2014).

This paper explores the implementation of synapses with
an emerging, very promising type of memory devices, namely
metal-oxide resistive switching devices (“memristor”) (Wu et al.,
2012; Zhang et al, 2012). In the next section we discuss
the general implementation details of the Hopfield network
ADC, including the memristor devices which were utilized
in the experimental setup. This is followed by a theoretical
analysis of the considered hybrid circuits’ sensitivity to certain
representative sources of non-ideal behavior and discussion of a
possible solution to such problems. The theoretical results were
validated with SPICE simulations (Section Simulation Results)
and experimental work (Section Experimental Results). The
paper concludes with a Discussion section. It should be noted
that preliminary experimental results, without any theoretical
analysis, were reported earlier in Gao et al. (2013a), where we
first presented a Hopfield network implementation with metal-
oxide memristors. The only other relevant experimental work on
memristor-based Hopfield networks that we are aware of was
published recently in Hu et al. (2015). However, the network
demonstrated in Hu et al. (2015) was based on 9 memristors
whereas the circuit presented in this work involves 16.

MATERIALS AND METHODS FOR
HOPFIELD NETWORK IMPLEMENTATION
WITH HYBRID CIRCUITS

Following on from our earlier works (Alibart et al, 2013;
Gao et al, 2013b; Merrikh-Bayat et al, 2014), we here
consider the implementation of a hybrid CMOS/memristive
circuit (Figure 1). In this circuit, density-critical synapses are
implemented with Pt/TiO,_y/Pt memristive devices, while
neurons are implemented by CMOS circuits.

In their simplest form, memristors are two-terminal passive
elements, the conductance of which can be modulated reversibly
by applying electrical stress. Due to the simple structure and ionic
nature of their memory mechanism, metal-oxide memristors
have excellent scaling prospects, often combined with fast, low
energy switching and high retention (Strukov and Kohlstedt,
2012). Many metal oxide based memristors can also be switched
continuously, i.e., in analog manner, by applying electrical bias
(current or voltage pulses) with gradually increasing amplitude
and/or duration.

Figure 2A shows typical continuous switching I-Vs for the
considered Pt/TiO,_«/Pt devices (Alibart et al., 2012). The
devices were implemented in “bone-structure” geometry with
an active area of ~1um? using the atomic layer deposition
technique. An evaporated Ti/Pt bottom electrode (5nm/25nm)
was patterned by conventional optical lithography on a
Si/SiO; substrate (500 um/200 nm, respectively). A 30 nm TiO;
switching layer was then realized by atomic layer deposition at
200°C using Titanium Isopropoxide (C;2H304Ti) and water
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FIGURE 2 | (A) Typical -V curves with current-controlled set and
voltage-controlled reset switching for the considered Pt/TiOo_, /Pt
memristors. (B) Modeling of static /-V curves at small disturb-free voltages for
several different states. The fitting parameters are g = 1, o = 14.7V =3,

ap =—-59x10% QV 3 a3 =1.5x 108 @2V =3 for V > 0, and oy = 34.6V 3,
ap =—1.9x10% QV=3, ag = 3.65 x 108 Q2V=3 for V < 0.

as precursor and reactant, respectively. A Pt/Au electrode
(15nm/25 nm) was evaporated on top of the TiO, blanket layer,
and the device was finally rapidly annealed at 500°C in an N, and
N,+0, atmosphere for 5min to improve the crystallinity of the
TiO, material. Details of the fabrication and characterization of
the considered memristors are given in Alibart et al. (2012).

After programming the memristors to the desired resistance,
it was important for their state to remain unchanged during
operation of the Hopfield network, so to prevent any disturbance
the voltage drop across them was always kept within the |V|<
0.2V “disturb-free” range (Alibart et al., 2012).

The static I-V characteristics (i.e., those within disturb-
free regime) for several different memory states are shown in
Figure 2B. To assist SPICE simulation, the experimental I-V
curves at small biases were fitted by the following static equation
with a single memory state G:

I= GV + B(a1G + a2G* + a3G3) V2. (8)

The need to keep the voltage drop across memristive devices
small also affects neuron design. A simple leaky operational
amplifier (op-amp) integrator could be sufficient to implement
neuron functionality, but ensuring disturb-free operation with
such a design is not easy. This issue was resolved by implementing
neurons with three op-amps connected in series (Figure 1B). The
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first op-amp was an inverting amplifier which held virtual ground
even if the neuron’s output was saturated. The second op-amp
was an open loop amplifier implementing a sign-like activation
function. The field effect transistor in the negative feedback
of this op-amp was initially turned on to force the neuron’s
outputs to zero (i.e., to set into initial state before computing
output) and then turned off during network convergence. The
last op-amp inverted the signal and ensured that the neuron
output was within the —0.2V < V < 0 voltage range. Note
that since the neuron bandwidth was mainly determined by the
input capacitance of the second amplifier, and the other sources
of parasitic capacitance could be neglected for simplicity, the
capacitive load of the second amplifier (Figure 1B) was effectively
a neuron input capacitance (Figure 1A).

Assuming ideal op-amps and no possibility of saturation by
the first and last amplifiers, the dynamic equation for this neuron
design can be written as:

CU]' = —ZT,’jVi—TNlUj-i-Ij (9a)

1

—Tna2/Tnsg(Uj ) .

v (9b)
where g() is a transfer function of the second op-amp (see
Appendix for more details on derivation).

For a very steep transfer function, the second term in the right
hand part of Equation (9a) can be neglected (Hopfield, 1984).
The network is then described by the original energy function
(Equation 5) and the weights are proportional to those defined in
Equation (7), i.e.,

Ty = 5Ty, Tsj' = Tsj, Trj’ = 5Tg;» (10)

where the additional coefficient 5 is due to the reduced, i.e., 0.2V,
output voltage corresponding to digital “1” in the considered
circuit [as opposed to output voltage 1 V assumed in the original
ADC energy function in Equation (6) for ADC and the weights
in Equation (7) derived from that energy function].

The physical implementation of this Hopfield network ADC
posed a number of additional challenges. However, it should
first be mentioned that variations in neuron delay and input
capacitances, which may result in oscillatory behavior and
the settling in of false energy minima (Lee and Sheu, 1989;
Smith and Portmann, 1989), were not a problem in our case
thanks to the slow operating speed, which was enforced to
reduce capacitive coupling. The specific problems regarding
the considered implementation were offsets in virtual ground,
resulting from the voltage offsets (u,) and limited gain (A)
of the op-amps (Figure 1B). Another, somewhat less severe,
problem was the nonlinear conductance of the memristive
devices (defined via parameter B-, see Equation 8). In the
Appendix it is shown how limited gain and non-zero offset
result in an additional constant term Iy in dynamical equation
(Equation A7), which can be factored into the reference weights
as follows:

Tx;” = Trj + Ioj/ Vr. (11)

The Hopfield network with practical, non-ideal neurons can still
therefore be approximated by the original energy equation and it
should be possible to circumvent the effects of limited gain and
voltage offset by fine-tuning the reference weights. This idea was
verified via SPICE modeling and experimental work, as described
in the next section.

RESULTS

Simulation Results

Using Equation (8) for the memristors and SPICE models for
the IC components, in the next series of simulations we studied
how particular non-ideal behavior affects differential (DNL) and
integral (INL) nonlinearities in ADC circuits (van de Plassche,
2003). Figure 3A shows INL and DNL as a function of the
open loop DC gain, which was varied simultaneously for all
three op-amps, assuming ideal memristors with § = 0 and no
voltage offset. Note that in this simulation, the gain-bandwidth
product (GBP) was increased proportionally to the open loop
DC gain, and was equal to 3 MHz at Apc = 2 x 10°. Because
the circuit operated at about 1.5 KHz, the effective gain A ~
Apc/100 for all simulations (and also for the experimental
work discussed below). Figure 3B shows the impact of the

A -
1.4} -=|[DNL|
- [INL]
0.7t
0.0t
0.1M 0.2M 0.5M 2M
B Open loop DC gain, Apc
0.6
= |DNL|
0.4} - |INL]|
0.2t
0.0 : : - : :
0 2 4 6 8
c Voltage offset, u, (mV)
0.3
> / :/'
0.1f = = |DNL|
. . .- |INL]|
00g 1 2 3
Memristor nonlinearity,
FIGURE 3 | Theoretical analysis of the performance sensitivity of a
4-bit Hopfield network ADC with respect to (A) open-loop DC gain, (B)
voltage offsets in the operational amplifiers, and (C) the nonlinearity of
memristive devices.
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FIGURE 4 | Simulation results for (A) the original and (B) the optimized
4-bit Hopfield network ADC with 8 =1, Apc =2 x 105, and up =3mV
voltage offset, which are representative parameters for the
experimental setup. For the optimized network, TR” = 0.97 Ty, TRe” =
0.86 TRQv TRS” =0.95 TR3v TR4” =0.97 TR4-

voltage offset on DNL and INL (simulated as an offset on the
ground nodes), which was varied simultaneously for all three op-
amps. Finally, Figure 3C shows the effect of I-V nonlinearity,
which was varied by changing constant B in Equation (8),
assuming all other parameters of the network to be close to
ideal, i.e., that the voltage offset u, = 0 and the open loop
DC gain Apc = 10° Note that for f > 0, the memristor
weights were chosen in such a way that the conductance of the
device at —0.2V matched the corresponding values prescribed by
Equation (10).

The results shown in Figure3 confirm the significant
individual contribution of the considered sources of non-ideal
behavior on the ADC’s performance. Figure4A shows the
simulation results considering all these factors together for
the specific values u, = 3mV, 8 = 1, Apc = 2 X
10°, and GBP = 3 MHz, which are representative of the
experimental setup. The gain and voltage offset values were
taken from the specifications of the discrete IC op-amps used
in the experiment. Clearly, the ADC output is distorted and
contains numerous errors, with the largest contribution to INL
being due to finite gain (Figure 3). Figures 4B, 5 show the
simulation results with new values for the reference weights
calculated according to Equation (11) for the 4-bit and 8-bit
ADCs, respectively. The results shown in these figures confirm
that non-ideal behavior in op-amps, such as limited gain and
voltage offsets, can be efficiently compensated by fine-tuning
memristors.

3.0r
S |28
gz‘o_:’ljo.o 1\5) (V)z,o 30,
3 L5} y
T
gﬂ 1.0f
0.5¢
0.0 : : s ' '

00 05 1.0 i5 2.0 25 3.0
Analog input V, (V)

FIGURE 5 | Simulation results for the optimized 8-bit Hopfield network
ADC with TRy” = 0.8 TRy, TR2” = 0.81 Tpo, TR3” = 0.89 T3, TRy” =
0.83 TRy, Trs” = 0.55 TRps, Trg” = 0.74 Trg, TR7” = 0.71 TR7, TRg” =
0.75 Tgg. All other parameters are equal to those used for Figure 4.

Experimental Results

The simulation results were also validated experimentally by
implementing a 4-bit Hopfield network ADC in a breadboard
setup consisting of Pt/TiO,_/Pt memristive devices and discrete
IC CMOS components (Figure 6A). The memristor chips were
assembled in standard 40-pin DIP packages by wire-bonding 20
standalone memristive devices. Because input voltage range is 0
< Vs < V@™ = 3.0V, the weights Ts were realized with regular
resistors?. The discrete memristors and other IC components
were then connected as shown in Figure 1 with external wires.

The memristors implementing feedback and reference
weights were first tuned ex-situ using a previously developed
algorithm (Alibart et al., 2012) to the values defined by Equation
(10). The ex-situ tuning for each memristor was performed
individually before the devices were connected in a circuit. This
was done to simplify the experiment and it is worth mentioning
that in general, it should be possible to tune memristors after they
are connected in the crossbar circuit, as it was experimentally
demonstrated by our group for standalone devices connected
in crossbar circuits (Alibart et al., 2013; Gao et al., 2013¢) and
integrated passive crossbar circuits (Prezioso et al., 2015a,b).

As was discussed in Sections Materials and Methods for
Hopfield Network Implementation with Hybrid Circuits and
Results, limited gain and voltage offsets of operational amplifiers
can be compensated by adjusting reference weights according
to Equations (11, A12). To demonstrate in-field configurability
of memristors, the reference weights were fine-tuned in-situ.
In particular, reference weights were adjusted to ensure correct
outputs at four particular input voltages, when Vs is equal to 1/16,
1/8, 1/4, and 1/2 of its maximum value. The tuning is performed
first for Vs = 1/16 V§™, for which the correct operation of ADC
assumes that the least significant output bit Vg flips from 0 to 1
(corresponding to voltage 0.2V in our case), which is ensured

2In principal, input voltage range could be decreased by increasing input weights
correspondingly. However, such rescaling would require larger a dynamic range
of conductances to implement (Equation 6), and this was not possible with the
considered memristive devices.
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FIGURE 6 | Experimental results for the optimized 4-bit Hopfield ADC:
(A) experimental setup, (B) measured outputs for every output channel,
and (C) measured transfer characteristics.

by fine-tuning reference weight Tgo. Similarly, the output bit V;
should flip from 0 to 1 when Vs = 1/8 V¢, which is ensured by
fine-tuning reference weight Tr; and so on. Because we started
fine-tuning from the least significant output, it is sufficient to
fine-tune only one corresponding reference weight at a time
for a particular input voltage, which greatly simplified in-situ
tuning procedure. Also, the direction of adjustment was always
straightforward to determine due to monotonic dependence of
the input voltage at which a particular output bit flips from 0 to
1, on the corresponding reference weight (Equation 11).

DISCUSSION

The network parameters for the experimental work are
summarized in Table1. Although there were a few A/D
conversion errors in the experimental work (Figure 6), the results
are comparable with the simulations of the optimized network,
and much better than those obtained for the unoptimized

TABLE 1 | Parameters for the experimentally demonstrated Hopfield
network ADC.

Feed-back Conductance (S@0.2V) Reference Conductance (S@0.2V)

T2,1 2e-5 TiR 4.75e-6
731 4e-5 Tor 2.19e-5
T4,1 7.9e-5 TaR 9.33e-5
71,2 2e-5 T4R 41.85e-5
73,2 7.9e-5 Input Conductance (S)
T4,2 15e-5 Tis 8.33e-6
71,3 4e-5 Tog 1.67e-5
72,3 7.9e-5 Tas 3.33e-5
T4,3 30.9e-5 T4s 6.67e-5
T1,4 7.9e-5 Neuron Conductance (S)
72,4 15e-5 TN 1e-3
73,4 30.9e-5 TN2 1e-5

NS 5e-4

network. The experimental results for the unoptimized network
were significantly worse in comparison with the simulation, and
are not shown in this paper.

It is worth mentioning that for the considered memristors
drift of conductive state over time was negligible due to highly
nonlinear switching kinetics specific to these devices (Alibart
et al., 2012, 2013; Prezioso et al., 2015a). In principle, for other
types of memristors with inferior retention properties it should
be possible to occasionally fine-tune memristor state to cope
with conductance drift. A related issue might be measurement
noise upon reading the state of the memristor, e.g., due to
the fluctuations in the device conductance over time, which is
sometimes observed as random telegraph noise (Gao et al., 2012,
2013b; Prezioso et al.,, 2015b). Such noise can be tolerated by
performing quasi DC read measurements, however, the downside
would be potentially much slower tuning process.

To conclude, in this work we investigated hybrid
CMOS/metal-oxide-memristor circuit implementation of a
Hopfield recurrent neural network performing analog-to-digital
conversion tasks. We showed that naive implementation of
such networks, with weights prescribed by the original theory,
produces many conversion errors, mainly due to the non-
ideal behavior of the CMOS components in the integrated
circuit. We then proposed a method of adjusting weights in the
Hopfield network to overcome the non-ideal behavior of the
network components and successfully validated this technique
experimentally on a 4-bit ADC circuit. The ability to fine-tune
the conductances of memristors in a circuit was essential for
implementing the proposed technique. In our opinion, the
work carried out proved to be an important milestone and
its results will be valuable for implementing more practical
large-scale recurrent neural networks with CMOS/memristor
circuits. Experimental research into CMOS/memristor neural
networks is still very scarce and, to the best of our knowledge,
the demonstrated Hopfield network is the most complex
network of its type reported to date. From a broader perspective,
this paper demonstrates one of the main advantages of
utilizing memristors in analog circuits, namely the feasibility of
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fine-tuning memristors after fabrication to overcome variations
in analog circuits.
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APPENDIX

Assuming negligible op-amp input currents and output
impedances, the Hopfield network is described by the following
equations, which also account for limited gain and voltage
offsets:

Vi = Ayj (tho1j — Vinj) , (A1)
Vi = gluej + Uj), (A2)
—Vj = Asj (uo3j — Vi) , (A3)

Tt (Vinj — Vij) = Trj (=VR — Vinj) + Tsj (Vs — Vinj)

+ D Ti(=Vi = Vi) (A4)
i
—CUj = Ta(Vy + Up), (A5)
Tnz (Vij — Vij) = Tz (Vij + Vj) . (A6)

Solving these equations results in the following dynamic equation

ajCU’j = — Z T,'jV,{ — ajTN1U1{ + 1+ Ly (A7a)
i

bV =g (V). (A7b)

where  g() is a transfer function of  the
saturating  amplifier —implemented with the second
op-amp, and
U/]' = Ugj + U, (A8)
Vi = uosj(1 + Tnsj/ Tnoy) /by + Vi, (A9)
aj = 1+ (1 + Tj/Txyj)/Ayj, (A10)
bj = Tnsj/Tnoj + (14 Tnsj/ Tnzj)/Asjs (Al1)
Ly = — (Tyj + T)) o1 + a4 Tnjtho)
1 Ty
TNoj
+ b Z Tijuo3; (A12)
J i
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