
ORIGINAL RESEARCH
published: 22 January 2016

doi: 10.3389/fnins.2015.00522

Frontiers in Neuroscience | www.frontiersin.org 1 January 2016 | Volume 9 | Article 522

Edited by:

Themis Prodromakis,

University of Southampton, UK

Reviewed by:

Omid Kavehei,

Royal Melbourne Institute of

Technology, Australia

Christoph Richter,

Technische Universität München,

Germany

*Correspondence:

Ryad B. Benosman

ryad.benosman@upmc.fr

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 13 November 2015

Accepted: 24 December 2015

Published: 22 January 2016

Citation:

Reverter Valeiras D, Orchard G,

Ieng S-H and Benosman RB (2016)

Neuromorphic Event-Based 3D Pose

Estimation. Front. Neurosci. 9:522.

doi: 10.3389/fnins.2015.00522

Neuromorphic Event-Based 3D Pose
Estimation
David Reverter Valeiras 1, Garrick Orchard 2, Sio-Hoi Ieng 1 and Ryad B. Benosman 1*

1Natural Vision and Computation Team, Institut de la Vision, Paris, France, 2 Temasek Labs, National University of Singapore,

Singapore

Pose estimation is a fundamental step in many artificial vision tasks. It consists of

estimating the 3D pose of an object with respect to a camera from the object’s

2D projection. Current state of the art implementations operate on images. These

implementations are computationally expensive, especially for real-time applications.

Scenes with fast dynamics exceeding 30–60 Hz can rarely be processed in real-time

using conventional hardware. This paper presents a new method for event-based

3D object pose estimation, making full use of the high temporal resolution (1 µs) of

asynchronous visual events output from a single neuromorphic camera. Given an initial

estimate of the pose, each incoming event is used to update the pose by combining

both 3D and 2D criteria. We show that the asynchronous high temporal resolution of the

neuromorphic camera allows us to solve the problem in an incremental manner, achieving

real-time performance at an update rate of several hundreds kHz on a conventional

laptop. We show that the high temporal resolution of neuromorphic cameras is a key

feature for performing accurate pose estimation. Experiments are provided showing the

performance of the algorithm on real data, including fast moving objects, occlusions, and

cases where the neuromorphic camera and the object are both in motion.

Keywords: neuromorphic vision, event-based imaging, 3D pose estimation, event-based computation, tracking

1. INTRODUCTION

This paper addresses the problem of 3D pose estimation of an object from the visual output of an
asynchronous event-based camera if an approximate 3D model of the object is known (Lepetit and
Fua, 2005). Current 3D pose estimation algorithms are designed to work on images acquired at a
fixed rate by iteratively correcting errors in the focal plane until a correct estimate is found from a
single image. Image acquisition is conventionally limited to the order of tens of milliseconds in real-
time applications. Low frame rates usually restrict the ability to estimate robustly the pose ofmoving
objects. Increasing the frame rate is often not a solution because the large amount of acquired data
sets a limit to real-time computation. This real-time limitation is currently the bottleneck of several
computer vision applications, where there is always a trade-off to find between frame rate and
computational load.

A recent and evolving branch of artificial vision exploits the unique characteristics of a
novel family of asynchronous frame-free vision sensors whose principle of operation is based
on abstractions of the functioning of biological retinas (Delbrück et al., 2010). These event-
based sensors acquire the content of scenes the changes in scenes asynchronously. Every pixel
is independent and autonomously encodes visual information in its field of view into precisely
timestamped events. As soon as change or motion is involved, which is the case for most

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00522
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2015.00522&domain=pdf&date_stamp=2016-01-22
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:ryad.benosman@upmc.fr
http://dx.doi.org/10.3389/fnins.2015.00522
http://journal.frontiersin.org/article/10.3389/fnins.2015.00522/abstract
http://loop.frontiersin.org/people/292932/overview
http://loop.frontiersin.org/people/94312/overview
http://loop.frontiersin.org/people/32893/overview
http://loop.frontiersin.org/people/94237/overview

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

machine vision applications, the universally accepted paradigm
of visual frame acquisition becomes fundamentally flawed. If a
camera observes a dynamic scene, no matter where the frame
rate is set to, it will always be wrong. Because there is no
relation whatsoever between dynamics present in a scene and the
chosen frame rate controlling the pixel’s data acquisition process,
over-sampling or under-sampling will occur, and moreover
both will usually happen at the same time. As different parts
of a scene usually have different dynamic contents, a single
sampling rate governing the exposure of all pixels in an imaging
array will naturally fail to adequately acquire all these different
simultaneously present dynamics.

Consider a natural scene with a fast moving object in front of
static background, such as a pitcher throwing a baseball. When
acquiring such a scene with a conventional video camera, motion
blurring and displacement of the moving object between adjacent
frames will result from under-sampling the fast motion of the
ball, while repeatedly sampling and acquiring static background
over and over again will lead to large amounts of redundant,
previously known data that do not contain any new information.
As a result, the scene is simultaneously under- and over-sampled.
There is nothing that can be done about this sub-optimal
sampling as long as all pixels of an image sensor share a common
timing source that controls exposure intervals (such as a frame-
clock).

Most vision algorithms, specially when dealing with dynamic
input, have to deal with a mix of useless and bad quality
data to deliver useful results, and continuously invest in power
and resource-hungry complex processing to make up for the
inadequate acquisition. This brute-force approach may however
no longer be suitable in view of new vision tasks that ask
for real-time scene understanding and visual processing in
environments with limited power, bandwidth, and computing
resources, such as mobile battery-powered devices, drones or
robots.

The increasing availability and the improving quality of
neuromorphic vision sensors open up the potential to introduce
a shift in the methodology of acquiring and processing visual
information in various demanding machine vision application
(Benosman et al., 2011, 2012). As we will show, asynchronous
acquisition allows us to introduce a novel computationally
efficient and robust visual real-time 3D pose estimation method
that relies on the accurate timing of individual pixels’ response
to visual stimuli. We will further show that asynchronous
acquisition allows us to develop pose estimation techniques
that can follow patterns at an equivalent frame rate of several
kHz overcoming occlusions at the lowest computational cost.
Processing can be performed on standard digital hardware
and takes full advantage of the precise timing of the
events.

Frame based stroboscopic acquisition induces massively
redundant data and temporal gaps that make it difficult to
estimate the pose of a 3D object without computationally
expensive iterative optimization techniques (Chong and Zak,
2001). 3D pose estimation is a fundamental issue with
various applications in machine vision and robotics such as
Structure From Motion (SFM) (Snavely et al., 2007; Agarwal

et al., 2011), object tracking (Drummond and Cipolla, 2002),
augmented reality (Van Krevelen and Poelman, 2010) or visual
servoing (Janabi-Sharifi, 2002; Janabi-Sharifi and Marey, 2010).
Numerous authors have tackled finding a pose from 2D-
3D correspondences. Methods range from simple approaches
like DLT (Chong and Zak, 2001) to complex ones like PosIt
(DeMenthon and Davis, 1995). There are two classes of
techniques: iterative (DeMenthon and Davis, 1995; Kato and
Billinghurst, 1999) or non-iterative (Chong and Zak, 2001;
Lepetit et al., 2007). However, most techniques are based on
a linear or non-linear system of equations that needs to be
solved, differing mainly by the estimation techniques used to
solve the pose equations and the number of parameters to be
estimated.

Existing algorithms differ in speed and accuracy, some provide
a fixed computation time independent of the number of points of
the object (Lepetit et al., 2007). The DLT (Chong and Zak, 2001)
is the simplest, slowest and weakest approach for estimating the
12 parameters in the projection matrix. However, it can be used
to provide an initial estimate of the pose. PosIt (DeMenthon and
Davis, 1995) is a fast method that does not use a perspective
projection, but instead relies on an orthographic projection
to estimate fewer parameters. The method was later extended
(Oberkampf and DeMenthon, 1996) to take into account planar
point clouds.

Recently, CamPoseCalib has been introduced (MIP, CAU
Kiel, Germany, 2008), it is based on the Gauss-Newton
method and non-linear least squares optimization (Araujo et al.,
1996). Another way to solve the pose problem from point
correspondences is known as the PnP (Perspective-n-Point)
problem. It has been explored decades ago, readers can refer to
Fischler and Bolles (1981), Lepetit et al. (2009). Other methods
are based on edge correspondences (Harris, 1993; Drummond
and Cipolla, 2002), or photometric information (Kollnig and
Nagel, 1997).

This paper proceeds with an introduction to event-based
vision sensors (Section 2.1), before describing our event-based
3D pose estimation algorithm (Section 2.2). In Section 3 we
describe experiments and results obtained by our algorithm
before concluding in Section 4.

2. MATERIALS AND METHODS

2.1. Neuromorphic Silicon Retina
Event-based cameras are a new class of biomimetic vision
sensors that, unlike conventional frame-based cameras, are not
driven by artificially created clock signals. Instead, they transmit
information about the visual scene in an asynchronous manner,
just like their biological counterparts. One of the first attempts
of incorporating the functionalities of the retina in a silicon chip
is the work of Mahowald (1992) in the late eighties. Since then,
the most interesting achievements in neuromorphic imagers has
been the development of activity-driven sensing. Event-based
vision sensors output compressed digital data in the form of
events, removing redundancy, reducing latency, and increasing
dynamic range when compared with conventional cameras. A

Frontiers in Neuroscience | www.frontiersin.org 2 January 2016 | Volume 9 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

complete review of the history and existing sensors can be
found in Delbrück et al. (2010). The Asynchronous Time-based
Image Sensor (ATIS; Posch et al., 2011) used in this work is
an Address-Event Representation (AER; Boahen, 2000) silicon
retina with 304× 240 pixel resolution.

The ATIS output consists of asynchronous address-events
that signal scene illuminance changes at the times they occur.
Each pixel is independent and detects changes in log intensity
larger than a threshold since the last emitted event (typically
15% contrast). As shown in Figure 1, when the change in
log intensity exceeds a set threshold an ON or OFF event is
generated by the pixel, depending on whether the log intensity
increased or decreased. Immediately after, the measurement
of an exposure/grayscale value is initiated, which encodes the
absolute pixel illuminance into the timing of asynchronous event
pulses, more precisely into inter-event intervals. The advantage
of such a sensor over conventional clocked cameras is that only
moving objects produce data. Thus, the amount of redundant
information and the load of post-processing are reduced, making
this technology particularly well-suited for high-speed tracking
applications. Additionally, the timing of events can be conveyed
with very low latency and accurate temporal resolution of 1 µ s.
Consequently, the equivalent frame rate is typically several kHz.
The encoding of log intensity of light change implements a form
of local gain adaptation which allows them to work over scene
illuminations that range from 2 lux to over 100 klux. When
events are sent out, they are timestamped using off-chip digital
components and then transmitted to a computer using a standard
USB connection.

The present algorithm estimates 3D pose using only change
detector events. The corresponding stream of events can be
mathematically described in the following way: let ek =
(uT

k
, tk, pk)

T be a quadruplet describing an event occurring at

time tk at the position uk = (xk, yk)
T on the focal plane. The

two possible values for the polarity, pk, are 1 or −1, depending
on whether a positive or negative change of illuminance has been
detected.

2.2. Event-Based 3D Pose Estimation
In the first two subsections below we formulate the 3D pose
estimation problem and describe the notation we use for 3D
rotations. In the subsequent two subsections we describe how we
match incoming visual events to edge projections on the focal
plane, and how we then match these events to the 3D locations
of points on the object. Finally, in the fifth subsection below we
describe how we update our model of the object’s 3D pose using
these event-based correspondences.

2.2.1. Problem Formulation
Let us consider a moving rigid object observed by a calibrated
event-based camera. The movement of the object generates a
stream of events on the focal plane of the camera. Attached to
this object is a frame of reference, known as the object-centered
reference frame, whose origin we denote as V0. The pinhole
projection maps 3D points V expressed in the object-centered
reference frame into υ on the camera’s focal plane (see Figure 2),
according to the relation:

(
υ

1

)
∼ K

(
R T

) (V
1

)
. (1)

Here, K is the 3 × 3 matrix defining the camera’s intrinsic
parameters—obtained through a prior calibration procedure—
while T ∈ R

3 and R ∈ SO(3) are the extrinsic parameters. The
sign∼ indicates that the equality is defined up to a scale (Hartley
and Zisserman, 2003). (T,R) are also referred to as the relative
pose between the object and the camera (Murray et al., 1994). As
the object moves, it is only the pose which changes and needs to
be estimated.

An estimation of the pose can be found by minimizing the
orthogonal projection errors on the line of sight for each 3D
point, as illustrated by Figure 2. Thus, we minimize a cost
function directly on the 3D structure rather than computing it on
the image plane (Lu et al., 2000). The advantage of this approach
is that a correct match of the 3D points leads to a correct 2D

FIGURE 1 | Functional diagram of an ATIS pixel (Posch et al., 2011). Two types of asynchronous events, encoding change (top) and illuminance (bottom)

information, are generated and transmitted individually by each pixel in the imaging array when a change is detected in the scene. The bottom right image only shows

grayscale of pixels for which illuminance has recently been measured. Black pixels indicate locations where illuminance has not been measured recently.

Frontiers in Neuroscience | www.frontiersin.org 3 January 2016 | Volume 9 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

FIGURE 2 | The object is described as a set of vertices {Vi}, whose

corresponding projections on the focal plane are denoted as {vi}. An

edge defined by vertices Vi,Vj is noted εij . If an event ek has been generated

by a point Vi of the model, then Vi must lie on the line of sight of the event,

which is the line passing through the camera center and the position of the

event on the focal plane uk . When that happens, the projection of the point vi
is guaranteed to be aligned with the event.

projection on the focal plane, but the reverse is not necessarily
true.

The high temporal resolution of the camera allows us to
acquire a smooth trajectory of the moving object. We can then
consider each event generated by the moving object as relatively
close to the previous position of the object. Since the event-
based camera detects temporal contours, all moving objects can
be represented by a set of vertices and edges. We can then set the
following convention: let {Vi} be the set of 3D points defining
an object. These 3D points are vertices and their projections onto
the retina focal plane are noted as υ i. The edge defined by vertices
V i, V j is noted as εij. Figure 2 shows a general illustration of the
problem.

Using the usual computer graphics conventions (O’Rourke,
1998; Botsch et al., 2010), an object is described as a polygon
mesh. This means that all the faces of the model are simple
polygons, triangles being the standard choice. The boundaries of
a face are defined by its edges.

2.2.2. Rotation Formalisms
A convenient parametrization for the rotation is to use unit
quaternions (Murray et al., 1994). A quaternion is a 4-tuple,
providing a more efficient and less memory intensive method of
representing rotations compared to rotation matrices. It can be
easily used to compose any arbitrary sequence of rotations. For
example, a rotation of angle φ about rotation axis r is represented
by a quaternion q satisfying:

FIGURE 3 | Edge selection for an event ek occurring at uk . The distance

of uk to each visible edge εij is computed as dij (uk), the euclidean distance

between uk and the segment defined by the projected edge [vi, vj].

q(φ, r) = cos
(φ

2

)
+ r sin

(φ

2

)
, (2)

where r is a unit vector. In what follows, we will use the
quaternion parametrization for rotations.

When trying to visualize rotations, we will also use the axis-
angle representation, defined as the rotation vector φr.

2.2.3. 2D Edge Selection
Themodel of the tracked object and its initial pose are assumed to
be known. This allows us to virtually project the model onto the
focal plane as a set of edges. For each incoming event ek occurring
at position uk = (xk, yk)

T on the image plane, we are looking for
the closest visible edge. Thus, for every visible edge εij, projected
on the focal plane as the segment [υ i,υ j], we compute dij(uk), the
euclidean distance from uk to [υ i, υ j] (see Figure 3). To compute
this distance, uk is projected onto the line defined by [υ i, υ j].
If this projection falls inside of the segment [υ i, υ j], then the
distance is given by the generic expression:

dij(uk) =
‖(uk − υ i)× (υ j − υ i)‖

‖υ j − υ i‖,
(3)

where × is the cross product. If the projection is not inside
[υ i, υ j], then dij(uk) is set to be equal to the distance between
uk and the closest endpoint.

We set a maximum allowed distance for the event to be
assigned to an edge as dmax. The edge to which the event is
assigned to is εnm such that:

dnm(uk) = min
i,j

dij(uk), (4)

assuming dnm(uk) ≤ dmax, otherwise the event is considered as
noise and discarded.

Remark 1: In complex scenarios, the 2D matching step can
be further strengthened by applying more refined criteria. We
implement a 2D matching based on Gabor events, which are
oriented events generated by events lying on a line (Orchard
et al., 2015). When the 2D matching is performed using this
technique, a Gabor event will only be assigned to a visible edge
if the angle of the event and the angle formed by the edge are
close enough. An example of application of this method will be

Frontiers in Neuroscience | www.frontiersin.org 4 January 2016 | Volume 9 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

shown in the experiments, where pose estimation is performed
even with partial occlusions and egomotion of the camera.

Remark 2: This section assumes that the visibility of the
edges is known. This is done via a Hidden Line Removal
algorithm (Glaeser, 1994) applied for each new pose of the
model.

2.2.4. 3D Matching
Once εnm is determined, we need to look for the point on the
edge that has generated the event. The high temporal resolution
of the sensor allows us to set this point as the closest to the line of
sight of the incoming event. Performing this matching between
an incoming event in the focal plane and a physical point on the
object allows to overcome issues that appear when computation is
performed directly in the focal plane. The perspective projection
on the focal plane is neither preserving distances nor angles, i.e.,
the closest point on the edge in the focal plane is not necessarily
the closest 3D point of the object.

The camera calibration parameters allow us to map each event
at pixel uk to a line of sight passing through the camera’s center.
The 3D matching problem is then equivalent to a search for the
smallest distance between any two points lying on the object’s
edge and the line of sight.

As shown in Figure 4, let Ak be a point on the line of sight
of an incoming event ek located at uk in the focal plane. Let Bk

be a point on the edge εnm that has been computed as being at
a minimal distance from the line of sight passing through uk.
We can assume ek to be generated by a 3D point on the moving
object at the location Ak, that was at Bk before ek occurred. This
hypothesis is reasonable as due to the high temporal resolution
events are generated by small motions. Finding Ak and Bk is the
scope of the 3D matching step.

Let Mk be the vector defining the line of sight of ek, it can be
obtained as:

Mk = K−1
(
uk

1

)
. (5)

FIGURE 4 | Geometry of the 3D matching problem: an event ek at

position uk = (xk, yk)
T is generated by a change of luminosity in the

line of sight passing through the event, defined by the vector Mk . Ak is

a point on the line of sight and Bk a point on the edge εnm, such that the

minimum distance between these two lines is reached. Finding Ak and Bk is

the objective of the 3D matching step.

Ak and Bk can therefore be expressed as:

Ak = α1Mk (6)

Bk = Vn + α2(Vm − Vn), (7)

where α1 and α2 are two real valued parameters.
Let εnm = Vm − Vn, we are looking for solutions such that

(Ak−Bk) is perpendicular to both εnm andMk. Hence, we obtain
the following equation:

(
−MT

k
Mk M

T
k
εnm

−MT
k
εnm εTnmεnm

)(
α1

α2

)
=
(
−VT

nMk

−VT
nεnm

)
. (8)

Solving this equation for α1 and α2 provides both Ak and Bk. The
solution to this system is discussed in the Appendix.

We also set a maximum 3D distance between Ak and Bk,
denoted Dmax. If the distance between Ak and Bk is larger than
this value we discard the event.

2.2.5. Rigid Motion Estimation
Knowing Bk and Ak allows us to estimate the rigid motion
that transforms Bk into Ak. We define two strategies: the direct
estimation of the required transformation for every incoming
event and the computation using an estimation of the velocity.

Direct Transformation
The rigidmotion is composed of a translation1Tk and a rotation
1qk aroundV0, the origin of the object-centered reference frame.

Let us define the scaling factor λT such that 1Tk is related to
the vector Ak − Bk as:

1Tk =



1 0 0
0 1 0
0 0 m


 λT(Ak − Bk), (9)

where (Ak − Bk) is the translation that makes Bk coincide with
Ak. Here, m is a multiplier that allows us to set the scaling factor
independently for the Z axis. The need for this extra degree of
freedom can be justified because changes in the depth of the
object will only become apparent through changes in the x or
y position of the events on the image plane. Consequently, the
system does not react in the same way to changes in depth as it
does to changes in the X or Y position, resulting in a different
latency for the Z axis. m is then a tuning factor that will be set
experimentally.

The rotation around V0 is given by a unit quaternion 1qk of
the form:

1qk(λθθk, hk) = cos
(λθθk

2

)
+ hk sin

(λθθk

2

)
, (10)

where hk is a unit vector collinear to the axis of rotation and
λθθk is equal to the rotation angle, that we conveniently define
as a product between a scaling factor λθ and the angle θk defined
below.

If πk is the plane passing through Bk, Ak and V0 (see
Figure 5A) such that hk is the normal, then hk can be
computed as:

hk =
(Bk − V0)× (Ak − V0)

‖(Bk − V0)× (Ak − V0)‖
. (11)

Frontiers in Neuroscience | www.frontiersin.org 5 January 2016 | Volume 9 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

FIGURE 5 | (A) πk represents the plane defined by Ak , Bk and the origin of

the object-centered reference frame V0. The desired rotation is contained in

this plane, and thus the rotation axis hk is normal to it. (B) Normal view to πk .

Both (Bk − V0) and (Ak − V0) are contained in this plane, and thus their cross

product gives us the axis of rotation. The angle θk between these two vectors

is equal to the rotation angle that makes Bk and Ak coincide.

We define θk as the angle between (Bk − V0) and (Ak − V0), as
shown in Figure 5B.

θk = tan−1
(
‖(Bk − V0)× (Ak − V0)‖
(Bk − V0)T(Ak − V0)

)
. (12)

In the case of Ak, Bk and V0 alignment If Ak, Bk and V0

are aligned, hk is undefined. This happens when no rotation is
applied or when the rotation angle is equal to π . This last case is
unlikely to occur because of the small motion assumption.

Finally, the pose of the model is updated incrementally
according to:

Tk = Tk−1 +1Tk (13)

qk = 1qkqk−1. (14)

For the rest of the paper, this described procedure will be referred
to as the direct transformation strategy.

Remark 1:Once the pose is updated, the next step is to update
the transformation between the object and the camera. This is
a computationally expensive process that requires transforming
the 3D points, projecting them onto the image plane and applying
the hidden-line removal algorithm. Consequently, in order to
increase the performance of the system, we do not apply the
transformation for every incoming event, but everyN events.N is
experimentally chosen, and its effect on the algorithm discussed
in the experiments section.

Remark 2: λT and λθ are set experimentally, and they should
always be equal or smaller than one. When they are smaller than
one, we do not fully transform the model so that Bk matches
Ak for every event. Instead, we apply a small displacement
for each incoming event. Here, it is important to keep in
mind that a moving edge generates more than one event. This
number and the frequency of events are proportional to the local
contrast.

Velocity Estimation
We make an additional hypothesis on the motion smoothness
which assumes the velocity of the object does not change
abruptly. This hypothesis allows us to update the velocity only
after everyN events. Due to the high temporal resolution and the

asynchronous nature of the neuromorphic camera, we consider
this to be, in general, a reasonable assumption.

For an incoming event ek, let 1̂Tk be the cumulative
translation of the estimates from the last N events:

1̂Tk =
k∑

i=k−N
1Ti, (15)

where 1Ti is equal to the translation for the ith event, computed
using (9) with λT = 1. Let us note that here, 1Ti are not
displacements to be applied to the model. Instead, we are using
them to compute the cumulative translation for the lastN events,
that we will later use to estimate the mean linear velocity during
that period. This fact justifies the choice of making λT = 1.

Analogously, let 1̂qk
(
θ̂k, ĥk

)
be the quaternion of the resulting

rotation associated with the last N events:

1̂qk
(
θ̂k, ĥk

)
=

k∏

i=k−N
1qi(θi, hi

)
, (16)

where the quaternions1qi are computed using (10) with λθ = 1,
for the same reason as above.

From these cumulative translation and rotation, we define νk
and ωk, the mean linear and angular velocities for the last N
events:

νk =
1̂Tk

N1t
, (17)

and

ωk =
θ̂k

N1t
ĥk, (18)

where 1t = tk − tk−N .
Equations (17) and (18) have these forms because moving

edges generate a certain number of events with the same
timestamp, and the estimated pose is updated every N events.
We can then consider the last N events to correspond to the
same small motion. Consequently, the mean linear velocity
νk is computed as the mean displacement 1̂Tk/N over the
corresponding time interval 1t. The same explanation holds
for ωk.

The velocities are finally updated every N events according to
the following expressions:

νk = (1− λν)νk−N + λννk, (19)

ωk = (1− λω)ωk−N + λωωk, (20)

where λν and λω are update factors, that will be set
experimentally. Finally, the translation estimated for the model
is computed as:

1Tk = 1tνk. (21)

and the rotation is deduced from the angular velocity vector with
the axis beingωk/‖ωk‖ and the angle1t‖ωk‖. This is represented
by the unit quaternion 1qk:

1qk

(
1t‖ωk‖,

ωk

‖ωk‖

)
. (22)

Frontiers in Neuroscience | www.frontiersin.org 6 January 2016 | Volume 9 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

Algorithm 1 Event-Based 3D pose estimation algorithm

Require: ek(u
T
k
, tk, pk)

T ∀k > 0
Ensure: T, q

Initialize the parameters
Select the method for the rigid motion estimation
for every incoming event ek = (uT

k
, tk, pk)

T do

for every visible edge εij do

Compute the distance dij(uk) between uk and [vi, vj]
end for

dnm(uk)← min(dij(uk))
if dnm(uk) ≤ dmax then

Solve (8) in α1 and α2

Compute Ak and Bk using (6) and (7)
if ||Ak − Bk|| ≤ Dmax then

Compute 1Tk and 1qk using (9) and (10)
ifmethod= direct transformation then

Update T and q using (13) and (14)
else

Update 1̂T and 1̂q using (15) and (16)
end if

end if

end if

for each N consecutive events do
ifmethod= velocity estimation then

Update νk and ωk using (19) and (20)
Compute 1Tk and 1qk using (21) and (22)
Update T and q using (23) and (24)

end if

Apply the transformation to the model
end for

end for

Next, we update the pose of the model, which is only updated
every N events when applying this strategy:

Tk = Tk−N +1Tk (23)

qk = 1qkqk−N . (24)

We will refer to this way of computing the transformation as
the velocity estimation strategy. The general algorithm for both
methods is given below (Algorithm 1).

3. RESULTS

In this section we present experiments to test 3D pose estimation
on real data1. The first two experiments estimate the pose of a
moving icosahedron and house model while viewed by a static
event-based sensor. In Section 3.3 we estimate the pose of the
icosahedron from the view of a moving event-based sensor
in a scene containing multiple moving objects. In Section 3.4
we estimate the pose of the icosahedron under high rotational

1All recordings and the corresponding ground truth data

are publicly available at https://drive.google.com/folderview?id=

0B5gzfP0R1VEFNS1PZ0xKU3F5dG8&usp=sharing.

velocity (mounted on a motor). Finally, in Section 3.5 and
Section 3.6 we investigate how temporal resolution affects pose
estimation accuracy, and how implementation parameters affect
the time required for computation.

In what follows, we will denote the ground truth as {T, q} and
the estimated pose as {T∗, q∗}.

The algorithm is implemented in C++ and tested in
recordings of an icosahedron—shown in Figure 6A—and the
model of a house—Figure 6B—freely evolving in the 3D space.
We set the following metrics on R

3 and SO(3):

• The absolute error in linear translation is given by the norm
of the difference between T

∗ and T. For a given recording,
let T = 1

K

∑K
k=1 Tk be the mean displacement of the object,

whereK is the total number of events.We define ξT the relative
error as:

ξT =
‖T∗ − T‖
‖T‖

. (25)

• For the rotation, the error is defined with the distance d
between two unit quaternions q and q∗:

d(q, q∗) = min{‖q− q∗‖, ‖q+ q∗‖}, (26)

which is proven to be a more suitable metric for SO(3), the
space spanned by 3D rotations (Huynh, 2009). It takes values
in the range [0,

√
2]. Thus, let ξq be the relative rotation error:

ξq =
d(q, q∗)√

2
. (27)

The algorithm provides an instantaneous value of the errors for
each incoming event. In order to characterize its accuracy, we will
consider ξT and ξq, the temporal mean of the errors for the whole
duration of a given recording.

3.1. Icosahedron
The icosahedron shown in Figure 6A is recorded by an ATIS
sensor for 25 s while freely rotating and moving. The 3D model
is a mesh of 12 vertices and 20 triangular faces.

The ground truth is built from frames output from the
event-based camera. We have manually selected the image
position of the visible vertices every 100 ms and applied the

FIGURE 6 | Real objects used in the experiments. (A) White icosahedron

with black edges, used in the first experiment. (B) Non-convex model of a

house with cross markers on its faces, used in the second experiment.

Frontiers in Neuroscience | www.frontiersin.org 7 January 2016 | Volume 9 | Article 522

https://drive.google.com/folderview?id=0B5gzfP0R1VEFNS1PZ0xKU3F5dG8&usp=sharing
https://drive.google.com/folderview?id=0B5gzfP0R1VEFNS1PZ0xKU3F5dG8&usp=sharing
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

OpenCV implementation of the EPnP (Efficient Perspective-n-
Point) algorithm (Lepetit et al., 2009) to estimate the pose. In
Lepetit et al. (2009), the authors test the robustness of their
algorithm to gaussian noise perturbations on the focal plane.
It is important to outline that this is a theoretical disturbance
model. They are not assessing their algorithm’s performance with
real noisy data. Based on their noise model results, we can give
an order of magnitude of the ground truth accuracy. Assuming
that the manual annotation of the vertices of the icosahedron
has at least 2 pixels precision, we can read the pose error from
the error curves (Figure 5 in Lepetit et al., 2009), that is at
most 2 %.

The intermediate positions are obtained by linear
interpolation, and the intermediate rotations using Slerp
(spherical linear interpolation Shoemake, 1985). From the
ground truth we compute the model’s linear velocity ν and the
angular velocity ω. In this recording, the linear speed ‖ν‖ reaches
a maximum of 644.5 mm/s, while the angular speed ‖ω‖ starts
with a maximum of 2.18 revolutions per second at the beginning
of the recording and then continuously decreases.

After several trials, the thresholds are set experimentally to
values giving stable and repeatable pose estimations. These are:
dmax = 20 pixels and Dmax = 10 mm. The remaining tuning
parameters are experimentally chosen for each experiment as the
ones giving the smallest sum of the mean relative estimation
errors ξT and ξq. The update factors λT , λθ , λν , λω are always

taken between 0.001 and 0.4, a large range in which the algorithm
has proven to yield stable results.

Figure 7A shows the results when applying the direct
transformation strategy with λT = 0.4, λθ = 0.2, N = 1
and m = 2. We show the translation vector T as well as the
rotation vector φr. Plain curves, representing estimation results,
are superimposed with dashed lines indicating the ground truth.
Snapshots, showing the state of the system at interesting instants
are shown. They provide the projection of the shape on the focal
plane using the estimated pose.

We verify that plain and dashed lines (representing estimated
and ground truth poses respectively) coincide most of the
time, showing that the pose estimation is in general correctly
performed. Experiments provide the following mean estimation
errors: ξT = 1.48% for the translation, and ξq = 1.96% for
the rotation. Instantaneous errors reach a local maximum, as a
consequence of the large values chosen for λT and λθ . These
parameters being gains, large values imply an oscillatory behavior
around the correct pose parameters. We include in Figure 7A a
snapshot showing the state of the system at this instant, where
we observe that the estimation is slightly displaced from the
true pose. However, even when considering this local maximum,
the estimation errors remain below 15%. The system is always
capable of recovering the correct pose.

Figure 7B shows the results when applying the velocity
estimation strategy with λν = 0.05, λθ = 0.006, N = 5 and

FIGURE 7 | Results for the first experiment, where we recorded an icosahedron freely evolving in the 3D space. T1, T2, and T3 are the components of the

translation vector T, and φr1, φr2, φr3 the components of the axis-angle representation of the rotation φr. The dashed lines represent ground truth, while the solid

curves represent estimated pose. The snapshots on the top show the state of the system in some characteristic moments, with the estimation made by the algorithm

printed over the events. (A) Results when applying the direct transformation strategy, with λT = 0.4, λθ = 0.2, N = 1 and m = 2. (B) Results when applying the

velocity estimation strategy with λν = 0.05, λθ = 0.006, N = 5 and m = 10. We verify that the estimation and the ground truth are coincidental most of the time,

allowing us to conclude that pose estimation is in general correctly performed.

Frontiers in Neuroscience | www.frontiersin.org 8 January 2016 | Volume 9 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

m = 10. The estimation of the pose is accurate: ξT = 1.40
and 2.04%. The mean errors obtained are very similar to the
ones produced in the case of the direct transformation strategy.
However, when we analyze the instantaneous errors, we do not
observe a large local maxima as in the previous case. The velocity
estimation strategy assumes that the velocity of the object does
not change abruptly, and consequently, the estimated motion is
smoother. This constitutes the main advantage of the velocity
strategy over the previous one. This will be further outlined in
the following experiment.

The output of the algorithm for this experiment can be seen
in Supplementary Video 1, where the results produced by both
strategies are shown.

3.2. House
This experiment tests the accuracy of the algorithm using a more
complex model of a house shown in Figure 6B. The object is
recorded for 20 s while freely rotating and moving in front
of the camera. The 3D model is composed of 12 vertices and
20 triangular faces. We compute velocities from the ground
truth obtained from generated frames as was done with the
icosahedron. In this case, the linear speed reaches a maximum
of 537.4 mm/s, while the angular speed starts with a maximum
of 1.24 revolutions per second at the beginning of the experiment
and then continuously decreases.

As in the previous case, we experimentally choose the set of
parameters that produces the minimum sum of errors. Figure 8A
shows the results when applying the direct transformation
strategy with λT = 0.2, λθ = 0.05, m = 1 and N = 10.

We verify that there is a coherence between the ground truth
and the estimated pose showing that the pose estimation is in
general correctly estimated. However, in this case we observe
a larger local maxima reaching values as high as 20%. These
local maxima degrade the overall performance, they provide the
following values for the mean estimation errors: ξT = 3.12% for
the translation and ξq = 2.62% for the rotation, higher than in
the previous case. Nevertheless, the system is always capable of
recovering the correct pose after these maxima, and the mean
estimation errors remain acceptable.

In this recording, local maxima mostly occur because of the
algorithm mistakenly interpreting the cross markers as edges or
viceversa. This usually happens when a given face is almost lateral
with respect to the camera. In that case, it provides the projection
of these lines very close to each other. The negative effect of
these ambiguous poses is difficult to mitigate when applying this
strategy.

Figure 8B shows the results when the velocity estimation
strategy is applied with λν = 0.4, λω = 0.0125,m = 4 andN = 5.
As in the previous experiment, we verify that the effect of the
local maxima is reduced when applying this strategy. This results
in the following errors: ξT = 1.53% and ξq = 2.27%, clearly
outperforming the direct transformation strategy. We verify that
in the case of complex objects and ambiguous poses, using an
estimation of the velocity provides more robust results. In this
case, the small value for λω makes the angular velocity very stable,
preventing the estimation from rapidly switching from one pose
to another. It also reduces the negative effect of the ambiguous
poses.

FIGURE 8 | Results for the second experiment, where we recorded a non-convex model of a house freely evolving in the 3D space. (A) Translation and

rotation results when applying the direct transformation strategy. (B) Translation and rotation results when applying the velocity estimation strategy.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2016 | Volume 9 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

Pose estimation is accurate in both the presented cases, but the
velocity estimation strategy provides more stable results. Results
produced by both strategies when treating this recording are
shown in Supplementary Video 2.

3.3. 2D Matching Using Gabor Events
In this experiment we test pose estimation in a more complex
scenario, with egomotion of the camera and partial occlusions of
the object, using Gabor events for the 2D matching step. A hand-
held icosahedron is recorded for 20 s while the camera moves.
Ground truth is obtained from reconstructed frames as in the
previous experiments.

The parameters for the Gabor events’ generation process are
set as in Orchard et al. (2015), and themaximum angular distance
for an event to be assigned to an edge is set as 0.174 rad (obtained
as π

1.5×12 , where 12 is the number of different orientations
that the Gabor events can take). The tuning parameters are
experimentally chosen as in previous experiments.

Figure 9A shows the evolution of the errors when applying the
direct transformation strategy, with λT = 0.4, λθ = 0.2, N = 5
and m = 4 (we do not show T or φr in order to lighten the
figures). We verify that the estimation errors remain low for the
whole recording, always below 10%.

Figure 9C shows the state of the system while the camera is
moving: as we can see, the number of events is much higher in
this case, as a result of the camera not being static. Consequently,
most of these events are not generated by the tracked object, but
rather by other visible edges in the scene. However, we verify that
pose estimation is correctly performed, since the errors remain
low and the projection of the estimation is coincidental with
the position of the events. In Figure 9D we can see how pose
estimation is performed even when a fraction of the icosahedron
has left the field of view of the camera. Figure 9E shows one
of the instants in which the errors reach their highest values.
This happens when the object is at its furthest position from the
camera, and thus when we are less precise (a pixel will represent
a larger 3D distance when points are further away from the

camera). However, even at this moment errors remain below
10% and the projection of the estimation is almost coincidental
with the events. We conclude that pose estimation is correctly
performed even in this complex scenario, providing the following
mean values for the estimation errors: ξT = 1.65% and ξq =
1.29%.

Figure 9B shows the evolution of the errors for the whole
experiment when applying the velocity estimation strategy, with
λν = 0.2, λω = 0.4, N = 10 and m = 8. The obtained results
are very similar to those of the direct transformation, and the
mean errors take the following values: ξT = 1.72% and ξq =
1.35%. Figures 9F–H display the output of the system at the same
instants as for the previous strategy, showing very similar results.
As in the first experiment, we verify that in the case of simple
objects without ambiguous positions, keeping an estimation of
the velocity does not provide any advantage.

This experiment shows how the method can perform pose
estimation even in complex scenarios, by simply adding some
additional criteria for the matching of events. The corresponding
results are displayed in Supplementary Video 3. In this case, the
video depicts the whole 3D scene, showing themotion of both the
camera and the tracked object.

FIGURE 10 | Experimental set-up for the fast spinning experiment. An

icosahedron is attached to a brushless motor and recorded by the

event-based camera. The four dots on the plane are used for ground truth.

FIGURE 9 | Results for the third experiment, where we recorded a hand-held icosahedron while the camera moved to follow it. Snapshots show the

state of the system at some characteristic moments. (A) Translation and rotation errors when applying the direct transformation strategy. The errors remain low,

always below 10%. (B) Translation and rotation errors when applying the velocity estimation strategy. (C–H) Snapshots showing the state of the system. We observe

a large number of events produced by the egomotion of the camera. However, pose estimation is correctly performed.

Frontiers in Neuroscience | www.frontiersin.org 10 January 2016 | Volume 9 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

3.4. Fast Spinning Object
In order to test the accuracy of the algorithm with fast moving
objects, we attached the icosahedron to an electric brushless
motor and recorded it at increasing angular speeds. As shown
in Figure 10, the icosahedron is mounted on a plane with four
dots, used for ground truth. These four points are tracked using
the Spring-Linked Tracker Set described in Reverter Valeiras et al.
(2015).

Through electronic control of the motor, we created four
sections during which the angular speed is approximately
constant. From the obtained ground truth, we can estimate the
corresponding velocities ν and ω. We obtain a maximum angular
speed of 26.4 rps.

The estimation errors are, for an experimentally selected
optimal set of parameters: ξT = 1.06%, ξq = 3.95% for

the direct transformation strategy, and ξT = 1.16%, ξq =
4.71% for the velocity estimation strategy. The velocity estimation
strategy provides in this case provides less accurate results. This
is due to the large angular acceleration (even if the angular
speed remains approximately constant, the object is not perfectly
aligned with the axis of the motor, and thus the rotation axis
changes constantly). However, the mean values for the errors are
low enough to conclude that, in general, the pose is correctly
estimated even for objects moving at high velocity.

The results produced by the algorithm when tracking the fast
spinning icosahedron are shown in Supplementary Video 4. In
the video, we gradually slow down the display, allowing us to
appreciate the true motion of the icosahedron. Let us note that
this video was created at 25 fps, causing what is known as the
wagon-wheel illusion. Thus, until the video is played 8 times
slower than real time we do not appreciate the true direction of
the rotation.

3.5. Degraded Temporal Resolution
In order to test the impact of the acquisition rate and to
emphasize the importance of the high temporal resolution on the
accuracy of our algorithm, we repeated the previous experiment
progressively degrading the temporal resolution of recorded
events. To degrade the temporal resolution, we select all the
events occurring within a given time window of size dt and assign
the same timestamp to all of them. If several events occur at

the same spatial location inside of this time window, we only
keep a single one. We also shuffle the events randomly, since the
order of the events contains implicit high temporal resolution
information. Figure 11A shows, in semi-logarithmic scale, the
evolution of both the mean relative translation error and the
mean relative rotation error with the size of the time window
when tracking the fast spinning icosahedron applying the direct
transformation strategy, with a fixed set of tuning parameters
taken from the previous step. We only plot errors between 0
and 20%, since we consider the estimation to be unsuccessful for
errors above 20%. The errors remain approximately stable until
the time window reaches 1 ms. This can be explained because
the small motion assumption is experimentally satisfied for time
windows of 1 ms for the typical velocity in this recording. From
this point on the errors start growing, until the tracker gets
completely lost for values above 10 ms.

When applying the velocity estimation strategy, if the temporal
resolution is degraded we lose track of the object very rapidly.
This happens because the estimation of the velocity is based
on the precise timing between events. When this information is
lost, 1t in Equations (17) and (18) becomes 0, which makes the
estimated velocity infinite. As a result, the tracking gets lost. For
the current set of parameters, this occurs for values of dt above
30 µ s, as one can see in Figure 11B.

We conclude from this experiment that the high temporal
resolution of the neuromorphic camera output is a key feature to
the successful performance of the 3D pose estimation algorithm.
Beyond 10ms pose estimation becomes a difficult problem. 10ms
is already smaller than the frame interval used by conventional
computer vision algorithms.

3.6. Computation Time
The presented experiments were carried out using a conventional
laptop, equipped with an Intel Core i7 processor and running
Debian Linux, while the algorithmwas implemented in C++. The
code was not parallelized, and just one core was used.

Let t10 be the time required to process 10 ms of events (10
ms is a pure technical choice, due to the software architecture
used). Consequently, if t10 is below 10 ms, we consider the
computation to be performed in real-time. Figure 12A shows
the computational time required for processing the icosahedron

FIGURE 11 | Evolution of the errors with the size of the binning window dt (in µ s), when tracking the fast spinning icosahedron applying the direct

transformation strategy. As the time resolution is degraded, the errors start growing, until the tracker gets completely lost for values above 10 ms. (A) Evolution of

the errors when applying the direct transformation strategy. (B) Evolution of the errors when applying the velocity estimation strategy.

Frontiers in Neuroscience | www.frontiersin.org 11 January 2016 | Volume 9 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

FIGURE 12 | (A) Computational time (in ms) required for processing 10 ms of

events when computing the pose of the icosahedron, applying the velocity

estimation strategy with the experimentally selected optimal set of parameters.

If t10 is below 10 ms (indicated here by the horizontal line), then the

computation is carried out in real-time. (B) Number of incoming events per 10

ms. As we can observe, the number of events and t10 has a similar form,

suggesting that the computational time per event remains approximately

constant. (C) Computational time required per event (in µs). As we can see, it

remains almost constant for the whole experiment, its mean value being equal

to 5.11 µ s.

sequence, when applying the velocity estimation strategy with
the experimentally selected optimal set of parameters. The
horizontal line indicates the real-time threshold. This threshold
is never exceeded by the implementation. We will characterize
the performance of the algorithm by the mean value of the
computational time t10, equal in this case to 4.99 ms.

The variability in t10 can be explained by the variations in
the rate of incoming events. Figure 12B shows the number of
incoming events per 10 ms for the corresponding recording.
This curve has a similar shape to the t10 one, suggesting that
the computational time per event is stable through the whole
recording. Dividing t10 by the number of incoming events gives
us the computational time per event, as shown in Figure 12C.
We verify that it remains approximately constant. Its mean value
is equal to 5.11µ s, which imposes a maximum rate of events that
can be treated in real time equal to 195 events/ms.

We next study the effect of the parameter N in the
computational time and the estimation errors. Figure 13 shows
the corresponding results when tracking the icosahedron, withN
taking values between 1 and 500. Here, the mean computational
time t10 is obtained as the mean value for 10 simulations.

Figure 13 (left) shows the results when applying the direct
transformation strategy. For small values of N the computational
time decreases as the value of N increases, but then it reaches a
plateau. In order to illustrate this behavior more clearly, let us
examine the evolution of t10 for small values of N (between 1
and 25), as shown in Figure 14. In this cases, the computational
time is largely reduced for the first values of N, but then
it is almost insensitive to its value. This can be explained if
we consider that the computational time consists of the time
required to update the estimation with each incoming event—
which does not vary with the value of N—and the time required
for actually applying the transformation to the model, which is a

FIGURE 13 | Evolution of the errors and the computational time with

the value of N when tracking the icosahedron. t10 is the mean

computational time required for processing 10 ms of events. Left: Results

when applying the direct transformation strategy. The computational time

decreases with the value of N until it reaches a plateau, while the errors

increases with the value of N. Right: Results when applying the velocity

estimation strategy. The computational time decreases and the errors

increases with the value of N.

FIGURE 14 | Evolution of the computational time t10 for the first values

of N. We can clearly see how the computational time is largely reduced for

small values of N, but then it reaches a plateau.

computationally expensive process, only applied every N events.
For small values ofN, the relative importance of the time required
for transforming the model is large. Consequently, increasing the
value of N will have a strong impact on the computational time.
AsN gets larger, the relative importance of this process is smaller,
and increasing N will have a weaker effect.

We verify as well that the tracking errors grow with N. This
occurs because for large values ofN the small motion assumption
is not true anymore, and thus the algorithm fails to yield correct
results. In other words, when we accumulate too many events
we are losing the high temporal resolution of the data, and the
accuracy of the pose estimation will therefore degrade.

Figure 13 (right) shows the results when applying the velocity
estimation strategy. For values of N below 5 the method is
unstable, losing track of the object and producing errors that tend
to infinity. As in the case of the degraded temporal resolution,
this happens because 1t in Equations (17) and (18) can be equal
to 0. Above this value, the computational time soon reaches its
plateau and is not too affected by the value of N. We verify
that the computational time required for applying the direct
transformation and the velocity estimation strategies are very
similar. The errors grow with the value of N as well, but in this
case they do it faster.We conclude that we need a higher temporal
resolution to correctly estimate the velocity of the object.

Figure 15 shows the evolution of the computational time and
the tracking errors with the value of N when tracking the house.

Frontiers in Neuroscience | www.frontiersin.org 12 January 2016 | Volume 9 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

FIGURE 15 | Evolution of the errors and the computational time with

the value of N when tracking the house. For small values of N we cannot

guarantee real-time performance. However, slightly increasing the value of N

the computational time is reduced, with small effect on the accuracy.

Figure 15 (left) shows the corresponding results when applying
the direct transformation strategy: as one can see, the results
are similar to the ones obtained when tracking the icosahedron,
but the computational time is much higher in this case. This is
mainly due to the higher complexity of the hidden line removal
algorithm. As we can see, for small values of N we cannot
guarantee real-time performance. However, as the value of N
grows, the computational time is reduced.

We verify as well that the errors grow with the value of
N. Nevertheless, for small values of N there is a plateau in
which they are very slightly affected by its value. For example,
for N = 25 we get ξT = 3.129% and ξq = 2.776%, while
the mean computational time is t10 = 4.123 ms. Therefore,
we get low values for the estimation errors while keeping the
computational time below the real-time threshold. We conclude
that it is possible to guarantee real-time performance even for this
more complex object by slightly increasing the value of N, with
small effect on the accuracy. The same considerations apply in
the case of the velocity estimation strategy, shown in Figure 15

(right).

4. DISCUSSION

This paper introduces a new method for 3D pose estimation
from the output of a neuromorphic event based camera. To
our knowledge, this is the first 3D pose estimation algorithm
developed using this technology. The method is truly event-
driven, as every incoming event updates the estimation of the
pose. The transformation applied with each event is intuitively
simple and uses the distance to the line of sight of pixels.

We showed that the method is able to estimate and track 3D
moving objects at high accuracy and low computational costs
by exploiting the high temporal resolution of the event-based
sensor. Depending on the recording and the method chosen, we
get translation errors ranging from 1.06 to 3.12% and rotation
errors from 1.29 to 4.71%. These values are reasonably low for us
to conclude that pose estimation is correctly performed.

We have also shown that when the temporal resolution of the
events is degraded to simulate frame based conditions, a point is
reached after which the pose cannot be accurately estimated. In

the studied recording, this happens when the temporal resolution
is 10ms in the case of the direct estimation strategy, or 30µs when
the velocity estimation strategy is applied. We conclude that the
high temporal resolution of the neuromorphic camera is a key
feature to the accuracy of our algorithm.

Compared to frame-based methods, we consider our
approach to be conceptually simpler. Instead of redundantly
processing all pixels, as it is usually done in the frame based
approach, the event-based philosophy is to minimize the
computational resources applied to each event. Once we are
close to the solution, the event-based approach allows us to
continuously track the correct pose, thanks to the high temporal
precision of the sensor. As a canonical example, we are able to
accurately estimate the pose of an object spinning at angular
speeds up to 26.4 rps. To achieve equivalent accuracy with a
frame-based camera, high frame rates would be required, and
consequently the number of frames to process will increase.

The method can also be used in mobile scenarios by applying
more robust matching algorithms relying on additional matching
criteria, such as the local orientation of edges. The method is
robust to partial occlusions and does not impose any limitation
on the type of model that can be used. The only constraint is
given by the increase in computational time associated with the
complexity of the object specially in computing hidden surfaces.
Othermodels, including parametric curves or point clouds, could
be used with very small modifications to the algorithm. In the
case of real-time requirements, we show that the tuning of
the parameter N provides lower computational times with little
impact on the accuracy of the pose estimation.

We have also shown how an assumption of velocity
smoothness can improve pose estimation results when an
expected rate of change of velocity is known for the object. This
being a reasonable hypothesis, the velocity estimation strategy
is in most cases the standard choice. The direct transformation
strategy should be chosen when high values for the acceleration
are expected.

AUTHOR CONTRIBUTIONS

DR: Main contributor. Formalized the theory, implemented the
experiments and evaluated the results. GO: Provided support
for the experimental setup and participated in the experiments.
SI: Co-supervisor. RB: thesis director and main instigator of the
work.

FUNDING

This work received financial support from the LABEX
LIFESENSES [ANR-10-LABX-65] which is managed by the
French state funds (ANR) within the Investissements d’Avenir
program [ANR-11-IDEX-0004-02].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2015.00522

Frontiers in Neuroscience | www.frontiersin.org 13 January 2016 | Volume 9 | Article 522

http://journal.frontiersin.org/article/10.3389/fnins.2015.00522
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

REFERENCES

Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.,

et al. (2011). Building rome in a day. Commun. ACM 54, 105–112. doi:

10.1145/2001269.2001293

Araujo, H., Carceroni, R. L., and Brown, C. M. (1996). A Fully Projective

Formulation for Lowe’s Tracking Algorithm. Technical Report, Department of

Computer Science, University of Rochester.

Benosman, R., Ieng, S.-H., Clercq, C., Bartolozzi, C., and Srinivasan, M. (2012).

Asynchronous frameless event-based optical flow. Neural Netw. 27, 32–37. doi:

10.1016/j.neunet.2011.11.001

Benosman, R., Ieng, S.-H., Rogister, P., and Posch, C. (2011). Asynchronous event-

based hebbian epipolar geometry. IEEE Trans. Neural Netw. 22, 1723–1734.

doi: 10.1109/TNN.2011.2167239

Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic

chips using address-events. IEEE Trans. Circ. Syst. II 47, 416–434. doi:

10.1109/82.842110

Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. (2010). Polygon Mesh

Processing. Natick, MA: A K Peters, Ltd.

Chong, E. K. P., and Zak, S. H. (2001). An Introduction to Optimization.

New York, NY: John Wiley and Sons.

Delbrück, T., Linares-Barranco, B., Culurciello, E., and Posch, C. (2010).

“Activity-driven, event-based vision sensors,” in Proceedings of 2010 IEEE

International Symposium on Circuits and Systems (ISCAS) (Paris: IEEE),

2426–2429.

DeMenthon, D. F., and Davis, L. S. (1995). Model-based object pose in

25 lines of code. Int. J. Comput. Vis. 15, 123–141. doi: 10.1007/BF014

50852

Drummond, T., and Cipolla, R. (2002). Real-time visual tracking of complex

structures. IEEE Trans. Pattern Anal. Mach. Intell. 24, 932–946. doi:

10.1109/TPAMI.2002.1017620

Fischler, M. A., and Bolles, R. C. (1981). Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.

Commun. ACM 24, 381–395. doi: 10.1145/358669.358692

Glaeser, G. (1994). “Hidden-line removal,” in Fast Algorithms for 3D-Graphics

(New York, NY: Springer), 185–200.

Harris, C. (1993). “Tracking with rigid models,” in Active Vision (Cambridge, MA:

MIT Press), 59–73.

Hartley, R., and Zisserman, A. (2003). Multiple View Geometry in Computer Vision.

Cambridge, UK: Cambridge University Press.

Huynh, D. Q. (2009). Metrics for 3d rotations: Comparison and analysis. J. Math.

Imaging Vis. 35, 155–164. doi: 10.1007/s10851-009-0161-2

Janabi-Sharifi, F. (2002). “Visual servoing: theory and applications,” in Opto-

Mechatronic Systems Handbook, ed H. Cho (Boca Raton, FL: CRC Press),

15-1–15-24.

Janabi-Sharifi, F., and Marey, M. (2010). A kalman-filter-based method for

pose estimation in visual servoing. IEEE Trans. Robot. 26, 939–947. doi:

10.1109/TRO.2010.2061290

Kato, H., and Billinghurst, M. (1999). “Marker tracking and hmd calibration for a

video-based augmented reality conferencing system,” in Proceedings of the 2nd

IEEE and ACM InternationalWorkshop on Augmented Reality, 1999 (IWAR’99)

(San Francisco, CA: IEEE), 85–94.

Kollnig, H., and Nagel, H.-H. (1997). 3d pose estimation by directly matching

polyhedral models to gray value gradients. Int. J. Comput. Vis. 23, 283–302.

doi: 10.1023/A:1007927317325

Lepetit, V., and Fua, P. (2005).Monocularmodel-based 3d tracking of rigid objects:

A survey. Found. Trends Comput. Graph. Vis. 1, 1–89. doi: 10.1561/06000

00001

Lepetit, V., Fua, P., and Moreno-Noguer, F. (2007). “Accurate non-iterative O(n)

solution to the PnP problem” in IEEE International Conference on Computer

Vision (Rio de Janeiro: IEEE), 1–8. doi: 10.1109/ICCV.2007.4409116

Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009). EPnP: an accurate O(n)

solution to the PnP problem. Int. J. Comput. Vis. 81, 155–166. doi:

10.1007/s11263-008-0152-6

Lu, C.-P., Hager, G., and Mjolsness, E. (2000). Fast and globally convergent pose

estimation from video images. IEEE Trans. Pattern Anal. Mach. Intell. 22,

610–622. doi: 10.1109/34.862199

Mahowald, M. (1992). VLSI Analogs of Neuronal Visual Processing: A

Synthesis of Form and Function. PhD thesis, California Institute of

Technology.

MIP, CAU Kiel, Germany (2008). BIAS: Basic Image AlgorithmS Library. Available

online at: http://www.mip.informatik.uni-kiel.de/BIAS

Murray, R. M., Li, Z., and Sastry, S. S. (1994). A Mathematical Introduction to

Robotic Manipulation. Boca Raton, FL: CRC Press.

Oberkampf, D., and DeMenthon, L. S. D. D. (1996). Iterative pose estimation

using coplanar feature points. Comput. Vis. Image Underst. 63, 495–511. doi:

10.1006/cviu.1996.0037

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., and

Benosman, R. (2015). Hfirst: a temporal approach to object recognition. IEEE

Trans. Pattern Anal. Mach. Intell. 37, 2028–2040. doi: 10.1109/tpami.2015.23

92947

O’Rourke, J. (1998). Computational Geometry in C. Cambridge, UK: Cambridge

University Press.

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB

dynamic range frame-free PWM image sensor with lossless pixel-level video

compression and time-domain CDS. IEEE J. Solid-State Circ. 46, 259–275. doi:

10.1109/JSSC.2010.2085952

Reverter Valeiras, D., Lagorce, X., Clady, X., Bartolozzi, C., Ieng, S.-H., and

Benosman, R. (2015). An asynchronous neuromorphic event-driven visual

part-based shape tracking. IEEE Trans. Neural Netw. Learn. Syst. 26,

3045–3059. doi: 10.1109/TNNLS.2015.2401834

Shoemake, K. (1985). Animating rotation with quaternion curves. Comput. Graph.

19, 245–254. doi: 10.1145/325165.325242

Snavely, N., Seitz, S. M., and Szelisk, R. (2007). Modeling the world from internet

photo collections. Int. J. Comput. Vis. 80, 189–210. doi: 10.1007/s11263-007-

0107-3

Van Krevelen, D., and Poelman, R. (2010). A survey of augmented reality

technologies, applications and limitations. Int. J. Virt. Real. 9:1.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Reverter Valeiras, Orchard, Ieng and Benosman. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 14 January 2016 | Volume 9 | Article 522

http://www.mip.informatik.uni-kiel.de/BIAS
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Reverter Valeiras et al. Neuromorphic Event-Based 3D Pose Estimation

APPENDIX

In this section, we discuss the solutions to the system of equations
defined in Equation (8). Let S be the system matrix, that has the
form:

S =
(
−MT

k
Mk M

T
k
εnm

−MT
k
εnm εTnmεnm

)
. (A1)

Next, we discuss the solutions to this system,
both in the singular and in the general
case.

Singular Case
The system matrix S is singular when det(S) =
0, where the determinant takes the following
value:

det(S) = −(MT
kMk)(ε

T
nmεnm)+ (MT

k εnm)
2. (A2)

Developing the dot products in this equation,
we get:

det(S) = 0⇔ ‖Mk‖2‖εnm‖2 = (‖Mk‖‖εnm‖cos(γ))2,
det(S) = 0⇔ cos(γ) = ±1.

(A3)

where γ is the angle betweenMk and εnm.
Consequently, S will be singular if γ = 0 or γ = π , this

is equivalent to have Mk collinear to εnm. In this case, Bk is
chosen between Vn and Vm by taking the one with smaller
Z coordinate. We then compute α1 from the perpendicularity
constraint between Mk and (Ak − Bk), getting the following
result:

α1 =
B
T
k
Mk

M
T
k
Mk

, (A4)

and insert this value in Equation (6) to obtain Ak.

General Case
In the general case, S will be invertible. Since S is a 2 × 2 matrix,
we can analytically precompute its inverse, saving computational
power. In order to solve the system, we define the following dot
products

a = M
T
kMk

b = εTnmεnm

c = M
T
k εnm

d = V
T
nMk

e = V
T
nεnm

(A5)

Thus, the inverse will have the following expression:

inv(S) = 1

det(S)

(
b −c
c −a

)
, (A6)

where det(S) = −ab + c2. This allows us to solve the system for
α1 and α2. As a final observation, we need to take into account
that εnm is a segment, which means that α2 has to be contained in
the interval [0, 1]. Thus, the final values for α1 and α2 are:

α1 =
−bd + ce

det(S)
(A7)

and

α2 =





0, if
−cd + ae

det(S)
≤ 0

1, if
−cd + ae

det(S)
≥ 1

−cd + ae

det(S)
, otherwise

(A8)

Inserting these values in Equations (6) and (7) provides Ak

and Bk.

Frontiers in Neuroscience | www.frontiersin.org 15 January 2016 | Volume 9 | Article 522

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Neuromorphic Event-Based 3D Pose Estimation
	1. Introduction
	2. Materials and Methods
	2.1. Neuromorphic Silicon Retina
	2.2. Event-Based 3D Pose Estimation
	2.2.1. Problem Formulation
	2.2.2. Rotation Formalisms
	2.2.3. 2D Edge Selection
	2.2.4. 3D Matching
	2.2.5. Rigid Motion Estimation
	Direct Transformation
	Velocity Estimation

	3. Results
	3.1. Icosahedron
	3.2. House
	3.3. 2D Matching Using Gabor Events
	3.4. Fast Spinning Object
	3.5. Degraded Temporal Resolution
	3.6. Computation Time

	4. Discussion
	Author Contributions
	Funding
	Supplementary Material
	References
	Appendix
	Singular Case
	General Case

