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Spinal cord injury and repair is a dynamic field of research. The development of reliable

animal models of traumatic spinal cord injury has been invaluable in providing a wealth

of information regarding the pathological consequences and recovery potential of this

condition. A number of injury models have been instrumental in the elaboration and the

validation of therapeutic interventions aimed at reversing this once thought permanent

condition. In general, the study of spinal cord injury and repair is made difficult by

both its anatomical complexity and the complexity of the behavior it mediates. In this

perspective paper, we suggest a new model for spinal cord investigation that simplifies

problems related to both the functional and anatomical complexity of the spinal cord. We

begin by reviewing and contrasting some of the most common animal models used for

investigating spinal cord dysfunction. We then consider two widely used models of spinal

deficit-recovery, one involving the corticospinal tracts (CTS) and the other the rubrospinal

tract (RST). We argue that the simplicity of the function of the RSTmakes it a useful model

for studying the cord and its functional repair. We also reflect on two obstacles that have

hindered progress in the pre-clinical field, delaying translation to the clinical setup. The

first is recovery of function without reconnection of the transected descending fibers

and the second is the use of behavioral paradigms that are not under the control of the

descending fiber pathway under scrutiny.

Keywords: rubrospinal tract, skilled reaching, spinal cord injury, spinal cord repair, arpeggio

INTRODUCTION

The most commonly used injury paradigms for spinal cord injury are contusions and transections.
Contusions are produced by controlled blunt force directed to a portion of the cord, whereas
transections consist of selective cuts to all or a portion of the cord. An advantage of contusion
methods is that they produce histologically graded and consistent trauma (Wrathall et al., 1985)
with pathological outcomes that are similar to spinal cord injury in human patients. This allows
quasi-direct comparison between the two species (Metz et al., 2000). Contusion models are
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useful in the characterization of the morphological (Reyes-Alva
et al., 2013), behavioral (Basso et al., 1996; Redondo-Castro et al.,
2013), and neurological response of the spinal cord to injury
(Gale et al., 1985; Agrawal et al., 2010; Detloff et al., 2013). These
models are also valuable for measuring the efficacy of strategies
to counteract secondary cell death and inflammatory reactions
(Wang et al., 2011; Andrews et al., 2012; Mountney et al., 2013).
Contusion injuries leave intact a number of long ascending and
descending fiber tracts, however, making them less amenable to
investigations into the effect of therapeutic compounds on axonal
regeneration.

Complete transection models are ideal for exploring axonal
regeneration across the level of injury, as there is no issue of
deciding between regenerating fibers and spared ones. The two
ends of the transected spinal cord tend to retract away from each
other, creating a fluid-filled cavitation that is not conducive to
axonal regeneration (Steward et al., 2003). Researchers have taken
advantage of this situation to introduce implants and bridges
in the spinal cord cavity, thus creating an environment that
is potentially conducive to axonal regeneration (e.g., García-
Alías et al., 2011; Min et al., 2011; Ziegler et al., 2011; Choi
et al., 2012; Kang et al., 2012; Aizawa-Kohama et al., 2013;
Dai et al., 2013). Hemisection models reduce the amount of
post-injury care required for the operated animals. One of
the drawbacks of spinal cord hemisection is the difficulty in
establishing evidence that the surgical approach has indeed
severed all the axons, but this can be ascertained by tract-tracing
techniques.

SPINAL CORD TRANSECTION DESTROYS
AT LEAST TWO FIBER TRACT SYSTEMS

Transection injury models, whether complete or partial (i.e.,
lateral and dorsal hemisections and lateral funiculus transection),
damage at least two major descending fiber tract systems:
the corticospinal tract (CST) and the rubrospinal tract (RST)
(see Figure 1). Although in relatively close proximity, these
two systems respond differently to therapy scenarios that aim

FIGURE 1 | Schematic diagram of a cross section through the rat

spinal cord at cervical level 3 (C3) to illustrate the position of the three

components of the corticospinal tract (CST) and the rubrospinal tract

(RST). (1) dorsal CST, (2) lateral CST, (3) RST, (4) ventral CST. Adapted from

Paxinos and Watson (2005).

to trigger axonal regeneration. For example, treatment with
neurotrophin-3 (NT-3) has been shown to induce growth in
the CST (Blits et al., 2000; Tuszynski et al., 2003; Hagg et al.,
2005; Chen et al., 2006; Chen and Shine, 2013; Weishaupt et al.,
2014), whereas brain-derived neurotrophic factor (BDNF) exerts
its trophic effect mainly on the RST (Liu et al., 2002; Koda et al.,
2004; Kwon et al., 2007; Bretzner et al., 2008; Conova Grous et al.,
2013). Taken together, this evidence suggests that therapeutic
intervention with a neurotrophic factor, either NT-3 or BDNF,
is doomed to be ineffective in stimulating regeneration in at
least one of the two descending motor pathways unless both
neurotrophins are used conjointly.

There is also evidence suggesting that the RST and the CST
in the rat make conjoint yet different contributions to skilled
forelimb movement, reaching for and handling food items and
locomotion (Whishaw et al., 1993, 1998; Metz et al., 1998; Muir
and Whishaw, 1999; Hendriks et al., 2006; Muir et al., 2007;
Kanagal and Muir, 2009). One can argue that an important
shortcoming of the current models of spinal cord injury is that
they lack functional specificity because of the broad, confounding
anatomical and functional deficits that they create. They are
difficult to interpret because the lesions are heterogeneous and
the resulting behavioral deficits are complex. Therefore, a single
fiber tract model of spinal cord injury provides a more elegant
approach for the study of axonal regeneration than a transection
model that is not selective. Indeed, a single fiber tract model
allows the establishment of the precise contribution of the
descending tract of interest in the control of movement. Such
knowledge can thus be used to establish predictions as to the
expected outcomes of effective therapeutic treatments. Here we
compare the utility of CST and RST single tract models of spinal
cord injury.

CORTICOSPINAL TRACT MODELS

Despite the wealth of behavioral studies investigating the
function of the rat CST, a clear role for this tract is a matter
of debate. Pyramidotomy at the level of the medulla abolishes
movements that are elicited by intracortical microstimulation
of the forelimb-associated region of the motor cortex in
naïve animals (Piecharka et al., 2005). Pyramidotomy also
significantly impairs proximal and distal movement of the
forelimb (Whishaw et al., 1993, 1998; Whishaw and Metz,
2002). Nevertheless, it can be difficult to interpret these effects,
as these transections also sever non-corticospinal connections.
Further, transection of the spinal cord dorsal column at cervical
segments C1/C2, in which runs the main component of the CST,
spares a number of measures of skilled reaching (Alstermark
and Pettersson, 2014). Unlike pyramidotomy, dorsal column
transection leaves intact the reticulo-spinal pathway. The authors
concluded that these findings rule out the contribution of
the CST in skilled reaching and suggest that the cortico-
reticulo-spinal pathway plays an important role in this motor
behavior.

It is worth noting that transection of the dorsal column at
cervical segments C1/C2 by Alstermark and Pettersson (2014)
also leaves intact the ventral and lateral CST, as their fibers
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diverge from the main CST at the pyramidal decussation, i.e.,
rostral to C1/C2. This raises the possibility that the lack of
impairment in skilled reaching could be due to the sparing
of the lateral and/or the ventral aspect of the CST and not
to the preservation of the reticulo-spinal tract. In this respect,
we show that complete lesions of the lateral funiculus, in
which the lateral CST and the RST run, impair two movement
elements of skilled reaching, namely arpeggio and grasping
(Morris et al., 2011). The arpeggio movement consists of digit
opening and a lateral-to-medial pronation of the hand to grasp.
Grasping consists of an in place flexing and closing of the digits
and dorsiflexion of the wrist to capture the target. Further,
we present evidence that lesions that selectively disrupt the
RST only abolished the arpeggio movement, suggesting that
the lateral CST plays a role in the movement element of
grasping.

Data obtained with transgenic labeling of the CST have
revealed the presence of two distinct populations of axons within
the mouse CST. Although the majority of fibers running within
the CST are thin, with diameters ranging from 0.4 to 0.6µm, the
ventral and lateral contingents of CST fibers are also populated by
heavily myelinated axons with diameters of 1.5–5µm (Bareyre
et al., 2005). It has also been demonstrated that transection
of the dorsal CST resulted in a loss of 80–97% of the fiber
projections to the dorsal and intermediate spinal cord laminae,
while leaving intact the projections to the ventral horn where
motor neurons are located. These findings suggest that, although
most CST axonal projections originate from its dorsal aspect, the
direct, descending input to the ventral horn is derived from its
minor components (see Steward et al., 2004). One can speculate
that the rodent CST is functionally segregated. A contingent
of numerous but small, poorly myelinated fibers within the
dorsal CST innervate the spinal cord motor neurons indirectly,
i.e., via synaptic contact with relay interneurons located in the
intermediate laminae of the cord. A contingent of sparse but
large, fast-conducting axons within the lateral CST perhaps
provides input more directly to motor neurons. It is interesting to
note that the lateral CST in rodents is found in the same location
as the primate main CST that forms monosynaptic contact with
motor neurons supplying the forelimb and hindlimb. It would be
interesting to investigate whether the rodent and primate lateral
CST are homologous.

What is the unique function of the dorsal CST? Interestingly,
dorsal (but not lateral) CST transection permanently abolishes
the down conditioning of the H-reflex in the rat, whereas the
ablation of the lateral column has no effect on this type of operant
conditioning (Chen andWolpaw, 1997; Chen et al., 2006). In this
paradigm, rats, mice, monkeys, and humans learn to gradually
decrease the amplitude of their H-reflex, i.e., the electrical
analog of the spinal stretch reflex, in response to a reward
contingency (Chen et al., 1999). The control of the H-reflex by
the dorsal CST is in line with the anatomical observation that,
in rodents, this component of the CST is two synapses away
from the motor neurons involved in this reflex. Excitatory input
from the dorsal CST on interneurons subsequently provides
an inhibitory input to the motor neurons that consequently
diminishes the amplitude of the H-reflex. The anatomy also

explains why the destruction of putative direct descending input
onto motor neurons, such as that provided by the lateral CST,
would not interfere with the down conditioning of the reflex.
Furthermore, the fact that strokes over the sensorimotor cortex
interfere with spinal stretch reflex conditioning in humans
brings translational significance to this simple test (Segal, 1997).
H-reflex down conditioning could therefore be used to measure
deficits and recovery after dorsal CST transection and therapeutic
regimens.

RUBROSPINAL TRACT MODELS

The RST travels as a single bundle of axons within the
dorsolateral funiculus of the spinal cord. The majority of
the RST fibers terminate into the dorsal horn and in the
intermediate region of the ventral horn (Brown, 1974). There
are also functional monosynaptic connections between the RST
and spinal cord motor neurons. For instance, when injected
in forelimb muscles, rabies virus retrogradely labels the motor
neurons that supply thesemuscles and produces significant trans-
neuronal labeling in the red nucleus (Ruigrok et al., 2008).
Furthermore, low-threshold microstimulation of the rat red
nucleus results in short-latency EMG responses in forelimb
muscles that are accompanied by a strong extension of the wrist
(Küchler et al., 2002).

Excitotoxic lesions to the red nucleus, i.e., the origin of the
RST, do not interfere with endpoint measures of skilled reaching,
such as the reaching itself or its success in obtaining food
(Whishaw et al., 1990, 1992, 1998; Whishaw and Gorny, 1996).
However, red nucleus lesions interfere with several components
of the reaching action, including limb aiming, pronation, and
supination of the paw (Whishaw and Gorny, 1996; Whishaw
et al., 1998). Red nucleus lesions also abolish the arpeggio
movement whereby the paw is pronated so that each digit (i.e.,
digits 5–2) sequentially makes contact with the shelf where the
food is located. Transection of the lateral funiculus at cervical
levels, a surgical procedure that ablates the RST, also interferes
with several elements of the reach, including digit flexion and
grasping (Schrimsher and Reier, 1993), supination and arpeggio
(Muir et al., 2007; Kanagal and Muir, 2009), the advance of
the limb toward the food target, the opening of the digits,
and pronation and supination movements around the wrist
(Stackhouse et al., 2008). It is worth noting, however, that the
lesions performed in these studies encompassed several other
ascending and descending fiber tracts than the RST, potentially
accounting, at least partly, for the wide range of behavioral
deficits that they produce.

We have used a behavioral/anatomical fractionation method
to isolate the behavioral contribution of the RST. This method
reveals that unilateral lesions that specifically disrupt the RST at
cervical levels have a relatively selective effect on the forelimb
movements used in reaching for food (Morris et al., 2011).
Normally, as the reaching hand of a rat approaches a food
target, it is pronated to grasp the food. Pronation is distinctive
in that the fingers, which are extended when the limb is
advanced, are opened gradually through pronation in a lateral
to medial topography. This movement is termed arpeggio
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because it is similar to the movement of the fingers of a
piano player in performing an arpeggio. After RST lesions,
the rat’s arpeggio movement is disrupted while leaving other
movement elements of the reaching action largely intact (Morris
et al., 2011). The contribution of the RST in the control of
the arpeggio movement is supported by recent findings that a
lesion to the magnocellular subdivision of the red nucleus, from
which the RST specifically arises, also disrupts this movement
(Morris et al., 2015). Moreover, reports that lesions to the
CST have no deleterious effect on the arpeggio movement
support the unique involvement of the RST in the execution
of this movement (Whishaw et al., 1998; Kanagal and Muir,
2009).

It is interesting that the arpeggio movement is also featured
in forelimb stepping on the rotarod walking apparatus (Whishaw
et al., 2008) as well as in overground walking where rats stride
on an elevated alley in order to reach a home cage (Whishaw
et al., 2010). Indeed, after the limb is advanced forward to
complete a stride, digit 5 is the first digit to contact the
floor or the drum surface, after which digits 4–2 sequentially
make contact with the surface in an arpeggio movement. We
have preliminary evidence that RST lesions or lesions to the
magnocellular subdivision of the red nucleus abolish the arpeggio
movement during forelimb stepping as a rat moves forward from
the back of the reaching box toward the shelf as a new trial is
generated (see Movie 1). The integrity of the RST is therefore
critical for limb use in both reaching for food and walking
(Hendriks et al., 2006; Muir et al., 2007; Kanagal and Muir,
2009). In contrast, CST lesions do not impair spontaneous or
skilled locomotor activity (Metz et al., 1998; Muir and Whishaw,
1999; Loy et al., 2002; Metz and Whishaw, 2002; Kanagal and
Muir, 2009). It is worth mentioning, however, that rats are
able to generate basic stepping even after the removal of all
supraspinal input to the spinal cord (Zhang et al., 2007). Taken
together, the anatomical and behavioral evidence suggests that
that the RSTmodel commends itself to spinal cord investigations.
Damage to the RST seems to selectively affect the arpeggio
movement in both locomotion and skilledmovements. Thus, this
specific transection-functional model can be used as a powerful
behavioral readout against which the success of a given repair
strategy can be validated.

OBSTACLES TO RST FUNCTIONAL
REGENERATION AFTER TREATMENT

So far, the field of recovery of function has focused on developing
therapeutic strategies that trigger axonal elongation or sprouting
and that lead to improved motor function. In this context,
there is accumulating evidence that treatment with BDNF after
lesions that damage the RST trigger some axonal regeneration
that is accompanied by various degrees of amelioration of motor
performance (Liu et al., 1999; Namiki et al., 2000; Kim et al.,
2001; Blits et al., 2003; Shumsky et al., 2003; Koda et al., 2004;
Ruitenberg et al., 2004; Tobias et al., 2005). For neuroanatomists,
the report of recovery of function without reconnection of the
transected descending fibers on their post-synaptic targets (i.e.,

motor neurons below the level of the lesion) is perplexing.
How can such treatments ameliorate motor performance if
they do not re-establish innervation of the RST onto motor
neurons?

It is clear that the delivery of BDNF to the injured spinal
cord creates a growth-permissive environment for the RST that
has the potential to offset the deleterious effect of inhibitory
molecules that act as a barrier for axonal regeneration (reviewed
in Morris, 2014). Further, BDNF-secreted cells implanted in
the injured spinal cord contribute to reducing cavity and scar
formation (Ramer et al., 2004), assist in the sparing of myelin
(Nakajima et al., 2012), reduce lesion volumes (Alexanian et al.,
2011; Walker and Xu, 2014), decrease inflammatory responses
(Abrams et al., 2009; Nakajima et al., 2012; Jia et al., 2014; Zhao
et al., 2014), and provide neuronal and non-neuronal protection
(Sasaki et al., 2009; Walker and Xu, 2014). Taken together, these
data suggest that treatments that ameliorate motor performance
without reconnecting the damaged axons with their former post-
synaptic targets do so mainly by diminishing the deleterious
effects of the secondary injury. Sprouting of the transected
descending tracts that could activate local spinal circuits is also
suggested to play a role in motor function recovery after spinal
cord injury, however more work needs to be carried out in order
to instantiate this view.

Several behavioral paradigms have been used to measure the
therapeutic benefits of BDNF treatment after lesions that destroy
the RST. These include Schallert’s cylinder test (Liu et al., 1999;
Shumsky et al., 2003; Tobias et al., 2005), the horizontal rope
crossing test (Kim et al., 2001; Shumsky et al., 2003; Ruitenberg
et al., 2004; Tobias et al., 2005), the open-field locomotor rating
scale (BBB; Kim et al., 2001; Blits et al., 2003; Shumsky et al.,
2003; Koda et al., 2004; Tobias et al., 2005), the narrow beam
walking test (Kim et al., 2001; Shumsky et al., 2003), and the
swim test (Kim et al., 2001). Overall, these tests mainly measure
limb use per se in relation to the intact limb(s) and locomotor
capacity. We have demonstrated that lesions that affect the
integrity of the RST or of its cells of origin in the red nucleus
do not produce deficits in whole-limb movement (Whishaw
et al., 1998; Morris et al., 2011, 2015). Furthermore, cervical
bilateral lesions of the dorsolateral funiculus in which the RST
runs do not impair spontaneous forelimb use, as measured by
the cylinder test (Muir et al., 2007). It is our opinion that an
effective treatment that involves the functional restoration of the
RST would result in the return of the arpeggio movement in
reaching and walking.

CONCLUSION

Progress in the field of spinal cord injury and repair has been
hampered by the naïve view that axonal elongation without
reconnection with former post-synaptic targets could lead to
the recovery of function. Furthermore, advances in the field
have been hindered by the use of behavioral paradigms that are
not under the control of the descending fiber pathway under
scrutiny and that lack translational relevance. The latter obstacle
can be eliminated by the use of behavioral tests that can be
used in clinical settings. In this regard, the use of tests of
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skilled walking and reaching, although more time consuming,
offer tools to generalize findings obtained in animal models to
the clinic. Indeed, the movements used by rats and humans
to walk and reach are similar, especially with respect to lateral
medial pronation of the limb (Sacrey et al., 2009; Klein et al.,
2012). As a result, the movement elements of the reaching
action can be evaluated with the same movement scale in the
two species, therefore allowing clinicians working with spinal
cord-injured patients to draw invaluable information from pre-
clinical investigations.
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