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In recent years, an increasing number of studies have used Voxel Based Morphometry
(VBM) to compare a single patient with a psychiatric or neurological condition of
interest against a group of healthy controls. However, the validity of this approach
critically relies on the assumption that the single patient is drawn from a hypothetical
population with a normal distribution and variance equal to that of the control group. In
a previous investigation, we demonstrated that family-wise false positive error rate (i.e.,
the proportion of statistical comparisons yielding at least one false positive) in single case
VBM are much higher than expected (Scarpazza et al., 2013). Here, we examine whether
the use of non-parametric statistics, which does not rely on the assumptions of normal
distribution and equal variance, would enable the investigation of single subjects with
good control of false positive risk. We empirically estimated false positive rates (FPRS)
in single case non-parametric VBM, by performing 400 statistical comparisons between
a single disease-free individual and a group of 100 disease-free controls. The impact
of smoothing (4, 8, and 12 mm) and type of pre-processing (Modulated, Unmodulated)
was also examined, as these factors have been found to influence FPRs in previous
investigations using parametric statistics. The 400 statistical comparisons were repeated
using two independent, freely available data sets in order to maximize the generalizability
of the results. We found that the family-wise error rate was 5% for increases and 3.6% for
decreases in one data set; and 5.6% for increases and 6.3% for decreases in the
other data set (5% nominal). Further, these results were not dependent on the level of
smoothing and modulation. Therefore, the present study provides empirical evidence
that single case VBM studies with non-parametric statistics are not susceptible to high
false positive rates. The critical implication of this finding is that VBM can be used to
characterize neuroanatomical alterations in individual subjects as long as non-parametric
statistics are employed.

Keywords: neuroimaging, magnetic resonance imaging, voxel based morphometry, single case study, non-
parametric statistics, false positives
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INTRODUCTION

The development of structural neuroimaging has allowed the
in vivo investigation of the human brain. Over the past
two decades, hundreds of studies have shed light on the
neuroanatomical correlates of psychiatric (Honea et al., 2005;
Fusar-Poli et al., 2011; Selvaraj et al., 2012) and neurological
(Whitwell and Jack, 2005; Ferreira et al., 2011; Li et al,
2012) disorders. The vast majority of these studies were
performed using Voxel Based Morphometry (VBM), a whole
brain technique for characterizing regional volume and tissue
concentration differences from structural magnetic resonance
imaging (MRI) scans (Ashburner and Friston, 2000, 2001; Good
etal., 2001; Mechelli et al., 2005). A typical VBM study compares
a group of patients with a group of healthy controls, and tests
for neuroanatomical differences between the two using group-
level statistics. The results of these studies, however, have had
limited translational impact in everyday clinical practice (Fusar-
Poli et al., 2009; Ioannidis, 2011; Borgwardt et al., 2012), where
a clinician needs to make inferences at the level of the individual
patient. In recent years, an increasing number of research groups
have attempted to overcome this by performing single case
studies in which an individual patient is compared against a
group of healthy controls (please see Scarpazza et al., 2013 for
a summary of existing studies using single case VBM).

The interpretation of the results of parametric single case
VBM studies, however, is problematic due to a number of
methodological issues (Scarpazza et al., 2013). In particular,
the use of two-sample t-tests requires the data to be sampled
from normally distributed populations; therefore, under the null
hypothesis, the validity of any single case VBM study relies on
the assumption that the patients value reflected a draw from
a hypothetical normally-distributed population with variance
equal to that of the control group population (see for Muhlau
et al., 2009 for review). This issue was evaluated by Salmond
et al. (2002), who examined false-positive rates in single case
VBM as a function of the degree of smoothness applied to the
data. The authors reported that the number of false positives
was inversely related to the degree of smoothing and therefore
suggested that VBM single case analysis could be performed as
long as an appropriate smoothing kernel was applied (Salmond
et al,, 2002). In a subsequent investigation, Viviani et al. (2007a)
examined the impact of non-normality on FPRs in the context
of single case VBM studies. Using both simulated and empirical
data, the authors reported that smoothing was only partially
effective in compensating for the impact of deviation from
normality (Viviani et al., 2007a). More recently, we empirically
estimated the likelihood of detecting significant differences in
gray matter volume (GMV) in individuals free from neurological
or psychiatric diagnosis using two large, independent data sets
(Scarpazza et al,, 2013). We found that the chance of detecting
a significant difference in a disease-free individual was much
higher than expected; for instance, using a standard voxel-wise
threshold of p < 0.05 (FWE corrected) and an extent threshold
of 10 voxels, the likelihood of a single subject showing at least one
significant difference was as high as 93.5% for increases and 71%
for decreases. Consistent with earlier findings (Salmond et al.,

2002), we also found that the chance of detecting significant
differences was inversely related to the degree of smoothing
applied to the data. Finally we found that FPRs were higher
when examining tissue concentration using unmodulated data
than when characterizing tissue volume using modulated data.
We concluded that, when comparing a single neurological or
psychiatric patient against a group of controls with VBM, the
chance of detecting a significant difference not related to the
disorder under investigation is much higher than expected.
Interpretation of the results of single case studies should therefore
be very cautious, particularly in the case of significant differences
in temporal and frontal lobes where FPRs appear to be highest
(Scarpazza et al., 2013).

One reason why VBM may not be a suitable analytical
technique for making statistical inferences at the level of the
individual patient is that it relies on parametric statistics which
assume that the data are normally distributed or approximately
normal by the Central Limit Theorem (CLT; Salmond et al,
2002). The CLT states that, for a sufficiently large number of
identically distributed observations, the distribution of means
will be approximately normally distributed (DeGroot et al,
1976). When this assumption is met, the parametric statistics
used in VBM can be estimated reliably; in contrast, when this
assumption is not met, test procedures may be susceptible to
Type I errors. In VBM studies comparing different groups, the
test resembles a two-sample t-test (except for the covariates,
like age, and gender) and the two-sample t-test is quite robust
to violations of the equal variance and normality assumptions
as long as the sample sizes are equal (Posten, 1984; Posten
et al., 2007). Single case VBM, where an individual patient is
compared against a control group, is the most extreme case of
an unbalanced two-sample comparison, and thus makes both the
equal variance and normality assumptions critical.

The aim of the present investigation is to examine whether
the use of a non-parametric permutation test method would
enable the investigation of single subjects without the higher-
than expected FPRs observed with parametric statistics. Whereas
a parametric test assumes certain distributional forms to
allow computation of p-values, a permutation test makes
weak assumptions and uses the data itself to create empirical
distributions of test statistics and ultimately p-values. For the
two-sample t-test, the assumption is only that all the subjects
are exchangeable under the null hypothesis; this implies that
each subject would have the same distribution were there no
group difference. For a General Linear Model (e.g., a two-
sample ¢-test with additional covariates), the same assumption of
exchangeability must be made on the additive errors. See Nichols
and Holmes (2001) for a gentle introduction to permutation
methods for neuroimaging and Winkler et al. (2014) for a
detailed study of permutation methods for the GLM. Because
non-parametric statistics do not require the data to be normally
distributed, they may provide a valid alternative to parametric
statistics in the context of single case VBM. Here, we conduct
similar evaluation to the one described in Scarpazza et al. (2013),
with the main difference being that here we used statistical non-
parametric mapping (SnPM) as opposed to standard statistical
parametric mapping (SPM). We empirically estimated the

Frontiers in Neuroscience | www.frontiersin.org

January 2016 | Volume 10 | Article 6


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Scarpazza et al.

Non-parametric Single Case VBM

chance of detecting false positive differences in single case non-
parametric VBM, by performing 100 comparisons between a
single disease-free individual and a group of 100 healthy controls.
As in the previous investigation (Scarpazza et al., 2013), the
impact of smoothing and modulation on FPRs was investigated,
as these factors have been found to influence the results of
previous studies (Salmond et al., 2002; Viviani et al., 2007a). All
statistical analyses were repeated using two independent freely
available data sets, in order to maximize the generalizability of
the results.

We examined three hypotheses. Our first hypothesis was that,
when non-parametric statistics are used to compare a single
subject to a control group in the context of VBM, FPRs would
be valid (i.e., a FPR of 5% is expected for p < 0.05 FWE-
corrected). Our second hypothesis was that, in the context of
non-parametric statistics, smoothing and modulation would not
affect false positives rates. Our third hypothesis was that, when
they exist, false positives would be randomly distributed across
the brain rather than being preferentially localized in specific
regions (Scarpazza et al., 2015).

MATERIALS AND METHODS
Subjects

We used structural data from data from the 1000 functional
connectomes data set (Biswal et al., 2010), available from the
Neuroimaging Informatics Tools and Resources Clearinghouse
(NITRC)  at  http://fcon_1000.projects.nitrc.org/fcpClassic/
FcpTable.html. The Cambridge (Massachusetts, USA) and
Beijing (China) data sets were chosen because of their large
sample size (n = 198 each) and their similar age range (18-28).
The Beijing data set is formed by 76 males and 122 females, mean
age (standard deviation) = 21.1 =+ 1.8 years. The Cambridge data
set is formed by 75 males and 123 females, mean age (standard
deviation) = 21 = 2.3 years. A further reason for using these data
sets was that all subjects were screened for having no history of
neurological or psychiatric disorders.

MRI Data Acquisition

A structural MRI scan was acquired from all subjects using
a 3T MRI system. A T1-weighted sagittal three-dimensional
magnetization-prepared rapid gradient echo (MPRAGE)
sequence with full brain coverage was used. For the acquisition
of the Cambridge data set, the following parameters were
used: TR = 35, 144 slices, voxel resolution 1.2, 1.2, 1.2 mm?;
matrix 192 x 192. For the acquisition of the Beijing data set,
the following parameters were used: TR = 2, 128 slices, voxel
resolution 1.0, 1.0, 1.3 mm?; matrix 181 x 175.

Data Analysis

Pre-processing

Images were checked for scanner artifacts and gross anatomical
abnormalities; reoriented along the anterior-posterior
commissure (AC-PC) line with the AC set as the origin of
the spatial coordinates; segmented into gray matter (GM)
and white matter (WM) using the segmentation procedure

implemented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm); and
warped into a new study-specific reference space representing an
average of all the subjects included in the analysis (Ashburner and
Friston, 2009; Yassa and Stark, 2009), using a fast diffeomorphic
image registration algorithm (DARTEL; Ashburner, 2007). As
an initial step, two different templates (one for each data set)
and the corresponding deformation fields, required to warp
the data from each subject to the new reference space, were
created using the GM partition (Ashburner and Friston, 2009).
Each subject-specific deformation field was then used to warp
the corresponding GM partition into the new reference space
with the aim of maximizing accuracy and specificity (Yassa
and Stark, 2009). Images were then affine transformed into
Montreal Neurological Institute (MNI) space and smoothed
with a 4, 8, and 12-mm full-width at half-maximum (FWHM)
Gaussian kernel. The above procedure was followed twice to
create both unmodulated and modulated images, which were
analyzed separately. These two types of images provide different
information: modulated data measure the absolute volume
of gray matter, while unmodulated data measure the relative
concentration of gray matter (Mechelli et al., 2005).

Group Comparison

A single subject scan was compared with a control group
made of 100 subjects. For each data set, the control groups
were created from the total sample of 198 subjects using
randomization as implemented in the following website: https://
www.random.org/lists/. A sample size of 100 was chosen in order
to allow enough unique permutations to accurately estimate
the p-value (see below). For each data set we performed
400 comparisons using non-parametric statistics including the
following: 100 comparisons between a single subject and 100
controls using modulated MRI images with a smoothing of
4 mm; 100 comparisons between a single subject and 100 controls
using modulated MRI images with a smoothing of 8 mm; 100
comparisons between a single subject and 100 controls using
modulated MRI images with a smoothing of 12 mm; and 100
comparisons between a single subject and 100 controls using
unmodulated MRI images with a smoothing of 8 mm. The
analyses on unmodulated data were performed on subjects
with smoothing 8 mm only for consistency with our previous
investigation (Scarpazza et al., 2013).

Statistical Analysis using Non-parametric Statistics

The statistical analysis of MRI data using non-parametric
statistics was performed using the Statistical Non-Parametric
Mapping (SnPM 13.0.11) toolbox, available at http://warwick.ac.
uk/snpm (Nichols and Holmes, 2001). This toolbox uses non-
parametric permutation testing to identify significant increases
or decreases in each subject relative to a control group. For each
statistical comparison, the p-value was estimated using a total
of 101 permutations based on a control group size of 100. Age
and gender were entered into the design matrix as covariates
of no interest to minimize any impact of these variables on the
findings. To exclude voxels outside brain, we used a relative
threshold mask to discard voxels whose intensity fell below the
20% of the mean image intensity. To identify regionally specific
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changes that were not confounded by global differences, we
used the proportional scaling option. Statistical inferences were
made voxel-wise using Family-wise Error (FWE) correction for
multiple comparisons across the whole brain at p < 0.05. No
extent threshold was used since the main aim of the current
investigation was to quantify the number of false positive results
irrespective of cluster size.

For each data source (Beijing and Cambridge) we recorded
the count of family-wise errors, or false positives (out of 100),
over the three smoothing kernels (4, 8, and 12mm), two pre-
processing types (Modulated, Unmodulated) and two directions
(increases and decreases in a single subject compared to a control
group).

In order to investigate whether smoothing and direction
of the effect had a significant impact on the number of false
positives in the context of modulated data, we fit a logistic
regression model for counts from each data source, using the
presence of a family-wise error in each comparison (yes or
no) as dependent variable, and smoothing and direction as
independent variables. For 8 mm smoothing both modulated
and unmodulated data were available, and therefore we fit a
further logistic regression model for each data source; here the
dependent variable was the presence of a statistically significant
difference in each comparison (yes or no), and the independent
variables were modulation and direction (with only 8 mm
smoothing available, smoothing and sample size were not
modeled). Both logistic regression models were assessed with
the Hosmer-Lemeshow goodness-of-fit test, where a significant
p-value indicates lack-of-fit.

Brain Areas Individuation

From the SnPM output, i.e., the list of MNI coordinates of the
areas showing significant increases or decreases, we derived the
corresponding areas using the Automated Anatomical Labeling
(AAL) atlas as implemented in PickAtlas software (http://fmri.
wfubmc.edu/software/PickAtlas).

RESULTS

Number of Comparisons Yielding

Significant Differences

Table 1 shows the empirical family-wise error rate, ie., the
percentage of statistical comparisons yielding at least one false
positive, for each smoothing kernel and each data set. Over
all settings, the error rate never exceeded 8%, and all were
well within the 95% Monte Carlo confidence interval for 100
realizations (0.7-9.3%).

Impact of Smoothing and Direction

The Hosmer-Lemeshow test for both regressions was non-
significant (p = 0.999 and 0.821, for Beijing and Cambridge
data sets, respectively), consistent with a null hypothesis of good
model fit. The impact of smoothing on the family-wise error was
not significant, in either the Beijing (p = 0.328) or the Cambridge
(p = 0.673) data set. Direction had a significant impact on
family-wise error was significant in the Beijing data (p = 0.024)
but not in the Cambridge data set (p = 0.127).

Impact of Modulation and Direction

The Hosmer-Lemeshow test for both regressions was not
significant (p = 0.795 and 0.547, for Beijing and Cambridge
data sets, respectively), consistent with a null hypothesis of good
model fit. The impact of modulation on the family-wise error was
not significant, in either the Beijing (p = 0.629) or the Cambridge
(p = 0.991) data set. Direction did not have a significant impact
on family-wise error in either the Beijing (p = 0.156) or the
Cambridge (p = 0.588) data set.

Likelihood of Detecting Local Maxima in a
Specific Region

In addition to the empirical family-wise error rate, we also
examined the location of the false positives. Given the small
number of false positives, we report this information across the
three smoothing kernels (4, 8, and 12 mm) and across directions
(increases, decreases) using modulated data. A total of 47 false
positives were detected in the Beijing data set and a total of
46 false positives were detected in the Cambridge data set. The
distribution of these false positives across the brain, based on
the peak coordinates, is summarized in Table 2 and represented
graphically in Figure 1. In addition, the exact region in which
each peak was located is reported in the Supplementary Material
Table S1.

A large proportion of the false positives were localized in
the cortex (40 out of 47 corresponding to 86.8% of the total
number in the Beijing data set; 19 out of 46 corresponding to
44.8% of the total number, in the Cambridge data set) whereas
only a small fraction were detected in subcortical regions (6
false positives corresponding to 13% in the Beijing data set; 5
false positives corresponding to 10.6% in the Cambridge data
set). In addition, the false positives did not appear to be equally
distributed across the cortex; rather, they were mainly located
in the frontal lobe (15 false positives out of 46 corresponding
to 32.6% in the Beijing data set; 7 false positives out of 47
corresponding to 14.8% in the Cambridge data set) and in
the occipital lobe (13 false positives out of 46 corresponding
to 28.2% in the Beijing data set; 6 false positives out of 47
corresponding to 12.7% in the Cambridge data set) compared
to the other lobes (temporal: 10/46, 21.7%, and 4/47, 8.5%
in the Beijing and Cambridge data sets respectively; parietal:
2/46, 4.3% and 2/47, 4.2% in the Beijing and Cambridge
data sets respectively). We considered the possibility that the
preferential localization of false positives in the frontal lobe
might reflect its larger size (35.5% of the total brain volume)
relative to other cortical lobes (13.5% for the parietal lobe; 16.2%
for the temporal lobe, and 10.7% for the occipital lobe). In
order to explore this possibility, we used Spearman’s correlation
to estimate the association between the volume (mm?® and
percentage) of the regions in Table 2 and the number of false
positives in these regions, for the two data sets separately. This
association was not significant, either in the Beijing (R = 0.58,
p = 0.12) or the Cambridge (R = 047, p = 0.23) data
set. Therefore, the idea that the preferential localization of false
positives in the frontal lobe might reflect its larger size was not
supported.
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TABLE 1 | Number of significant differences.

4mm 8mm 12mm
Increase Decrease Increase Decrease Increase Decrease

NP-modulated Beijing 6(8) 8 (11) 4 (6) 69 5) 5(8)

Cambridge 7(15) 4 (4) 5(12) 2(2) (7) 5(6)
NP-unmodulated Beijing - - 22 6 (6) - -

Cambridge - - 34 4 (4) — _
P-modulated Beijing 48 (79) 31 (41)

Cambridge 51 (70) 27 (44)

Percentage of statistical comparisons yielding at least one false positive (at p < 0.05 FWE corrected) across different statistics (P, parametric;, NP, non-parametric), smoothing kernels
(4, 8, 12mm) and for both modulated and unmodulated data. The number in brackets refers to the total number of clusters detected across statistical comparisons.

TABLE 2 | The table reported the volume in mm3 of each cerebral region.

Volume mm3 Volume percentage (%) Beijing (n = 46 clusters) Cambridge (n = 47 clusters)
Raw number Percentage (%) Raw number Percentage (%)

Frontal lobe 562.6 35.5 15 32.6 7 14.8
Parietal Lobe 214.8 13.51 2 4.3 2 4.2
Temporal Lobe 258.7 16.29 10 21.7 4 8.5
Occipital Lobe 170.6 10.73 13 28.2 6 12.7
Insula 29 1.83 1 2.1 0 -

Cingulate 61.2 3.85 0 - 3 6.3
Subcortical structures 89.7 5.62 6 13 5 10.6
Cerebellum 196.9 12.38 0 - 19 40.4

The percentage has been calculated on a total of 1583 mm? of total intracranial volume. Absolute number and proportion of statistically significant differences in different cortical and
subcortical areas were reported for Bejjing and Cambridge data sets, separately.

Fronta

Insula

FIGURE 1 | Localization of the false positives, based on the peak coordinates, in the Beijing (A) and Cambridge (B) data sets across all statistical
analyses with modulated images. This image was created using the peak coordinates; a 10 mm radius was chosen for display purposes in order to make each
peak clearly visible.

Comparison with Parametric Statistics statistics (Scarpazza et al., 2013), we used a control group of
In the present investigation, a control group of 100 healthy 16 healthy volunteers. Therefore, in order to compare FPRs for
controls was required to allow enough unique permutations to  non-parametric and parametric statistics without the confound of
accurately estimate the p-value. In contrast, in our previous different sample sizes, we performed 100 comparisons between a
investigation of FPRs in single case VBM with parametric  single disease-free individual and a group of 100 healthy controls
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using parametric statistics for each of the two data sets. Critically,
the very same control groups were used in the two sets of
analyses, allowing us to interpret any difference in FPRs as a
result of the type of statistics. The statistical comparisons using
parametric statistics were performed using Statistical Parametric
Mapping (SPM8) software, available at http://www.fil.ion.ucl.ac.
uk/spm/. For the comparisons testing significant increases in a
single subject relative to a control group, we found an error
rate of 48 and 51% for the Beijing and Cambridge data sets
respectively; in contrast, for the comparisons testing significant
decreases in a single subject relative to a control group, error rates
for the Beijing and Cambridge data sets were about 31 and 27%
respectively (see Table 1).

DISCUSSION

Although VBM was initially developed to detect subtle
differences between groups (Ashburner and Friston, 2000,
2001; Good et al., 2001; Mechelli et al., 2005), this analytical
technique is increasingly being used to examine neuroanatomical
abnormalities in individual subjects (Scarpazza et al., 2013).
Our previous investigation showed that VBM is not a reliable
technique for investigating single cases due to high susceptibility
to false positive findings (Scarpazza et al., 2013). We suggested
that this was explained by VBM’s reliance on parametric statistics,
which require the patient data to respect the assumption
of normal distribution and to reflect the mean value of a
hypothetical patient population with a variance equal to that of
the control group. In the present study we aimed to investigate
whether non-parametric VBM, which does not rely on parametric
statistics, allows the investigation of individual subjects without
high susceptibility to false positive findings. This was achieved
by empirically estimating the likelihood of detecting significant
differences when comparing a single subject against a control
group comprising of 100 subjects.

We tested three related hypothesis. Firstly and most
importantly we hypothesized that, when non-parametric statistics
are used, FPRs would be as expected theoretically (e.g., around
5%) and therefore much lower than the ones detected using
parametric statistics (Scarpazza et al, 2013). Secondly we
hypothesized that FPRs would not vary as a function of
smoothing and modulation. Thirdly, we hypothesized that false
positives would be randomly distributed across the brain rather
than being preferentially localized in specific regions.

We found that, across the three smoothing kernels
investigated, the average number of statistical comparisons
yielding at least one false positive was 5% for increases and
3.6% for decreases in the Beijing data set; and 5.6% for increases
and 6.3% for decreases in the Cambridge data set. These FPRs
are considerably lower than the very high FPRs observed with
parametric statistics, which reached approximately 50% for
increases and 30% for decreases. Thus, consistent with our first
hypothesis, single case VBM with non-parametric statistics is not
susceptible to the high FPRs observed in the context of single
case VBM with parametric statistics. The critical implication of
this finding is that VBM can be used to investigate individual

subjects as long as appropriate (i.e., non-parametric) statistics are
employed.

In line with our second hypothesis, we found that, in the
context of non-parametric statistics, the FPRs were not affected
by the degree of smoothing applied to the data. This aspect of our
results is consistent with our previous investigation comparing
balanced groups using parametric statistics, which also found
a very small number of false positive findings (Scarpazza
et al.,, 2015). However, it is inconsistent with previous studies
comparing a single subject against a group using parametric
statistics that reported high FPRs (Salmond et al., 2002; Viviani
et al., 2007a; Scarpazza et al., 2013). This can be explained by
the fact that, in the context of parametric statistics, the degree
of smoothing affects the normality of the data, which in turn
determines the validity of the test. On the other hand, in the
context of non-parametric statistics, the test is not affected by the
normality of the data (and therefore by the degree of smoothing).
In line with our second hypothesis, we also found that FPRs
did not differ for unmodulated and modulated data. This is
in accordance with our previous study comparing balanced
groups using parametric statistics (Scarpazza et al., 2015) and
in contrast with our previous investigation comparing a single
subject against a group using parametric statistics (Scarpazza
et al., 2013). The fact that smoothing and modulation did not
have a significant effect on the results is encouraging since,
if VBM using non-parametric statistics is a valid approach in
the context of single case studies, then the same FPRs should
be expected regardless the smoothing and modulation applied
to the data. However, we cannot exclude the possibility that
the very small number of false positive findings in the present
investigation may have reduced the statistical power to detect
the impact of these factors compared to our previous study
(Scarpazza et al., 2013).

In addition, we found that a large proportion of false positive
findings were expressed in the cortex in both data sets, which
is likely to reflect its larger size compared with subcortical
structures. However, in the Beijing data set the percentage of
false positives located in the cortex was 86.8%, while in the
Cambridge data set it was only 44.8%. This discrepancy between
data sets can be explained by the fact that, in the Cambridge
data set, 19 out of 47 false positives (40.4%) were located in the
cerebellum; however, as mentioned in the Results, 17 out these
19 false positives came from a single statistical comparison which
was a clear outlier (see Supplementary Table S1 for details). We
also found that the majority of false positives within the cortex
were located in frontal lobe as opposed to the parietal, occipital
or temporal regions. We examined the possibility that the
preferential localization of false positives in the frontal lobe might
reflect its larger size relative to other cortical lobes (Semendeferi
et al, 1997). This possibility, however, was not supported
by correlation analyses investigating the relationship between
regional volume and number of false positives (see Section
Likelihood of Detecting Local Maxima in a Specific Region of
the Results). There are at least three additional explanations for
the non-random spatial distribution of the false positives across
the brain: firstly, there is a higher degree of neuroanatomical
variability in the frontal lobe than in other cortical lobes (Casey
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et al,, 2000; Carreiras et al., 2009; Fleming et al., 2010); secondly,
the spatial distribution of overthreshold peaks is thought to
be associated with the local degree of smoothness (Taylor and
Worsley, 2007) as indexed by the Resolution Element (RESEL)
map (Worsley et al., 1992); thirdly, overthreshold peaks are more
likely to occur in areas where skeweness or kurtosis is more
marked (Viviani et al., 2007a,b). When a single case is compared
against a comparison group, as in the current investigation,
the combined effect of the above systematic sources of non-
homogeneity might lead to the occurrence of false positives in
some regions more than others. On the other hand, we note
that the impact of neuroanatomical variability, RESEL maps,
skewness and kurtosis would be expected to decrease with a
higher degree of smoothing, which was not the case in the present
work. Also this aspect of our results should be considered with
caution, since it is based on a relatives small number of false
positives.

Taken collectively, these results have important
implications for studies using single case VBM to characterize
neuroanatomical alterations in individual patients relative to a
control group. A major challenge for these studies, which in the
past have always been conducted using parametric statistics, is
the high rates of false positives which results from the violation
of the assumption of normality (Scarpazza et al., 2013). Here
we have shown that this challenge can be overcome with the
use of non-parametric statistics, which do not require the data
to have a normal distribution. A significant strength of the
present study is that all statistical analyses were repeated using
two independent data sets composing individuals from distinct
ethnic groups (i.e., Caucasian and Chinese). Overall the results
were highly consistent across the two data sets, providing
support to the idea that the current results can be generalized
to other research centers. The present study has a number
of limitations. Firstly, the statistical comparisons carried out
within each data set were not completely independent. This is
because, since the control groups comprised of 100 subjects
randomly selected from a data set of 198 subjects, the same
subjects would be present in different control groups. A second
important limitation is that, although the permutation test
computes valid rejection thresholds irrespective of whether or
not the data are normally distributed, it does not compensate
for the unequal occurrence of false positives due to the unequal
spatial occurrence of non-normality. A third limitation is that
our interpretation of the results is based on the assumption that
all subjects were free from neurological or psychiatric disorders.
Although the subjects are free from any diagnosis, we cannot
exclude the possibility that some of them might have experienced
subclinical symptoms that were reflected in neuroanaomical
alterations. Fourth, a control group of 100 individuals was
required to allow enough permutations to accurately compute
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