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This study investigates the influence of temporal regularity on human listeners’ ability

to detect a repeating noise pattern embedded in statistically identical non-repeating

noise. Human listeners were presented with white noise stimuli that either contained

a frozen segment of noise that repeated in a temporally regular or irregular manner, or

did not contain any repetition at all. Subjects were instructed to respond as soon as

they detected any repetition in the stimulus. Pattern detection performance was best

when repeated targets occurred in a temporally regular manner, suggesting that temporal

regularity plays a facilitative role in pattern detection. A modulation filterbank model could

account for these results.

Keywords: rhythm, pattern detection, temporal regularity, noise learning, psychoacoustics, modulation filters,

footsteps, auditory neuroscience models

INTRODUCTION

Beneficial to survival in a complex and ever-changing acoustic environment is the ability to quickly
identify relevant sounds that comprise the scene. One useful strategy is to detect recurring patterns
over time, as these are often salient and suggestive of animate sound sources. Consider footsteps:
steps on gravel sound nothing like steps through grass or through puddles, yet all of these very
disparate sounds are easily recognized as the sound of footsteps if they occur in a rhythmic,
repeating pattern. To recognize rhythmic patterns, the brain needs to search for recurrences of
arbitrary and potentially complex sounds over timescales ranging from fractions of a second to
tens of seconds.

Studies of auditory pattern detection often employ Gaussian white noise stimuli because they
are spectrally broadband and devoid of prior meaning to listeners. Humans exhibit an impressive
capacity to rapidly form recognitionmemories of frozen white noise tokens (Kaernbach, 2004; Agus
and Pressnitzer, 2013), and these memories can persist for weeks (Agus et al., 2010). While human
sensitivity to arbitrary repeating patterns has been well documented (Kaernbach, 2004; Chait et al.,
2007; Agus et al., 2010; Agus and Pressnitzer, 2013), the question of how repetition is detected
in the first place remains poorly understood. Previous noise learning studies have only explored
conditions where repeating noise tokens were presented at precisely regular (isochronous) time
intervals, and it is unclear whether such regularity is necessary or helpful for pattern detection.
If sensory memory alone is responsible for pattern detection, then whether the sounds occur at
regular or irregular intervals should have no effect on pattern detection.

However, the experiments described here reveal that detection performance does decline with
increasing temporal irregularity, indicating that a sensitivity to slow temporal modulations or
entrainment to the rhythmic structure of incoming sounds might facilitate pattern detection.
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METHODS

The experimental methodology was approved by the local Ethical
Review Committee of the Experimental Psychology Department
of the University of Oxford, and conforms to the ethical
standards in the 1964 Convention of Helsinki.

In order to investigate to what extent temporal regularity
might facilitate pattern detection, we asked human subjects
to detect repeating noise patterns played over headphones.
We generated frozen noise “targets” and manipulated their
regularity by embedding them in non-frozen “filler” noise of
varying length. In this manner, we probed pattern detection
in a temporally regular (REP-R) and temporally irregular or
jittered (REP-J) context. REP-R stimuli were designed to measure
how the detectability of a target depended on its duration
relative to a fixed inter-onset interval (IOI). REP-J stimuli
were designed to measure how the detectability of a target
depended on the variability of IOI. Background “false alarm”
detection rates were measured with a control stimulus of
totally non-repeating noise (RAND). As a further control to
test the subjects’ ability to report changes in the quality of
the noise stimuli rapidly and reliably, we also incorporated
a fourth stimulus type in the experiment (PINK), in which
the spectrum of the noise changed from white (flat amplitude
spectrum) to pink (1/f amplitude spectrum). MATLAB was
used for stimulus generation, response collection and data
analysis.

All stimuli were 8 s in duration, and either remained non-
repeating noise throughout (RAND condition), or started with
non-repeating noise for a variable (uniformly distributed over
3–4 s) duration before transitioning to alternating noise targets
and fillers (REP conditions) or to pink noise (PINK condition).
The repeating section contained exactly 8 repeats of a single
noise target embedded in noise fillers with the duration and
jitter parameter combinations shown in Figure 1. REP-R stimuli
had target durations T of either 500, 400, 300, or 200ms,
and filler durations F = 500-T ms to yield a constant IOI of
500ms. For the REP-J stimuli, T was fixed at 300ms, and F
was drawn independently from a Gaussian distribution with
a mean of 200ms and a standard deviation J of either 10,
50, or 100ms. Thus, REP-J stimuli had normally-distributed
random IOIs with a mean of 500ms, while REP-R had a fixed
IOI of 500ms, corresponding to a repetition rate of ∼2Hz
for all REP stimuli. Expressed as percentages, REP-R explored
the detection of targets that were 100, 80, 60, or 40% of the
IOI, and REP-J probed temporal jitter levels of 2, 10, or 20%,
when quantified as the standard deviation of the IOI as a
fraction of its mean. Examples of these stimuli can be found
online1.

Subjects first underwent an instructional period during
which the task was explained and examples of each stimulus
type were played until the subjects reported that they could
hear the repeating pattern on at least one occasion in both
the REP-R and REP-J contexts. Subjects were told that the
experiment would consist of four blocks, that stimuli in each

1http://www.auditoryneuroscience.com/patternsinnoise

block would come one after another with a short silence (∼3 s)
between stimuli, and that they would be given a break between
each ∼9min block. Subjects were instructed to press a button
as soon as they detected repetition or a transition in the
sound.

Each data collection block contained 4 trials of each of
the seven REP conditions, 16 RAND trials, and 4 PINK
trials, all randomly interleaved. For each subject, over all four
blocks, this amounted to 16 trials of each of the seven REP
conditions, 64 RAND trials, and 16 trials of PINK. Importantly,
the stimulus for each trial was generated from a different
random seed and was therefore unique, with its own target,
fillers, and set of jittered intervals. This eliminated the possible
confound of longer-term memory effects across multiple trials
(Agus et al., 2010). Additionally, in order to reduce the
likelihood that any trend found could be explained by the
particular noise stimuli that make up a single stimulus set,
a different stimulus set was independently generated for each
subject.

Stimuli were played through a TDT RM1 mobile processor
(Tucker Davis Technologies, Alachue, FL, USA), and presented
diotically at 50 dB SPL over Sennheiser HD 650 headphones
(Wedemark, Germany). The TDT device delivered the stimuli
and recorded button presses, allowing precise reaction times to
be measured. Experiments were conducted in a double-walled
sound-proof chamber.

Two performance measures were analyzed for all conditions
tested: fraction detected and reaction time. The fraction detected
is the proportion of trials (out of a total of 16 in each REP or
PINK condition) during which the subject pressed the button to
indicate detection. Reaction time was measured from the onset
of the first target noise to the time of the button press. By
dividing reaction time by 0.5 s, one can determine approximately
how many noise targets had been presented before detection.
“Miss” trials where repetition was present but not detected were
excluded from reaction time calculations.

RESULTS

Twenty-one paid participants aged 20–40 with normal hearing
were recruited for this study. Three subjects were authors on this
study, and 12 had some musical training. To ensure that subjects
were performing the task correctly, subjects with a false alarm
rate greater than 50%, calculated as the percentage of all RAND
stimuli during which an erroneous detection was reported,
were excluded from further analysis, leaving a final total of 17
subjects.

The population false alarm rate, calculated as the proportion
of erroneous detections during RAND trials (out of a total of 64)
averaged across all 17 subjects, was 17.9%. The average reaction
time for PINK trials, was 588ms.

Shorter Noise Targets are Harder to Detect
Figures 2A,C show REP-R detection performance and reaction
times, respectively. A few subjects were near 100% detection
for all REP-R stimuli, but the overall trend is for detection
performance to increase with increasing target duration
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FIGURE 1 | (A) For each of the parameter combinations shown for the REP conditions, 16 trials were generated. Target duration is displayed in milliseconds and as a

percentage of the fixed inter-onset interval (IOI) of 500ms. Jitter is shown as the standard deviation of the Gaussian distribution from which IOI durations are drawn in

milliseconds, and as a percentage of the mean IOI of 500ms. (B) All stimuli were 8 s in duration and began as non-repeating noise that then transitioned (if at all) at a

random time between 3 and 4 s to a repeating section (or pink noise in the case of PINK). (C) Schematic representations of the different stimulus conditions where

non-repeating noise is shown in white, repeating noise targets are patterned, and pink noise is shown in gray. T500-J0 (target duration of 500ms, no jitter, top) is

closest to the type of stimuli used in previous noise learning studies. A target duration of 300ms (T300) was used in the jittered (REP-J) context. Control conditions

were RAND (non-repeating white noise) and PINK (non-repeating white noise that transitions to pink noise). N = 16 trials for PINK and each of the 7 REP conditions,

and N = 64 trials for RAND.

(Figure 2A), and for reaction time to decrease (Figure 2C).
Relative to the shortest target duration (T200-J0: 200ms target
duration, 0ms jitter), detection performance was significantly
higher and reaction times significantly lower (p < 0.001 and
p < 0.01 respectively, n = 17 subjects, Wilcoxon signed
rank test, Holm-Bonferroni corrected) for all other target
durations tested. A significant drop in reaction time was also
observed between T300-J0 and T500-J0 (p < 0.05, n = 17,
Wilcoxon signed rank test, Holm-Bonferroni corrected).
Thus, as the duration of repeating targets makes up a larger
proportion of the IOI, their repetition is more likely to be
detected, and fewer target presentations are required for their
detection.

Substantial Jitter Impairs Noise Target
Detection
Figures 2B,D show individual detection rates and reaction times,
respectively, for REP-J conditions. Subjects could detect the
repeating pattern quite well for all jitter levels, but there are
some systematic effects of jitter. We observed no statistically
significant differences in reaction time between REP-J conditions

(p > 0.05, n = 17, Wilcoxon signed rank test, Holm-
Bonferroni corrected), but detection performance on T300-
J100, the most jittered condition, was significantly worse than
on T300-J0 and T300-J10 (p < 0.05, n = 17, Wilcoxon
signed rank test, Holm-Bonferroni corrected). Thus, a substantial
amount of jitter makes a repeating target more difficult
to detect, but modest amounts of jitter appear to be well
tolerated.

What about Natural Sounds?
We motivated this study of pattern-in-noise detection by
considering the ecological need to detect rhythmic natural
sounds, such as footsteps, out of background noise. Rhythmic
structure is often a hallmark of locomotion or vocal behavior
of animate sound sources, and an ability to detect rhythmic
patterns may have evolved to facilitate detection of another
animal’s activity. This could confer a competitive advantage by
signaling the presence of potential mates, prey, or predators.
Our experimental results indicate that pattern detection benefits
from temporal regularity, and it would provide some context for
our findings to explore how much temporal jitter is present in
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FIGURE 2 | (A) Fraction detected for REP-R conditions. Solid lines represent individual subjects, and boxplots summarize the data over the 17 subjects for a given

stimulus condition. For display purposes only, a small amount of Gaussian noise (std = 1.5%) has been added to the y-values of the solid lines in (A–D) to spread out

overlapping data points. (B) Fraction detected for REP-J conditions. (C) Mean reaction times for REP-R conditions. Solid lines represent mean reaction times for each

subject, and boxplots are over the 17 subjects’ means. (D) Mean reaction times for REP-J.

natural sounds. We analyzed step interval data from normally
walking healthy humans, compiled from three separate studies
(Frenkel-Toledo et al., 2005; Yogev et al., 2005; Hausdorff
et al., 2007), available on the PhysioNet database (Goldberger
et al., 2000). The dataset logged pressure sensor data recorded
from underneath both feet, and we defined foot strikes to
occur each time pressure under either foot crossed a threshold.
Footstep intervals were calculated as the time between successive
foot strikes. Since participants were pacing back and forth
through a hallway, the need to turn around introduced some
footstep intervals that were clear outliers from an otherwise
tight distribution. Hence, as an outlier-proof measure of the
jitter in step intervals, we calculated the median percentage
deviation from the median step interval for each individual.
These median deviations ranged from 1.6 to 6.6% across the
72 subjects, with a median of 1.9%. The entire range is less
than the median deviation of the intermediate jitter condition
(T300-J50) of 6.7%. From this we can conclude that, at least
for this class of rhythmic natural sounds, the amount of
temporal jitter present would be too small to impair detection
performance.

DISCUSSION

Firstly, we found that for a fixed IOI, a repeating target noise
becomes easier to detect as its duration increases. This is
consistent with the findings reported in Kaernbach (2004) and
may be due to increased signal to noise for longer duration

target noises. Secondly, we found that detection performance
declines with substantial amounts of temporal jitter (more
than the amount of jitter found in footsteps), though pattern
detection was remarkably robust to levels of jitter below
this level.

Does Repetition Detection Rely on
Synaptic Memory Traces of Recent Inputs?
Agus et al. (2010) suggested that memory traces that are
presumably needed for repetition detection may involve spike-
timing dependent plasticity (STDP). Networks incorporating
STDP have been shown to quickly learn to detect a repeating
pattern of afferent spiking activity amidst otherwise stochastic
firing (Masquelier et al., 2008). This makes STDP an appealing
candidate mechanism consistent with experimental observations
made to date, with two possible caveats. First, subjects were
able to recognize repetition with only two presentations of
a frozen noise target (Agus et al., 2010), a performance that
is so far unmatched by existing models of STDP. Secondly,
a purely STDP based model would accurately detect noise
targets equally well whether they arrive at regular intervals
or not, which is in contrast to our finding that temporal
regularity results in better detection performance. This does
not rule out that STDP may have a role to play, but it does
suggest that it alone does not account for all aspects of noise
learning, and indeed Agus and Pressnitzer (2013) suggested the
possibility that sensitivity to amplitude modulations may also be
involved.
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Modulation Filterbanks as an Alternative
Mechanism
A mechanism that would potentially account for the timing
aspect of our findings is a modulation filterbank, which is a set
of neural filters tuned to different frequencies of modulation
of the sound envelope (typically within a frequency band).
Modulation filterbank models of the auditory system have shown
good agreement with human psychoacoustic data on amplitude
modulation detection (Dau et al., 1997) and speech intelligibility
(Jørgensen and Dau, 2011), and electrophysiological evidence
for modulation tuning exists at various levels of the auditory
system (Schreiner andUrbas, 1986, 1988; Kilgard andMerzenich,
1999; Joris et al., 2004). We propose that the brain relies
at least in part on modulation filters to detect repetitions
in noise, and that the performance decrease we observe in
the presence of jitter might be explained by the fact that
jittered stimuli will drive modulation filters less strongly. We
illustrate the plausibility of this idea through the following
analysis.

Repetition of Frozen Noise Targets Results
in Distinct Peaks in the Modulation
Spectrum
We calculated the modulation spectrum for each stimulus and
used the standard deviation of the modulation spectrum as
a measure of its “peakiness.” A peaky modulation spectrum
would indicate that some modulation filters are being driven
more strongly than others, and we sought to investigate
whether this correlated with detection performance using
the method illustrated in Figure 3A. The first step was to
transform each sound stimulus into a simple approximation
of the activity pattern received by the auditory pathway by
calculating a sound’s log-scaled spectrogram (‘cochleagram’).
For each sound, the power spectrogram was taken using
20ms Hanning windows, overlapping by 10ms. The power
across neighboring Fourier frequency components was
aggregated using overlapping triangular windows comprising
43 frequency channels with center frequencies ranging from
150 to 19,200Hz (1/6 octave spacing). Then, the log was
taken of the power in each time-frequency bin, and finally
any values below a low threshold were set to that threshold.
These calculations were performed using code adapted from
melbank.m2.

The cochleagram was calculated over a 3 s window starting
4 s into the sound, by which time frozen noise targets must
have ensued in all REP conditions. The magnitude spectrum of
the activity in each frequency channel was calculated and then
summed across frequency channels to get the overall modulation
spectrum of the sound. We then calculated the standard
deviation of the modulation spectrum (≤20Hz) to quantify
how much it deviated from a “flat” modulation spectrum.
Gaussian white noise without repeating frozen noise targets (our
RAND condition) should have a flat modulation spectrum and
small standard deviation, while isochronously presented targets
(our REP-R conditions) should introduce significant peaks in

2http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

the modulation spectrum, increasing its standard deviation
(Figure 3A, rightmost column). As illustrated in Figure 3B,
REP stimuli with longer or more regularly spaced targets had
“peakier” modulation spectra and were more reliably and more
quickly detected by our subjects. Peakiness of the modulation
spectrum correlates significantly with detection (p = 0.03, n = 7
conditions by 17 subjects = 119, logistic regression), and with
faster reaction times (p < 10−20, n = 1649, Pearson correlation).
No significant trends were found in fraction detected or in
reaction times within individual conditions (p > 0.05 in all cases,
Pearson correlation).

The analysis in Figure 3B is consistent with the idea that
modulation filter type mechanisms could be responsible for
the detection of repetition in noise, but it of course does
not prove that physiological modulation filters are the only
possible mechanism. For example, one might wonder whether
autocorrelation models, which are often invoked to describe the
processing of periodicities of sounds in the pitch range, might not
provide equally good or perhaps even better alternative candidate
mechanisms. In digital signal processing, autocorrelations are
normally computed by quantifying the similarity of incoming
signals to a delayed copy of the input, which is held in
memory with complete accuracy for whatever delay period
may be required, perhaps up to several seconds. How such
highly accurate and flexible auditory short-term memory banks
might be implemented using known neurobiological signal
processing mechanisms is far from obvious. Nevertheless, we
cannot exclude the possibility that the mechanisms that the
brain uses to detect recurrent patterns in noise may operate in
ways that resemble an autocorrelator more than a modulation
filter bank.

Could a Modulation Filterbank Model
Account for Previous Findings?
As mentioned earlier, Kaernbach (2004) and Agus et al.
(2010) both demonstrated that human listeners could detect
repetition in a 1 s long stimulus where a 500ms noise token
was played only twice. A question worth asking is whether
“peakiness” in the modulation spectrum could still be helpful
even when there are so few repeats. Figure 3C shows that
the standard deviation of the modulation spectrum calculated
from 1 s (two period) segments taken from our analogous
T500-J0 stimuli do indeed differ substantially from equivalent
1 s segments from non-repeating RAND stimuli, suggesting
that peaks in the modulation frequency domain could have
provided a useful cue in the aforementioned studies. However,
modulation filters alone would not account for the observation
in Agus et al. (2010) that noise memory traces can have
surprisingly long lasting effects. Thus, both modulation filter-
like mechanisms and long term plasticity are likely to be
required to fully account for our ability to detect patterns
in noise.

Further work is needed to confirm whether modulation
filters indeed underlie the results reported here, as well as
in other related psychoacoustic studies. For example, timing
predictability is also an important cue during auditory scene
analysis (Bendixen, 2014), and different patterns of activity
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FIGURE 3 | (A) Method used to quantify the “peakiness” of the modulation spectrum, shown for one example from REP-R (T300-J0), REP-J (T300-J100), and RAND.

From left to right: the raw sound; cochleagram; modulation spectrum in each frequency channel; modulation spectrum summed over frequency channels. Note the

presence of vertical stripes at 2Hz and its harmonics in the modulation spectra of both REP stimuli, and their absence from RAND. The standard deviation of the

summed modulation spectrum was calculated for each stimulus trial. (B) Top: Fraction detected plotted against the standard deviation of the summed modulation

spectrum for all trials, conditions, and subjects. Each point represents the fraction detected, out of the nearest-neighboring 16 stimulus examples (regardless of

subject) along the x-axis from within the same condition. Different colors represent the different conditions, as shown in the legend. Black line is the fit from a logistic

regression. Bottom: Reaction time in seconds plotted against the standard deviation of the summed modulation spectrum. For display purposes, the average

(clumped) reaction times of each 16 nearest neighbors along the x-axis from the same stimulus condition are plotted. The black line is a linear regression run on all

(un-clumped) data. On the secondary y-axis is a histogram showing the distribution of all (un-clumped) standard deviation values for all stimuli within each condition.

(C) A histogram showing the distribution of standard deviation values calculated over 1 s intervals during RAND (gray) and T500-J0 (black), analogous to the stimuli

used in Agus et al. (2010). Note the larger standard deviation values for both conditions in (C) using a 1 s window compared to the 3 s window used in (B). For our

examples of RAND (n = 1088) and T500-J0 (n = 272), we see no overlap, suggesting that the modulation spectrum would contain enough information to detect

repetition from a single repeat of a 500ms frozen noise target.

across frequency channels in the modulation frequency domain
could be involved in the tendency for temporally jitter to
cause streams to segregate (Andreou et al., 2011; Rajendran
et al., 2013). An additional consideration is the evidence for
the oscillatory nature of temporal attention and its effect on
task performance, which has been studied both in the visual
(Correa et al., 2006; Lakatos et al., 2008) and auditory (Jones
et al., 2002; Lakatos, 2005; Jaramillo and Zador, 2011; Henry

and Obleser, 2012; Lakatos et al., 2013; Lawrance et al., 2014)
domain.

CONCLUSIONS

Our results demonstrate that the ability to detect a repeating
pattern is affected by the regularity of timing with which repeated
sounds are presented. Specifically, we found that at a presentation
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rate of 2Hz, applying a temporal jitter of 20% to the onsets of
the noise targets significantly hindered their detection. We also
found that the amount of jitter present in natural sounds such
as footsteps is likely too small to be detrimental to detection.
Finally we showed that aspects of perceptual performance in our
study and in other noise pattern detection studies can be well
accounted for by the hypothesis that the auditory system uses
low frequency modulation filters to detect rhythmic patterns. All
together, we conclude that temporal regularity aids in detecting
subtle structure in sound.
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