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Independent Component analysis (ICA) is a widely used technique for separating

signals that have been mixed together. In this manuscript, we propose a novel ICA

algorithm using density estimation and maximum likelihood, where the densities of the

signals are estimated via p-spline based histogram smoothing and the mixing matrix is

simultaneously estimated using an optimization algorithm. The algorithm is exceedingly

simple, easy to implement and blind to the underlying distributions of the source signals.

To relax the identically distributed assumption in the density function, a modified algorithm

is proposed to allow for different density functions on different regions. The performance

of the proposed algorithm is evaluated in different simulation settings. For illustration, the

algorithm is applied to a research investigation with a large collection of resting state fMRI

datasets. The results show that the algorithm successfully recovers the established brain

networks.

Keywords: blind source separation, density estimation, functional MRI, p-spline bases, signal processing

1. INTRODUCTION

This manuscript puts forward two innovations. Firstly, we demonstrate a fast, likelihood motivated
and straightforward method for applying independent components analysis (ICA). Secondly, we
propose a parcellation based adjustment when the source signals distribute differently across
regions. Our work is routed in the context of understanding human brain networks, and we use
functional magnetic resonance imaging (fMRI) data for illustration in this manuscript.

We approach our study of fMRI by simultaneously analyzing all voxels. This is in contrast to
regional or seed-based approaches (Buckner et al., 2005; Wang et al., 2006; Allen et al., 2007)
that restrict attention to carefully chosen locations. Such approaches require strong assumptions
on the choice of seeds or parcellation used to define region. Hence voxel-wise approaches are
important complementary procedures. Given the volume of voxels under study (usually on the
order of fifty thousand non-background ones), flexible yet parsimonious models approaches
are required. However, even with parsimonious models, whole brain voxel-level techniques are
more empirical and exploratory than their more hypothesis driven regional and seed-based
counterparts. Thus, exploratory factor-analytic models are common approaches in voxel-level
investigations.

Independent components analysis (ICA) is a factor-analytic approach that has been frequently
utilized for the analysis of functional neuroimaging data, because of its success in discovering

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00015
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00015&domain=pdf&date_stamp=2016-01-29
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:sl50@iu.edu
http://dx.doi.org/10.3389/fnins.2016.00015
http://journal.frontiersin.org/article/10.3389/fnins.2016.00015/abstract
http://loop.frontiersin.org/people/188760/overview
http://loop.frontiersin.org/people/8315/overview


Li et al. A Parcellation Based Nonparametric Algorithm for ICA

important brain networks in many applications (McKeown et al.,
1998a,b; Calhoun et al., 2001a; Guo and Pagnoni, 2008). Two
key benefits of ICA are its exploratory nature and its often
considered reasonable underlying generative model. Specifically,
it models collected signals, X, as linear weighted combinations of
independent sources, S1, S2, ...Sp. Thus, we can write the noise-
free ICA model as X = AS, where S = [S1, S2, ..., SQ] and A
is a Q × Q full rank matrix, the so-called mixing matrix. The
goal of ICA is to recover the underlying signals S1, S2, ..., SQ
from their observed mixtures X1,X2, ...,XQ. Note that, in the
context of fMRI, the independent components S1, S2, ..., SQ are
often interpreted as brain networks and A is the mixing matrix
characterizing the temporal pattern of the corresponding brain
networks.

Various algorithms for ICA have been proposed in the
literature. See Hyvärinen et al. (2001); Comon and Jutten (2010);
Risk et al. (2014) for comprehensive reviews. One common
procedure is to postulate a parametric family for the source
distributions and then obtain the independent components
(ICs) by optimizing a contrast function that measures the
distribution property of the output (Samworth and Yuan, 2012).
The contrast functions can be selected based on different
measures, such as entropy, mutual independence, high-order
decorrelations, divergence between the joint distribution of the
output and some model, etc. (Cardoso, 1998). These include
the popular FastICA algorithm (Hyvärinen and Oja, 2000), the
JADE algorithm (Cardoso, 1999), the Pearson ICA algorithm
(Karvanen et al., 2000), and a few other algorithms proposed by
Comon (1994); Amari and Cardoso (1997); Li and Adali (2010).
An alternative procedure is to assume smooth densities for the
source distributions and use nonparametric or semiparametric
approaches to estimate those density functions. The mixing
matrix can then be derived using maximum likelihood method.
For example, Bach and Jordan (2003) developed a nonparametric
estimation approach based on canonical correlations in a
reproducing kernel Hilbert space. Hastie and Tibshirani (2002)
expressed the source distribution by an exponentially tilted
Gaussian function and used the fixed-point algorithm for
estimation of the mixing matrix. Boscolo et al. (2004) used kernel
density estimation techniques to model the underlying densities
and quasi-Newton method for optimization. Guo and Pagnoni
(2008) used Gaussian mixture models for the source distribution
and provided an expectation-maximization (EM) framework
for estimation, assuming Gaussian noise in the model. Eloyan
et al. (2013) estimated the source distribution by using mixture
density estimates, and proposed a constrained EM algorithm for
estimation.

The benefit of the likelihood-based ICA algorithm is that,
as a byproduct of the ICA algorithm, one obtains the fully
specified likelihood of the ICA model which can be used
for further statistical inference. For example, based on the
fully specified likelihood, one can conduct Bayesian analysis or
perform likelihood based model selection. However, the existing
likelihood-based ICA algorithms are mostly semi-parametric and
are usually computationally intensive. In this manuscript, we
aim to develop a likelihood-based algorithm that is exceedingly
simple and truly blinded to the source distributions.

We propose to estimate the density function of the ICs
via histogram smoothing, following a well-known approach
in the penalized spline literature. At its core, likelihood-based
ICA requires estimation of the mixing matrix and flexible
density estimation for the ICs. Our approach, like many
other likelihood-based approaches, iteratively estimates these
components separately using block maximization. In contrast
to other approaches, we use an exceedingly simple density
estimation technique via histogram smoothing. Specifically, we
assume the bin counts of the frequency histogram follow a
Poisson distribution and express the mean counts as sum of
B-spline bases via generalized linear model. To smooth the
histogram, we follow Eilers and Marx (1996) to construct a
penalized likelihood with a difference penalty on coefficients of
adjacent B-splines. Apart from its simplicity, a benefit of this
approach is speed. Density estimation and evaluation for tens of
thousands of voxels is time consuming, and worse, is performed
within an iterative algorithm. Using histogram smoothing, the
voxel-level calculation reduces to estimating a histogram, a very
fast process.

We briefly mention that, in our primary area of application,
fMRI, we focus entirely on noise-free group spatial independent
component analysis. By assuming noise-free model, noise in the
data is absorbed into the estimated ICs and the mixing matrix.
By using spatial ICA model, the fMRI data is decomposed into
spatial maps multiplied by their respective time courses, where
themaps are drawn from spatial distributions that are statistically
independent (Calhoun et al., 2001a). The spatial independence
assumption is well suited to the sparse nature of the spatial
pattern for typical brain activation (McKeown and Sejnowski,
1998; Guo and Pagnoni, 2008). The time courses estimated from
spatial ICA describe the temporal characteristics of functional
networks, i.e., areas of temporal correlation in the BOLD signal.
For multi-subject fMRI data, we assume common spatial maps
for all subjects and subject-specific mixing matrices, therefore,
we can concatenate all subjects’ data in the temporal domain,
and apply ICA to the aggregated data matrix. The group mixing
matrix is the concatenated time course for all subjects. Individual
mixing matrices can be backreconstructed by partitioning the
group mixing matrix into submatrices corresponding to each
subject.

The remainder of the paper is organized as follows. Section
2 describes the p-spline based ICA algorithm and considers
relaxation of the i.i.d signal assumption. Section 3 shows the
performance of the proposed algorithm in simulation study.
Section 4 provides the application of the proposed algorithm to
the 1000 Functional Connectome Project (https://www.nitrc.org/
projects/fcon_1000/), while Section 5 gives a discussion.

2. METHODS

2.1. Description of ICA Methodology
Independent component analysis models collected signals
as linear weighted combinations of independent sources.
Notationally, let Xi be a T × V matrix for subject i = 1, ..., I.
In the context of fMRI, T indicates scans while V indicates
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voxels. Assume the number of ICs is Q. The ICA model specifies
Xi = AiS, where Ai is a T × Q mixing matrix and S is a
Q × V matrix of ICs. By assuming common spatial maps across
subjects, we can stack the individual matrices in the temporal
domain. Let X = [XT

1 ,XT
2 , ...,XT

I ]
T be the TI × V group

data matrix, and A = [AT
1 ,AT

2 , ...,AT
I ]

T be the TI × Q group
mixing matrix. Spatial group ICA simply specifies the standard
model

X = AS. (1)

We use parentheses to index matrices so that X(t, v) is element
(t, v) of X and define X(t, ·) as row t of X and X(·, v) as
column v. Then, model (1) could be rewritten as X(t, v) =
∑Q

q=1 A(t, q)S(q, v) and X =
∑Q

q=1 A(·, q)S(q, ·).

We assume that E[X] = µx = 0 and hence E[S] = µs = 0.
If this assumption were not made, the ICA model would imply
X − µx = A(S − µS), which is exactly an ICA model with
a centered data matrix and the ICs having mean 0. Hence, X
is demeaned prior to analyses and µS is assumed to be zero.
Similarly, since A(·, q)S(q, ·) = {A(·, q)/c} ∗ {cS(q, ·)}, ICs are
only identified up to scalar multiplication. Thus, we assume that
Var{S(q, v)} = 1 for q = 1, . . . ,Q and v = 1, . . . ,V .

ICA gets its name by assuming that S(q, ·) á S(q′, ·) when
q 6= q′, where á implies statistical independence. However,
standard variations of ICA also assumes that {S(q, v)}Vv=1 is an
i.i.d collection, which we also adopt for now. The i.i.d assumption
will be relaxed later in the next subsection. As a consequence of
these assumptions, X(·, v)áX(·, v′) when v 6= v′; yet note that
X(t, ·) is not (necessarily) independent of X(t′, ·).

Typically, Q < TI and Equation (1) is overdetermined. A
two-stage dimension reduction is often performed to reduce the
computational load and avoid overfitting (Calhoun et al., 2001a;
Beckmann and Smith, 2005; Guo and Pagnoni, 2008; Eloyan
et al., 2013; Risk et al., 2014). Specifically, in the first stage,
an SVD is performed in the temporal domain within subject,
where the first R eigenvectors are retained. The dimension for
the group data matrix then becomes RI × V . In the second stage,
an SVD is performed on the group data matrix obtained from
the first stage and the first Q eigenvectors are retained to force a
determined linear system for the group ICAmodel. This discards
information in the data. However, one hopes that by selecting
the first Q singular vectors, the most relevant features of the
data will be retained. The choice of R and Q could be based
on various criteria, including variance explained, information-
theoretic criteria, and practical considerations. This is not amajor
concern in this article.

2.2. ICA Through Fast Nonparametric
Density Estimation
ICA estimates S by seeking an unmixing matrix, say B̂, such
that B̂X is a good approximation to the original sources S. Let
B = A−1 be the estimand of interest. Notationally following
Hyvärinen et al. (2001), if fq is the density for S(q, v) for v =

1, . . . ,V , and f = (f1, ..., fQ), then standard multivariate random
variable transformation results imply that the joint density of

X(·, v) is

g{X(·, v)} = |det(B)|

Q
∏

q=1

fq{S(q, v)}

= |det(B)|

Q
∏

q= 1

fq{B(q, ·)X(·, v)},

therefore the joint log-likelihood including all contributions for
v = 1, . . . ,V is

L(B, f ) =

V
∑

v= 1

Q
∑

q= 1

log[fq{B(q, ·)X(·, v)}]+ Vlog|det(B)|.

It is generally not possible to solve the joint likelihood for the
parameters in fq and B simultaneously. Instead, an iterative
optimization is often performed. Specifically, given the current
estimate of B at iteration k, say B̂(k), one can get an estimate for
S via Ŝ(k) = B̂(k)X. Given Ŝ(k)(q, ·), density estimation techniques

can be used to obtain f̂
(k)
q , the estimate of f̂q at iteration k.

We suggest the use of histogram smoothing as the density
estimation technique, where the bin counts of the frequency
histogram are assumed to follow a Poisson distribution and a
penalized likelihood is constructed to produce a smooth density
estimate. The details of histogram smoothing can be found in
Eilers and Marx (1996), and we provide a sketch below. (Readers
not familiar with statistical smoothing may skip the rest of this
paragraph). Notationally, let c(k)(q, 0) < c(k)(q, 1) < . . . <

c(k)(q, J) be equidistant histogram cutpoints, where c(k)(q, 0) =

−ǫ+min Ŝ(k)(q, ·) and c(k)(q, J) = ǫ+max Ŝ(k)(q, ·). The number
ǫ is added to avoid numerical boundary effects. Let n(k)(q, j) =
∑V

v=1 I{c
(k)(j − 1) < Ŝ(k)(q, ·) ≤ c(k)(j)}, for j = 1, . . . , J, be

the count of values between cutpoints j − 1 and j for row q of
Ŝ(k). Define the midpoints of intervals [c(k)(q, j − 1), c(k)(q, j)]
by m(k)(q, j) for j = 1, . . . , J. We obtain a density estimate
via the log-linear model n(k)(q, j) ∼ Poisson{λ(k)(q, j)}, where
log{λ(k)(q, ·)} =

∑L
l=1 D

(k){m(k)(q, ·), l}β(k)(q, l). Here the log

function is presumed to act component-wise on vectors, D(k)

is a B-spline basis design matrix, L is the number of knots
for B-splines, and β(k)(q, ·) is a vector of coefficients. To avoid
overfitting the B-spline model, and to avoid sensitivity to the
degrees of freedom, we choose a large value for the degrees
of freedom and put a squared penalty on the coefficients. Let
µ(k)(q, j) denote the expectation of n(k)(q, j), then the penalized
log likelihood takes the form (Eilers and Marx, 1996)

L =

J
∑

j= 1

n(k)(q, j) lnµ(k)(q, j)−

J
∑

j= 1

µ(k)(q, j)

−δ

L
∑

l= 3

{12β(k)(q, l)}2

2
,

where δ is a parameter controlling the smoothness of the fit, 1
denotes the difference operator, 12β(·, l) = β(·, l) − 2β(·, l −
1) + β(·, l − 2). The resulting model is then a generalized linear
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mixed model on the counts. The B-spline basis is evaluated at
the midpoint of the cutpoint interval. However, via interpolation,
the smoother gives an estimate for all values, thus yielding a

continuous function, say f̂
(k)
q (s), which is the density estimate.

Using generalized linear mixed models to penalize smoothing
has become standard practice and is well described in Ruppert
et al. (2003). Histogram smoothing as a density estimate appears
to be less commonly used. However, we note that this p-
spline based density smoother has very attractive properties
(Eilers and Marx, 1996). First, it results in a proper density.
Secondly, it elegantly handles boundary issues, unlike other
density estimators (such as kernel density estimator). Thirdly,
the estimated density conserves the first few empirical moments
(means and variances) of the histogram, depending on the order
of the B-splines. More details regarding these properties can
be found in Eilers and Marx (1996). Note that, conservation
of moments is an important property that guarantees the
identifiability of the ICA model. We choose a cubic B-spline
which then conserves the first two moments of the histogram.

Furthermore, due to the convenient differentiation properties
of B-spline bases and the simple exponential (Poisson) model,

the first and second derivatives of f̂
(k)
q are immediately available,

where df̂
(k)
q = exp{f̂

(k)
q }β(k)(q, ·)dD(k). Thus, derivatives of L(B)

are available in closed form, making gradient- and Hessian-based
optimization algorithms easy to implement. This is useful for
the stage of the algorithm for obtaining the next iterate of B.
Accordingly, we use a Newton-Raphson method to update the
mixing matrix. Specifically, let L′ and L

′′ denote the first and
second derivatives of the log likelihood. At the kth iteration, we
update B by

B(k+1) = B(k) − L
′′(B(k))−1

L
′(B(k)). (2)

The starting values of B should satisfy the condition that the
underlying ICs are the same for all subjects. Following Eloyan
et al. (2013), we decompose the full matrixX using the population
value decomposition X = U6VT (Crainiceanu et al., 2011),
and the starting values of the Bi are chosen as the ith block of
the rows of U6. Thus, given a starting value for B, histogram
smoothing is used to obtain fq, then given the update for fq, the
natural gradient algorithm is used to obtain B and these steps
are iterated until convergence. Let P denote B(k)(B(k+1))−1. We
use the Amari metric between B(k+1) and B(k) as our convergence
criterion (Amari, 1998), where the metric is defined as

d{B(k),B(k+ 1)} =
1

2Q

Q
∑

i= 1





Q
∑

j= 1

|Pij|

maxj |Pij|
− 1





+
1

2Q

Q
∑

j= 1

(

Q
∑

i= 1

|Pij|

maxi |Pij|
− 1

)

.

The Amari metric is useful, as it is invariant to permutation of
the ordering of the ICs, a necessary condition for a convergence
metric to be useful.

2.3. ICA Based on Parcellation
Most ICA algorithms (such as the commonly used fastICA,
JADE, etc.) assume that {S(q, v)}Vv=1 is an i.i.d collection for all
q = 1, ...,Q. Intrinsically, this is to assume that the values
of the ICs are independent draws from a density. The i.i.d
assumption is made for simplicity, but it may not hold for fMRI
data. Calhoun et al. (2001b) considered possible violations of the
independence assumption for task-based fMRI data. They found
that the ICA algorithm was successful when the correlation in
the signal was small, but it may fail when the signals are highly
dependent. However, for most task-based fMRI and resting-state
fMRI data, the correlation between voxels is negligible. Therefore,
we do not pursue the approach to deal with violation of the
independence assumption here. Instead, we consider relaxation
of the identically distributed assumption.

Specifically, we propose to account for the difference in the
activity across the brain by allowing different density distribution
in different regions. To this end, we adopt the functional
parcellation of the brain activity map proposed by Yeo et al.
(2011). The parcellation includes 17 functional networks in the
cerebral cortex, that is, I = 18 ROIs for the whole brain. We
assume the signals are i.i.d within region but could be differently
distributed across region. Under this assumption, the density
function fq can be written as the sum of the region-specific
density function, that is,

fq(s) =

I
∑

i=1

I(s ∈ Ri)fiq(s),

where Ri denotes the ith ROI, fiq is the density function on
Ri. Thus, fiq takes positive values on the ith region and zero
elsewhere. The density estimate of fiq can be obtained using the
same procedure as proposed in Section 2.2, confined to the ith
region. The estimate for fq can be constructed by taking the

sum of f̂iq. The rest of the ICA algorithm follows the proposed
procedure in Section 2.2.

The proposed ICA algorithm can be summarized as follows:

1. Choose an initial value of for the mixing matrix B.
2. Alternate until convergence of B using the Amari metric.

a. Let S = BX.
b. For each IC q, calculate the density function fiq(s) on the

ith ROI, i = 1, 2, ..., I, using the p-spline based density
estimation algorithm.

c. Get fq(s) =
∑I

i=1 I(s ∈ Ri)fiq(s).
d. Update the mixing matrix B using the Newton-Raphson

method, see Equation (2).

Note that, in the special case that f1q = f2q = ... = fIq, the
above algorithm reduces to the algorithm proposed in Section 2.2
assuming i.i.d signals across the entire brain.

3. SIMULATION

We conduct simulation studies to evaluate the performance of
the proposed ICA algorithm. We consider four settings where
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TABLE 1 | The average computation time (in seconds) per simulation

replication using different algorithms in the simulation study.

Simulation p-spline fastICA Pearson JADE ProDenICA HDICA

ICA ICA

Scenario 1 6.21 < 0.01 0.01 0.01 3.12 308.34

Scenario 2 5.89 < 0.01 0.01 < 0.01 1.67 76.59

Scenario 3 7.27 0.01 0.01 0.01 1.74 123.84

data are generated using different distributions. We compare the
results of the proposed algorithm with fastICA (Hyvärinen et al.,

2001), JADE (Cardoso, 1999), Pearson ICA (Karvanen et al.,

2000), ProDenICA (Hastie and Tibshirani, 2002), and HDICA

(Eloyan et al., 2013). We implement the algorithms fastICA,

ProDenICA, JADE, PearsonICA using the R packages “fastICA”
(Marchini et al., 2013), “ProDenICA” (Hastie and Tibshirani,

2010), “JADE” (Nordhausen et al., 2014), and “PearsonICA”

FIGURE 1 | Boxplots of the Amari errors and the spatial correlation calculated using different algorithms under simulation setting one.
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(Karvanen, 2006). The proposed p-spline based ICA algorithm
and the HDICA (Eloyan et al., 2013) are also implemented in R.

The computation environment is a multi-core Linux cluster

withmore than 680 cores running in the average of 2.5 GHz speed

and 4.4 TB of memory. On average, the contrast-function based
algorithms (fastICA, PearsonICA, JADE) perform much faster
than the likelihood-based algorithms (p-spline ICA, ProDenICA,

HDICA). (See Table 1 for a summary of the computation time
using different algorithms.) However, since those are essentially
two different sets of algorithms, we restrict the comparison of the

computational intensity within the category of likelihood-based

algorithm.

In the first set of simulation studies, we assume there are
Q = 3 independent components, and they are generated by
S(1, ·) ∼ Weibull(1, 1), S(2, ·) ∼ Gamma(1, 1), and S(3, ·) ∼

Gamma(2, 2), respectively. Standard Gaussian noises are added
to the generated ICs. The mixing matrix is given by

A =





2 1 2
3 3 1
1 2 2



 .

Figure 1 summarizes the simulation results based on 200
replications. The spatial correlation is the absolute correlation
between the estimated spatial map and the true spatial map
without noise. The Amari error is computed to evaluate
the accuracy of the estimated mixing matrix (Amari, 1998).
It is seen from the boxplots of the spatial correlation and
the Amari errors that the proposed ICA algorithm performs
equally well as fastICA, JADE, and PearsonICA, and all

FIGURE 2 | Boxplotsof the Amari errors and the spatial correlation calculated using different algorithms under simulation setting two.
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these algorithms perform substantially better than ProDenICA
algorithm. ProDenICA fails probably due to the extreme values
introduced by the noise (See more discussion in Risk et al.,

2014). This shows that the ProDenICA is sensitive to extreme
values, while our algorithm is robust to extreme values. The
average computation time per replication is 6.21 s using the

FIGURE 3 | Boxplots of the Amari errors and the spatial correlation calculated using different algorithms under simulation setting three.

FIGURE 4 | The underlying signals for the fourth simulation setting: ICs 1, 2, and 3 (left to right).
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p-spline ICA, 3.12 s using ProDenICA, and 308.34 s using
HDICA.

In the second setting, we assume the number of source
signals Q = 2, and we generate the signals based on parcellation.
Specifically, we partition the real line into 10 intervals, with
cutoffs at the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and
90th percentiles of the normal distribution. For the first IC, the
density function is uniformly distributed within each interval,
but the overall shape is approximately normal. For the second
IC, the density function follows Laplace distribution within each
interval, and the overall shape is approximately normal. The
mixing matrix is given by

A =

(

2 1
3 2

)

.

The boxplots of the spatial correlation and the Amari errors
based on 200 replications are summarized in Figure 2. Under
the second scenario, the underlying signals have region specific
densities, and the overall density functions for both components
are approximately normal. All the competing algorithms
considered in the simulation studies show substantial bias. These
algorithms fail to recover the true signals because they heavily
depend on the non-gaussianity assumption. On the contrary,
the proposed algorithm accounts for the effect of parcellation
and recovers the true signals with relatively high accuracy. The
proposed algorithm substantially outperforms all the competing
algorithms under the second setting. The average computation
time per replication is 5.89 s using p-spline ICA, 1.67 s using
ProDenICA, and 76.59 s using HDICA.

In the third setting, we generate multi-subject data with
number of subject I = 3. The source signals are the same as
those in the second setting, and the mixing matrices for the three
subjects are given by

A1 =

(

1 0.25
0.5 −0.5

)

, A2 =

(

1 2
0.5 −0.5

)

, A3 =

(

1 0.5
0.5 2

)

.

The simulation results are summarized in Figure 3, where in
each simulation replication, the Amari error is calculated as the
average of the Amari errors for all three subjects. The results show
that, for multi-subject data, the proposed algorithm successfully
recovers both the common spatial signals and the individual
mixing matrices. In addition, for similar reasons as in the second
setting, the proposed algorithm substantially outperforms all the
competing algorithms.

In the fourth setting, we generate the ICs and mixing matrices
by mimicking signals from real fMRI data. Specifically, we run
fastICA on 10 subjects from the NITRC 1000 Connectome
dataset to get twenty ICs (networks). Three of the twenty
networks are chosen as the true signals, and they are shown
in Figure 4. The time courses are also signals from real data,
obtained in a similar way as in Calhoun et al. (2009). They
are shown in Figure 5. We first apply a two-stage dimension
reduction using the method as described in Section 2.1. Then
we apply the proposed atlas-based ICA algorithm using the brain
parcellation proposed by Yeo et al. (2011). The correlationmatrix

FIGURE 5 | Time courses corresponding to ICs 1, 2, and 3 for the

fourth simulation setting.

between the true signals and the estimated signals using the
proposed algorithm is





−0.999 −0.025 0.007
0.028 0.999 −0.006
−0.004 −0.003 0.999



 .

The results indicate that our proposed p-spline based ICA
algorithm is successful in recovering signals from real fMRI
data.

4. APPLICATION

We apply our proposed algorithm to the 1000 Functional
Connectomes Project dataset, which consists of thousands of
resting state scans combined across multiple sites with the goal
of facilitating discovery and analysis of brain networks (Biswal
et al., 2010). It is one of the largest freely available fMRI datasets.
The fMRI scans were collected when the subjects stayed in the
scanner for 2.2–20min in resting state. Scanning parameters used
to acquire the data from each site are detailed elsewhere (for
complete information see https://www.nitrc.org/projects/fcon_
1000/).

As the quality and scanning parameters vary across sites, we
focus on data from the largest site, Cambridge, which contains
I = 50 subjects. For the subjects used in this analysis, the number
of time points is T = 119. We use the MNI template to remove
the background noise and to retain voxels that are in the actual
brain. For each subject, we have a T × V dimensional matrix Xi.
The group data matrix X is obtained by concatenating I subjects’
data in the temporal domain.

Following Biswal et al. (2010), we assume there are Q =

20 independent components in this application. An SVD is
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FIGURE 6 | Brain networks obtained by the p-spline ICA algorithm using data from the 1000 Functional Connectome Project.

performed to reduce the dimension of the aggregated data matrix
toQ×V . The ICA algorithms are then applied to the reduced data
matrix and the Python toolbox Nilearn (Abraham et al., 2014) is
used for visualization of the estimation results. Specifically, the
estimated ICs using the proposed p-spline based ICA algorithm
are shown in Figure 6. Several main brain networks including
the default mode network (DMN) and the control network
are successfully identified by the proposed algorithm. As a
comparison, the results from fastICA are shown in Figure 7. The
ICs estimated by fastICA and the p-spline ICA are matched by

correlation. Of the 20 pairs, the highest correlation is 0.99, the
lowest correlation is 0.52, and the median correlation is 0.93.
Specifically, the following is a list of these correlations for the
major brain networks: visual network (0.99), auditory network
(0.98), DMN (0.96), and control network (0.92).

As suggested by an anonymous reviewer, we investigate the
impact of the dimension of the reduced space on the final results.
Specifically, we select different values of R and Q (the number
of eigenvectors in the subject-level and group-level dimension
reduction), and rerun the ICA algorithm on the dimension
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FIGURE 7 | Brain networks obtained by the fastICA algorithm using data from the 1000 Functional Connectome Project.

reduced dataset. We set R = 15, 20, 30 and Q = 15, 20, 30,
respectively. Similarly as in Li et al. (2007), we find that the IC
estimates are well separated when Q = 15, 20. When Q = 30,
the estimation of the major networks shows degradation and
a few of the other estimated components seem to be noise.
Specifically, the correlations for the major brain networks using
R = 20,Q = 15, and R = 20,Q = 20 are as follows: visual
network (0.96), auditory network (0.73), DMN (0.86) and control
network (0.84). In addition, the correlations for the major brain
networks using R = 20,Q = 30, and R = 20,Q = 20

are as follows: visual network (0.78), auditory network (0.61),
DMN (0.88) and control network (0.69). In summary, we find
that, although the estimation results depend on the number of
components, the major networks appear to be robust against the
choices of number of components.

5. DISCUSSION

Independent component analysis is a factor-analytic approach
that is commonly used in analyzing fMRI data. In this
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manuscript, we present a novel and simple ICA algorithm that
is fast, likelihood based and straightforward to program. The
algorithm is nonparametric, data-driven, and is blind to the
particular distribution of the underlying signals. As a byproduct
of the algorithm, we obtain the likelihood function of the ICA
model which can be used for further statistical inference. It
should be noted that, the likelihood function in our algorithm is
a profile likelihood, since we are mainly interested in the mixing
matrix estimates and the parameters over the spline basis are
nuisance parameters. Indeed, one could also study the coefficients
on the spline basis in a full likelihood, but this is not the goal of
this manuscript, hence the variance of the estimator of themixing
matrix depends on the variance of the nuisance parameters.

The proposed algorithm is extended to allow for region
specific IC density functions, on the rationale that most signals
of interest are reasonably confined to a subset of the entire
anatomical brain space (Guo and Pagnoni, 2008). When the
source signals distribute identically across brain, the estimation
accuracy of the parcellation-based estimator is similar to that
of the full-brain estimator, because it becomes equivalent to
the full-brain estimator. However, when the source signals
distribute differently across brain, the full-brain estimator may
result in substantial bias while the parcellation-based estimator
can successfully recover the source signals. It should be noted
that the parcellation based adjustment can be applied to other
ICA algorithms as well. Indeed, for any gradient-based ICA,
one can do the adjustment by taking a weighted sum over the
updates of each of the parcellations, where the weights account
for the number of samples in the parcellations. This flexibility
ensures the generalizability of the proposed parcellation based
adjustment.

Simulation studies show that our proposed algorithm works
well in both the simple and complex situations, and it

substantially outperforms the existing ICA algorithms when
the identically distributed assumption of the source signals
is violated. In applying the proposed algorithm to the fMRI
data, we choose to account for the difference in brain
activities across regions by using the brain parcellation proposed
by Yeo et al. (2011). Our data application results show
that the proposed algorithm successfully identifies the main
brain networks in the 1000 Functional Connectomes Project
dataset.

There are a few directions for future research. Firstly, the test-
retest reliability of the intrinsic brain networks is an important
issue and has been studied extensively in recent years. For
example, Zuo et al. (2010) found that a few functionally
relevant components (such as the default mode, auditory-motor
and executive control) show the highest reliability across all
components. It would be interesting to compare different ICA
algorithms in identifying and characterizing those functionally
relevant components. Secondly, there are a variety of existing
brain parcellation schemes, including those proposed by Tzourio-
Mazoyer et al. (2002); Fischl et al. (2004); Beckmann et al.
(2009); Yeo et al. (2011). It would be interesting to study
the optimal choice of parcellation under different scientific
scenarios. Thirdly, as pointed out by an anonymous reviewer,
pre-whitening, although a standard pre-processing procedure,

may result in loss of information and bias in estimation (Cardoso,
1994). It would be interesting to investigate alternative pre-
processing procedures to avoid the bias introduced by pre-
whitening.
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