
METHODS
published: 02 February 2016

doi: 10.3389/fnins.2016.00017

Frontiers in Neuroscience | www.frontiersin.org 1 February 2016 | Volume 10 | Article 17

Edited by:

Pedro Antonio Valdes-Sosa,

Centro de Neurociencias de Cuba,

Cuba

Reviewed by:

Anand Joshi,

University of Southern California, USA

Eugene Duff,

University of Oxford, UK

*Correspondence:

Srinivas Rachakonda

srachakonda@mrn.org

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 08 October 2015

Accepted: 12 January 2016

Published: 02 February 2016

Citation:

Rachakonda S, Silva RF, Liu J and

Calhoun VD (2016) Memory Efficient

PCA Methods for Large Group ICA.

Front. Neurosci. 10:17.

doi: 10.3389/fnins.2016.00017

Memory Efficient PCA Methods for
Large Group ICA

Srinivas Rachakonda 1*, Rogers F. Silva 1, 2, Jingyu Liu 1 and Vince D. Calhoun 1, 2, 3

1 The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA,
2Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA, 3Department

of Computer Science, The University of New Mexico, Albuquerque, NM, USA

Principal component analysis (PCA) is widely used for data reduction in group

independent component analysis (ICA) of fMRI data. Commonly, group-level PCA of

temporally concatenated datasets is computed prior to ICA of the group principal

components. This work focuses on reducing very high dimensional temporally

concatenated datasets into its group PCA space. Existing randomized PCA methods

can determine the PCA subspace with minimal memory requirements and, thus, are

ideal for solving large PCA problems. Since the number of dataloads is not typically

optimized, we extend one of these methods to compute PCA of very large datasets

with a minimal number of dataloads. This method is coined multi power iteration

(MPOWIT). The key idea behind MPOWIT is to estimate a subspace larger than the

desired one, while checking for convergence of only the smaller subset of interest.

The number of iterations is reduced considerably (as well as the number of dataloads),

accelerating convergence without loss of accuracy. More importantly, in the proposed

implementation of MPOWIT, the memory required for successful recovery of the group

principal components becomes independent of the number of subjects analyzed.

Highly efficient subsampled eigenvalue decomposition techniques are also introduced,

furnishing excellent PCA subspace approximations that can be used for intelligent

initialization of randomized methods such as MPOWIT. Together, these developments

enable efficient estimation of accurate principal components, as we illustrate by solving

a 1600-subject group-level PCA of fMRI with standard acquisition parameters, on a

regular desktop computer with only 4 GB RAM, in just a few hours. MPOWIT is also

highly scalable and could realistically solve group-level PCA of fMRI on thousands of

subjects, or more, using standard hardware, limited only by time, not memory. Also,

the MPOWIT algorithm is highly parallelizable, which would enable fast, distributed

implementations ideal for big data analysis. Implications to other methods such as

expectation maximization PCA (EM PCA) are also presented. Based on our results,

general recommendations for efficient application of PCA methods are given according

to problem size and available computational resources. MPOWIT and all other methods

discussed here are implemented and readily available in the open source GIFT software.

Keywords: group ICA, big data, PCA, subspace iteration, EVD, SVD, memory, power iteration

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00017
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00017&domain=pdf&date_stamp=2016-02-02
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:srachakonda@mrn.org
http://dx.doi.org/10.3389/fnins.2016.00017
http://journal.frontiersin.org/article/10.3389/fnins.2016.00017/abstract
http://loop.frontiersin.org/people/4523/overview
http://loop.frontiersin.org/people/17874/overview
http://loop.frontiersin.org/people/17893/overview
http://loop.frontiersin.org/people/884/overview

Rachakonda et al. Memory Efficient PCA for ICA

INTRODUCTION

Principal component analysis (PCA) is used as both a
data reduction and de-noising method in group independent
component analysis (ICA) (Calhoun et al., 2001; Beckmann
and Smith, 2004; Calhoun and Adali, 2012). PCA is typically
carried out by computing the eigenvalue decomposition (EVD)
of the sample covariance matrix (C) or by using singular
value decomposition (SVD) directly on the data. For large
datasets, both EVD (plus computation of C) and SVD become
computationally intensive in both memory and speed. For
instance, group ICA is commonly used for functional magnetic
resonance imaging (fMRI) studies. A typical fMRI study may
collect image volumes from a single subject for about 20min
using TR = 1000ms and 3 × 3 × 3mm voxel resolution,
resulting in approximately 53 × 63 × 46 × 1200 data points.
To compute group PCA using the standard EVD of C approach
on 100 subjects stacked in the temporal dimension (and only
the nearly 70000 in-brain voxels) requires approximately 100
GB RAM and more than 16 h on a Linux server. Using the
SVD approach would incur similar memory requirements as
EVD (plus computation of C). In either case, the computational
requirements can quickly become prohibitive, especially with the
constant advance of imaging techniques [such as multi-band EPI
sequences (Feinberg et al., 2010; Feinberg and Setsompop, 2013)]
and a tendency to share data within the imaging community.
This means very large size imaging data will become even more
common for fMRI studies, encouraging the development of novel
computational methods to face the upcoming challenges.

There are several methods to estimate dominant PCA
components with minimal memory requirements, like sequential
SVD, cascade recursive least squares (CRLS) PCA, and
randomized PCA approaches, to name a few. Sequential or
“online” SVD is usually applied in a streaming memory setting
where the data streams over time and only a single pass over
the datasets is possible. There exist algorithms (Brand, 2003; Li,
2004; Funk, 2006) which provide incremental SVD update and
downdate capacity. However, principal components obtained
with sequential SVD approaches are typically not as accurate as
those from EVD of C and, therefore, sequential SVD approaches
are considered not suitable for data reduction in group ICA
analyses. CRLS PCA (Wang et al., 2006) uses a subspace deflation
technique to extract dominant components of interest with
limited training. The number of training epochs required is
dependent on the data and, therefore, the CRLS PCA algorithm
has slower performance in very large datasets and when higher
model order (i.e., high number of components) needs to be
estimated.

Randomized PCA methods are a class of algorithms that
iteratively estimate the principal components from the data and
are particularly useful when only a few components need to
be estimated from very large datasets. They provide a much
more efficient solution than the EVD approach, which always
estimates the complete set of eigenvectors, many of which are
eventually discarded for data reduction and de-noising purposes.
Clearly, iterative approaches can make a much more intelligent
use of the available computational resources. Some popular and

upcoming randomized PCA approaches are: implicitly restarted
Arnoldi iteration (IRAM; (Lehoucq and Sorensen, 1996)), power
iteration (Recktenwald, 2000), subspace iteration (Rutishauser,
1970) expectation maximization PCA (EM PCA) (Roweis, 1997),
and “Large PCA” (Halko et al., 2011a). IRAM as implemented
in ARPACK (Lehoucq et al., 1998) requires that the sample
covariance matrix be computed from the data and, thus, has
higher computational demands on memory. Power iteration
determines PCA components in a so-called “deflationary” mode
(i.e., one at a time) and has very poor convergence properties
when more than one component needs to be extracted from
the data. Also, the error accumulates in subsequent estimations.
Subspace iteration is a symmetric version of the power iteration
method which extracts multiple components simultaneously
from the data using explicit orthogonalization of the subspace
in each iteration. EM PCA uses expectation and maximization
steps to estimate multiple components simultaneously from the
data. Both EM PCA and subspace iteration methods converge
faster when only a few components are estimated from very large
datasets and have slower convergence properties when a higher
number of components needs to be estimated. More recently,
Large PCA (Halko et al., 2011a) was proposed to evaluate the
principal components from very large datasets. Large PCA is a
randomized version of the block Lanczosmethod (Kuczynski and
Wozniakowski, 1992) and is highly dependent on appropriate
block size determination (typically large) in order to give accurate
results with default settings.

In this paper, we show how to overcome the problem of
slow convergence in subspace iteration when a high number
of components is estimated by introducing a new approach,
named multi power iteration (MPOWIT). Our approach takes
into account the number of dataloads, which has often been
overlooked in the development of randomized PCAmethods.We
also show that both subspace iteration and EM PCA methods
converge to the same subspace in each iteration. Thus, the
acceleration scheme we propose in MPOWIT can also be applied
to EM PCA. In addition, we compare the performance of
MPOWIT with existing PCA methods like EVD and Large
PCA using real fMRI data from 1600 subjects with standard
acquisition parameters. Moreover, acknowledging the recent
popularization and promising developments in the area of multi-
band EPI sequences (Feinberg and Setsompop, 2013), we provide
performance assessments of the PCA methods discussed here
in the case of hypothetical 5000-subject fMRI studies using
TR = 200ms, 2 × 2 × 2mm voxel resolution, and 30min-long
sessions. Based on our current estimates, group-level PCA using
our new randomized PCA approach and retaining 200 principal
components in the subject-level PCA could be performed on
such data in 40 h (nearly 36 h just loading the subject-level PCA
results) using aWindows desktop with 4 GB RAM. Alternatively,
the same analysis could be performed in just 2 h using a Linux
server with 512 GB RAM (assuming the subject-level PCA
results are kept in memory after their estimation). In either case,
this is without the additional benefits of GPU acceleration or
parallelization.

We provide descriptions of EVD, Subsampled PCA, Large
PCA, MPOWIT and EM PCA in the Materials and Methods

Frontiers in Neuroscience | www.frontiersin.org 2 February 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

FIGURE 1 | Group PCA framework. Graphical representation of the two-step PCA approach to group-level PCA we consider in this work. The first step performs

subject-level PCA on each subject, followed by (optional) whitening. The second step performs group-level PCA on the stacked (concatenated) reduced-data from all

subjects, and is the focus of our attention. Particularly, if time and memory resources were unlimited, standard PCA routines for subject-level PCA (such as EVD)

would suffice for group-level PCA on the stacked data. For that reason, we consider that to be the “ideal” scenario and strive to replicate its results in the more realistic

case of limited resources.

Section. The same section also includes a description of the
datasets and experiments conducted for each PCA method.
Experiments are performed on the real fMRI data. In the Results
Section, we present our experimental results and compare the
performance of MPOWIT with existing PCA methods. Finally,
we discuss these results and draw conclusions based on the
analyses we performed. Additional details are provided in the
appendices, including a proof that EM PCA is equivalent to
subspace iteration.

MATERIALS AND METHODS

Group ICA
In this paper, we are interested in group ICA of fMRI data
as originally described in Calhoun et al. (2001) and further
expanded and reviewed in Erhardt et al. (2011) and Calhoun and
Adali (2012). In this technique, Zi are the fMRI data of subject i
with dimension v × t, where v and t are the number of voxels
and time points, respectively. Zi is mean-centered on zero at
each time point. Each subject’s data is reduced along the time
dimension using PCA to retain the top p components, which
are then whitened1. Following, all M subjects are stacked along
the (reduced) temporal dimension. Let Y = [Y1,Y2, . . . ,YM]
be the temporally concatenated data where Yi is the zero-
mean v × p PCA-reduced data of subject i. Group-level PCA is
then performed on the temporally reduced concatenated data,

1The choice of whitening or not the subject-level data changes the final group PCA

estimates (Calhoun et al., 2015). However, all it does is preprocess the input data in

a different way. While we advocate whitening of subject-level fMRI data for group

spatial ICA due to its denoising properties, it remains optional and open for debate

(Smith et al., 2014). However, whitening of subject-level data does not alter the

correctness of the group PCA methods we present in this paper, which are correct

regardless of the choice of preprocessing.

resulting in k group principal components in the group-level
PCA space X. Figure 1 shows a graphical representation of group
PCA.

Group ICA is regularly being used to analyze large numbers
of subjects (Biswal et al., 2010; Allen et al., 2011), and multi-
band EPI sequences (Feinberg et al., 2010; Setsompop et al.,
2012) put even more memory demands on group PCA if the
number of components retained in the first PCA step is increased
significantly. We previously implemented somememory efficient
ways to solve the PCA problem on large datasets in the GIFT2

toolbox using EVD, SVD and EM PCA. Options are provided in
the GIFT toolbox to select the appropriate PCA method based
on the problem size and computer RAM requirements. In this
paper, we present ways to further accelerate the group-level PCA
step using new algorithms, and discuss the scalability of PCA
algorithms based on the problem size.

Group-Level PCA
Group ICA of temporally concatenated fMRI can be used to
identify either spatial independent components (Calhoun et al.,
2001; Allen et al., 2011) or temporal independent components
(Smith et al., 2012). In spatial group ICA, subject-level PCA
is typically carried out to reduce the time dimension prior to
group-level PCA, as described in Figure 1. However, in temporal
group ICA, subject-level PCA to reduce the spatial dimension is
neither required nor recommended3; instead, group-level PCA is

2http://mialab.mrn.org/software/gift/
3Direct reduction of the largest dimension of subject-level data is never

recommended as it causes greater loss of information and largely inferior estimates

than otherwise. Instead, a better approach is to carry out group PCA in the

time dimension as in Figure 1, without subject-level whitening, followed by

FTi = 3−1/2X
T
Zi to perform reduction of the voxel dimension. Group temporal

ICA can then be carried out on the temporally concatenated FTi .

Frontiers in Neuroscience | www.frontiersin.org 3 February 2016 | Volume 10 | Article 17

http://mialab.mrn.org/software/gift/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

carried out directly on the input fMRI data Zi. In the following,
we present algorithms for PCA estimation assuming the case
depicted in Figure 1 and deferring any comments about temporal
group-level PCA to the Discussion Section.

In the following, we present a selection of approaches for
group PCA, starting with the traditional EVD method, which
we consider the standard for accuracy in later comparisons.
Then, based on considerations made on the EVD method and
properties of the fMRI data, two approaches are proposed for
efficient approximate estimation of the group PCA solution,
namely subsampled voxel PCA (SVP) and subsampled time
PCA (STP). Both approaches are useful for efficient initialization
and accelerated convergence of the highly accurate randomized
methods presented later. Following, Large PCA, a recent
block Lanczos method with high accuracy and potential for
application in large group PCA, is introduced for the purpose of
comparison. Power methods, including the introduction of our
novel MPOWIT technique, are discussed next. The connections
and implications of MPOWIT on the popular expectation
maximization PCA (EM PCA) approach are presented lastly. At
every stage, we strive to present every algorithmic improvement
and theoretical development in the context of fMRI data under
various conditions. Nevertheless, all considerations should be
straightforwardly extensible to other modalities and datatypes.
Throughout the following, F is the eigenvector matrix required
for GICA1 back-reconstruction (Erhardt et al., 2011). Finally,
we assume that k << Mp and k << v in all time complexity
assessments presented hereafter, unless otherwise noted.

Eigenvalue Decomposition (EVD)
Using the EVD approach, the group-level PCA space X can be
determined from the temporally stacked (concatenated) zero-
mean data Y as follows:

(a) Compute the sample covariance matrix C in the smallest
dimension of the data (Wang et al., 2006). If Mp < v, the
Mp×Mp covariance matrix is:

C =
YTY

v− 1
. (1)

(b) EVD factorizes the (symmetric) covariance matrix C into
eigenvectors F and eigenvalues 3:

C = F3FT . (2)

(c) The v× k group-level PCA space X is obtained by projecting
the top k eigenvectors (columns) of F with largest eigenvalues
onto the data, as shown below:

Xv×k = Yv×MpFMp×k3
−1/2
k×k

. (3)

From Equation (1) and the description in Figure 1, we note that
C has structure and could be visualized as a cross-covariance
matrix between theM subject-level PCA components, with Cij =
YT
i Yj
v−1 = Cji as shown below:

C =











C11 C12 . . . C1M

C21 C22 . . . C2M

...
...

...
...

CM1 CM2 . . . CMM











. (4)

Exploiting this structure, C can be computed with only two
datasets in memory at a time, instead of stacking the entire data
to form Y , leading to fewer computations and memory usage.
However, as M increases, computation of the cross-covariance
matrix becomes very slow since it requires M(M−1)

2 steps and an
equal number of dataloads (hard disk swaps and data transfers).
Therefore, EVD of C is a fast solution for small datasets but
can quickly become inefficient on very large datasets. Moreover,
Equation (3) incurs M additional dataloads, though it allows
a memory efficient implementation with only one dataset in
memory at a time. Also, note that computing the covariance

matrix itself has time complexity O
(

v
(

Mp
)2

)

whenMp < v and

O
(

Mpv2
)

when v < Mp. The latter, however, has the convenience
of requiring only one dataload per subject. Even better, in that
case the covariance matrix in the voxel dimension, defined as
Cv = 1

v−1YY
T in order to retain the same eigenvalues as C, can

be written as a sum of subject-specific covariances Cv
i , and an

efficient approach to compute the EVD of Cv is:

Cv =
M

∑

i=1

Cv
i = X3X

T . (5)

The final estimate of the group-level PCA space is obtained
as X = X

√
v− 1. Equation (5) gives an upper bound on

the memory required for group ICA of fMRI using the EVD
method [i.e.,O

(

v2
)

bytes], and note it only requiresM dataloads.
Particularly, for large-M region of interest- (ROI-) based group
ICA v≪Mp. Thus, the left-hand equality in Equation (5) is highly
efficient inmemory for big ROI studies and should be themethod
of choice for computation of Cv rather than stacking the entire
data in memory to form Y .

Clearly, trade-offs exist between time, memory, and dataloads
depending on the exact values of v,M, and p. In some cases, which
we consider later, it might be worth giving up on some computing
speed in exchange for a largely disproportional improvement
(reduction) in dataloads or memory footprint, and vice-versa,
especially if numerical accuracy with respect to EVD of C is not
compromised. This will be a recurring theme in the following
sections.

Subsampled PCA
While EVD is very well-developed and accurate, it still becomes
computationally and memory intensive when applied to large
data4 because it requires computation of large covariance
matrices. For that reason, before discussing other PCA methods,
we introduce the concept of “subsampling” (i.e., partitioning the
data into subsets) and propose its use to efficiently determine
an approximate initial PCA space that can be incrementally

4Large data means both dimensions of the data are larger than 10000 (assuming

the data is stored using double precision).

Frontiers in Neuroscience | www.frontiersin.org 4 February 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

refined in a multi-stage approach. We consider two methods for
subsampling, both of which could be used to efficiently initialize
the PCA subspace of the randomized PCA methods discussed
later. In the first method, data is subsampled in voxel space
whereas in the secondmethod the time dimension is subsampled.
While voxel and time are specific to fMRI data, the concept of
subsampling can be easily extended to any other data modality.

Subsampled voxel PCA (SVP)
Subsampled voxel PCA (SVP) works by setting up a scenario
in which v < Mp so that Equation (5) can be used to
efficiently approximate X with only a few dataloads per subject.
First, consider that, typically, fMRI data is spatially smoothed
during the initial preprocessing to improve signal-to-noise ratio
(SNR), which introduces data dependency in the spatial domain.
Therefore, the actual number of independent and identically
distributed (i.i.d.) samples present in the data is less than the
voxel dimension v (Li et al., 2007). A set of approximately
independent samples could be obtained by subsampling the
data in the voxel dimension. In our experiments, we selected a
value of 2 for subsampling depth in x, y, and z directions as
this only reduces the number of in-brain voxels by a factor of
23 = 8, i.e., v′ = v/8. Thus, the resulting covariance matrix
is still fairly approximate to the original one. All-odd and all-
even subsampling depths are processed separately to estimate
eigenvectors Fa and Fb, respectively, using EVD with Equation
(5) since typically v′ << Mp. Fa and Fb are projected onto the
data Y (Equation 8) in order to bring Xa and Xb, respectively,
back to dimension v from v′. These are finally stacked in the
time dimension to determine a final (common) PCA subspace
(Equations 9 and 10):

Cv′

aa = Xa3aX
T
a ,Cv′

bb = Xb3bX
T
b , (6)

Fa = (XT
a Ya)

T, Fb = (XT
b Yb)

T, (7)

Xa = YFa,Xb = YFb, (8)




XT
a Xa

v−1
XT
a Xb

v−1
XT
b
Xa

v−1

XT
b
Xb

v−1



 = W3WT, (9)

X = [Xa, Xb]W3−1/2. (10)

Ya and Yb refer to subsampled data in odd- and even-voxel
spaces, respectively. Fa and Fb are estimated in subsampled space

v′ from covariance matrices Cv′
aa and Cv′

bb
, respectively, using

Equations (6) and (7). A very high number of components
(i.e., much larger than k; here, around 500, assuming k ≈
100) are estimated in this intermediate PCA stage (Equation
6) to minimize error due to approximation. At the end of the
estimation, only the k dominant components are extracted from
X (Equation 10). Note that the use of Equation (5) for EVD of
Cv′
aa and C

v′

bb
allows SVP to operate in unstacked way (i.e., loading

each subject’s dataset at a time instead of stacking all datasets to
formY) and would require atmost two dataloads per subject [one
for Equation (6) and one for Equations (7) and (8)].

SVP is much faster compared to EVD as the voxel dimension
is smaller by at least a factor of 8 but only gives an approximate
PCA solution. SVP PCA estimates are a great initial solution for

any of the randomized PCA methods discussed later, inducing to
considerably faster convergence.

Sub-sampled time PCA (STP)
The time (stacked) dimension increases as more and more
subjects are analyzed in a group PCA framework (Figure 1).
By default, initial versions of the GIFT toolbox (Calhoun et al.,
2004) used a three-step data reduction method for large dataset
analysis in order to reduce the memory requirements from the
group PCA framework of Figure 1. This three-step reduction
operated as follows: (1) reduced datasets from the first PCA
step (Yi) were randomly organized in groups of size g =
4; (2) PCA was applied on each group separately (including
whitening5); (3) reduced group datasets were concatenated and
a final PCA step was applied. This approach had the following
shortcomings: (1) whitening in the intermediate group PCA
(step two above) normalized the variance of components from
each group and, therefore, the principal component weights
were not correctly reflected in the final PCA step; (2) error of
approximation increased if a low number of components was
estimated in the intermediate group PCA step; (3) memory
overhead increased if higher number of components were
estimated in the intermediate group PCA step.

Here, we present a modified version of this three-step data
reduction, which we call sub-sampled time PCA (STP). It
estimates the PCA subspace X by incremental updates based on a
different group (“sub-sample”) of subjects stacked in time. First,
we do not use whitening in the intermediate group PCA (step
two above). Second, the final group PCA space is incrementally
updated, incorporating the estimates from the previous group
PCA before the next group is considered. This reduces the
memory overhead incurred by temporal concatenation. Third, a
high number of components (around k′ = 500) is estimated in
every group PCA update. The following equations summarize the
proposed STP procedure forMp < v:

Cg =
YT
g Yg

v− 1
(11)

Cg = Fg3gF
T
g (12)

Xg = YgFg (13)




XT
g Xg

v−1

XT
g Xg+1

v−1
XT
g+1Xg

v−1

XT
g+1 Xg+1

v−1



 = W3WT (14)

Xg =
[

Xg,Xg+ 1

]

W. (15)

Cg and Fg are the gp × gp covariance matrix in (stacked) time
dimension and the eigenvectors of a group’s data Yg , respectively.
Assuming gp ≥ k′, eigenvectors Fg are projected onto the data
Yg to obtain a v × k′ subgroup PCA subspace Xg (Equation 13).
Equations (11)–(13) are repeated for the next group to compute
PCA estimates for data Yg+ 1. PCA estimates of group Yg and
group Yg+1 are stacked in time dimension and the common
v × k′ PCA subspace Xg is obtained using Equations (14) and
(15), since typically 2k′ < v in this case. Equations (11)–(15) are

5This was in addition to subject-level whitening.

Frontiers in Neuroscience | www.frontiersin.org 5 February 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

repeated until the last group is loaded. Only the k dominant PCA
components are retained from the final matrix Xg at the end of
the estimation: X = Xg3

−1/2.
STP requires only a single pass through the data to determine

an approximate PCA space and is a very useful method when
data loading is a bottleneck. Both the estimation accuracy and
memory requirements are proportional to the number of subjects
included in each group and number of components estimated in
the intermediate group PCA. In this paper, we select number of
subjects in each group as g = 20, which has a small memory
burden and yet gives a great approximation to the group PCA
solution. Of note, STP not only generalizes the original three-step
PCA approach but also includes MELODIC’s incremental group
PCA (MIGP; Smith et al., 2014) as a special case when g = 1.

Large PCA
Large PCA (Halko et al., 2011a) is a randomized version of the
block Lanczos method (Kuczynski and Wozniakowski, 1992)
that estimates a low rank PCA approximation of matrix F
[see Equation (2)]. In block Lanczos methods, intermediate
subspace estimates from every previous iteration are retained,
each forming an additional “block” for the next iteration. This is
different from subspace iteration (discussed next), which updates
the PCA estimates instead, refining them until convergence is
achieved. Similar to subspace iteration, Large PCA also exploits
the powers of YYT to obtain the reduced PCA space X. The Large
PCA algorithm operates as follows:

A Krylov subspace Kr based on powers of the YYT matrix is
generated iteratively from an initial standard Gaussian random
matrix F0 of size Mp × b, where b is the block length (typically,
slightly larger than k):

Kr =
[

X0,X1, . . . ,Xj

]

, (16)

where F0 = GMp×b, X0 = YF0, and Xj = Y
(

XT
j− 1Y

)T
=

∑M
i= 1 Yi

(

XT
j− 1Yi

)T
.

Kr is of size v ×
(

j+ 1
)

b, where v is the number of voxels,
and j ≥ 1 is the number of additional blocks required to obtain
an accurate solution. The formation of Kr requires

(

j+ 1
)

M
dataloads and only one subject’s dataset in memory at a time
(unstacked Y). Of course, if enough RAM is available in the
system to retain all subject’s datasets in memory simultaneously
(stacked Y), then M dataloads would suffice to compute Kr and
also Equations (17)–(21) below.

After Kr is formed, an economy-size QR decomposition is
performed on it (the columns of X are orthonormal and R is an
upper triangular real valued matrix):

Kr = XR. (17)

Following, X is projected onto the data matrix as follows:

F = YT
X , (18)

and compute an economy-size SVD on matrix F :

F = FSW. (19)

In order to obtain the PCA space X, the matrix product below is
more efficient than Equation (3) because it does not require the
additional dataload:

X = XW
√
v− 1. (20)

Finally, retrieve only the first k dominant columns ofX and F, and
use the first k rows and k columns of S. Note that Equation (18)
requiresM additional dataloads, for a total of

(

j+ 2
)

M dataloads
in Large PCA with fixed j (unstacked Y).

The choice of j is problem dependent: for fixed dataset and
datatype, increasing j dictates the attainable accuracy with respect
to EVD; on the other hand, a fixed j gives different accuracy for
different datasets and datatypes. Thus, the recommendation in
the original publication (Halko et al., 2011a) was to set b to a
large-enough value that would guarantee accuracy of the solution
for a given data type, using fixed j = 2. While this approach
guarantees a small number of dataloads, it does so by increasing
the memory burden, due to larger b. In our experiments using
the recommended settings, we have noticed that the memory
usage6 incurred was much undesirable for large fMRI datasets.
Moreover, the attained accuracy with respect to EVD seemed
inconsistent across different fMRI datasets, suggesting every new
dataset would require specific adjustments for better accuracy.
Although increasing the size of Kr with larger b and/or larger
j improves accuracy, without a direct check for convergence
only blind adjustments are possible with the recommended
approach. We then noticed that convergence could be assessed
by computing the norm of the difference between the top k
singular values of sequentially increasing Kr (Equation 16) and
verifying that it meets some tolerance δ, as indicated in Equation
(21). However, this implies that Equations (17)–(19) need to be
computed for each Xj increment to Kr. Besides the additional
computational burden, this increases the number of dataloads
to

(

2j+ 1
)

M. Based on an analysis presented in the Appendix
of Supplementary Material (see Section Parameter Selection for
Large PCA) a good compromise was to fix b = 170, generate the
initial Kr with j0 = 6 before the first estimation of the singular
values (Equation 21), and continue to augment Kr and estimate
its singular values for j > j0 until convergence was attained.
Our approach incurs a total of j2M − j0M + 2M dataloads for
j > j0 and some additional computational effort, but controlled
memory usage, all while guaranteeing the accuracy of the solution
with respect to EVD. Finally, Equation (20) is computed only
after convergence is attained.

∥

∥Sj − Sj− 1

∥

∥ < δ. (21)

The time complexity of large PCA over all j > j0 iterations
is O

(

Mpvbj
)

. Since both Equations (16) and (18) can be
implemented with a “for loop,” only one subject’s dataset is
required in memory at a time. Thus, Large PCA (un-stacked)
would be suitable for large group-level PCA of fMRI data. Finally,
when Large PCA is initialized with STP or SVP, X0 is set to equal
XSTP or XSVP, respectively, and we recommend j0 = 1 since
convergence is attained much faster with this initialization.

6Notice that the Krylov subspace size increases with larger block sizes, as well as

the time to solve economy-size singular value decomposition for each iteration.

Frontiers in Neuroscience | www.frontiersin.org 6 February 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

Multi Power Iteration (MPOWIT)
Power iteration is an iterative technique which uses powers of
the covariance matrix Cv = 1

v−1YY
T to estimate one component

(a single column of X) at a time, with subsequent components
determined after removing the variance associated with previous
components from the data (known as deflationary mode). While
the powers of Cv contain the same eigenvectors (X) as Cv itself,
the largest eigenvalues become more dominant, emphasizing
the direction of largest variability. However, power iteration
techniques require a normalization step to avoid ill-conditioned
situations. Different normalization approaches and the choice
of initial PCA subspace mark the key differences among power
iteration techniques. In traditional power iteration, the L2-norm
of the PCA estimates is used for normalization in each iteration,
as shown below:

x0 = Gv×1, (22)

xj = Cvxj− 1, j ≥ 1, (23)

xj = xj/
∥

∥xj
∥

∥

2
. (24)

Subspace iteration (Rutishauser, 1970), also known as
orthogonal iteration, extends power iteration to estimate
multiple components simultaneously from the data (known as
symmetric mode). It also uses powers of the covariance matrix
Cv = 1

v−1YY
T , iteratively estimating a subspace projection that

contains the top k components of the PCA space X. It typically
uses QR factorization, instead of L2-norm, to orthonormalize
intermediate estimates Xj at each iteration and prevent them
from becoming ill-conditioned. The following equations
summarize subspace iteration (Saad, 2011):

X0 = Gv×k, (25)

Xj = CvXj− 1, j ≥ 1, (26)

Xj = orth
(

Xj

)

, (27)

where orth (·) is an operation that returns an orthonormal basis,
such as the QR factorization. The algorithm is initialized with
a v × k Gaussian random matrix. Xj is the subspace estimate

at the jth iteration. Equations (26) and (27) are iterated until
convergence. Subspace iteration is straightforward to implement
but has slow convergence, especially for the last few eigenvalues,
which converge much more slowly. Preconditioning techniques
like shift-and-invert and Chebyshev polynomial (Saad, 2011)
have been used on the covariance matrix to accelerate the
subspace iteration method. Still, computing the covariance
matrix is costly when the data are large. Hence, subspace iteration
is not a popular method as compared to block Lanczos methods.

Here, we introduce a novel method called MPOWIT, which
accelerates the subspace iteration method. It relies on making
the projecting subspace larger than the desired eigen space in
order to overcome the slow convergence associated with the
subspace iteration approach. TheMPOWIT algorithm starts with
a standard Gaussian randommatrix of size v× lk, following with
an initial power iteration and the set of operations below:

X0 = Gv×lk,X0 =
(

YYT
)

X0,30 = 0, (28)

Xj = orth
(

Xj− 1

)

= Xj− 1FL−1, j ≥ 1, (29)

Xj =
(

YYT
)

Xj = Y
(

XT
j Y

)T
=

M
∑

i=1

Yi

(

XT
j Yi

)T
, (30)

XT
j Xj

v− 1
= Wj3jW

T
j . (31)

where v is the number of voxels, l is an integer multiplier, and
k is the number of desired eigenvectors. The main innovation
in MPOWIT stems from the realization, through experience,
that a small fraction of the top principal components converges
much faster than the rest. Thus, a larger subspace leads to
fast retrieval of the top k components when k is only a
fraction of that subspace’s dimensionality. We also propose a
faster implementation of orth (·) for MPOWIT to return an
orthonormal basis for the column space of its operand efficiently.
Since lk is typically small compared to the rank of the data,
Equations (2) and (3) can be used as follows: first, perform a full
EVD of X T

j− 1Xj− 1 = FDF
T to obtain F , followed by Xj =

Xj− 1FL−1 where L is a diagonal matrix containing the L2-norm
of each column of Xj− 1F . This strategy is typically two or three
times faster than economy-size QR factorization (based on the
default MATLAB implementations) and not memory intensive
for lk ≤ 500 (for k = 100, we set l = 5 based on the analysis
in Appendix Section How to Select the Projecting Subspace
Size (l) for MPOWIT?; Supplementary Material). Furthermore,
since computing YYT on large data is inefficient in memory, the
associative matrix multiplications shown in the center and right
hand side of Equation (30) are used instead. Finally, Equation

(31) is the EVD of XT
j Y

(

XT
j Y

)T
, which is implemented using

the function eigs (·)7 in MATLAB to efficiently retrieve only the
top k eigenvalues 3j. Equations (29)–(31) are iterated for j ≥ 1
until the top k eigenvalues in the subspace projection converge to
within the specified tolerance δ, as shown in Equation (32), and
the choice of30 = 0, where 0 is a k×kmatrix of zeros, guarantees
the algorithm will not stop before j = 2:

∥

∥3j − 3j− 1

∥

∥ < δ. (32)

After convergence, the reduced PCA space X is obtained as:

X = XjWj3
−1/2
j , (33)

and the eigenvectors F follow from F = YTX, then normalize
the columns of F to unit L2-norm. A rank k PCA approximation
is obtained by retrieving the first k dominant columns of the
matrices X and F.

The time complexity of MPOWIT over all j iterations is
O

(

Mpvlkj
)

. Based on Equation (30), the algorithm requires
only M dataloads per iteration and a total of

(

j+ 1
)

M
dataloads, whichmakesMPOWIT scalable for large data analysis.

7MATLAB’s eigs(·) function is based on the IRAM method to estimate desired

eigenvectors and eigenvalues.

Frontiers in Neuroscience | www.frontiersin.org 7 February 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

Furthermore, based on the original power iteration algorithm,
simple L2-norm normalization of the columns of Xj without
full orthogonalization would suffice in Equation (29). However,
in our experiments, we determined that assessments about the
convergence of the algorithm are considerably more reliable if
they are based on the eigenvalues3j obtained from orthogonalXj

instead. Thus, explicit orthonormalization of Xj in each iteration
is preferred.

Also, when MPOWIT is initialized with STP or SVP, X0 is
set as the top lk components of XSTP or XSVP, respectively, and
30 = 3STP or 30 = 3SVP since all eigenvalues are available
at the end of the STP and SVP procedures. Initializing with
a sub-sampling technique accelerates convergence and, more
importantly, prevents dataloads from becoming a bottleneck
in the analysis pipeline. Lastly, note that MPOWIT differs
from a block version of subspace iteration (Mitliagkas et al.,
2013) where regular subspace iteration is applied in “online” or
“streaming memory” mode, i.e., making a single pass over the
data. Although, this approachminimizes the number of dataloads
(to M), the PCA solution is only approximate with respect to
the EVD solution and, thus, not recommended for group ICA
of fMRI data.

MPOWIT and Expectation Maximization PCA (EM

PCA)
To complete our discussion on methods for PCA of large
datasets, we present expectation maximization PCA (EM PCA).
Our focus is on the connections and the implications that
certain MPOWIT concepts have on this popular technique. EM
PCA (Roweis, 1997) uses expectation and maximization steps to
determine the PCA subspace. The algorithm operates as follows:

X0 = Gv×k, (34)

FTj =
(

XT
j− 1Xj− 1

)−1
XT
j− 1Y, j ≥ 1, (35)

Xj = YFj

(

FTj Fj

)−1
. (36)

In Equation (34), a Gaussian random matrix of dimensions
v × k is selected as the initial PCA subspace. In the expectation
step (Equation 35), the PCA subspace Xj− 1 is fixed and
the transformation matrix Fj is determined, while in the
maximization step (Equation 36), Fj is fixed and the subspace
Xj is determined. Equations (35) and (36) are iterated until the
algorithm converges to within the specified error for tolerance as
shown below:

∥

∥Xj − Xj− 1

∥

∥ < δ. (37)

After convergence, the reduced PCA space X is determined using

Equations (31) and (33): first, perform a full EVD of
XT
j YY

TXj

v−1 ,

followed by X = XjWj3
−1/2
j .

The time complexity of EM PCA over all iterations is only
O

(

Mpvkj
)

but it takes a considerably larger number of iterations
to converge when compared to Large PCA and MPOWIT
methods. This is because EM PCA has the same convergence
properties of subspace iteration. In fact, as we prove in Appendix

Section Proof: MPOWIT and EM-PCA Converge to the Same
PCA Subspace (X) (Supplementary Material), EM PCA returns
the same subspace estimate as MPOWIT if both run for the
same number of iterations and use the same initial guess.
Naturally, the acceleration schemes used for subspace iteration
[see Section Multi Power Iteration (MPOWIT) and Appendix
Section How to Select the Projecting Subspace Size (l) for
MPOWIT?; Supplementary Material] are equally applicable and
useful for EM PCA. However, as seen from Equations (35) and
(36), EM PCA requires loading the data into memory twice if un-
stacked PCA is performed. Since dataloading is a bottleneck for
very large group analyses, EM PCA is still slower than MPOWIT
when PCA is carried out on un-stacked data (i.e., on each Yi at
a time rather than the entire stacked Y at once). Therefore, we
forgo further comparisons with EM PCA in the Results Section.

As a final remark on methods, our MPOWIT method
relates to normalized power iteration (Martinsson et al., 2010;
Halko et al., 2011b). However, normalized power iteration is
more a variation of the EM PCA method where both the
expectation (Equation 35) and maximization (Equation 36) steps
are orthonormalized. Hence, the subspaces in each iteration are
the same for both EM PCA and normalized power iteration.
Also, we note that orthonormalization of the expectation step
(Equation 35) in normalized power iteration is redundant and,
therefore, normalized power iteration has the same shortcomings
as EM PCA in large un-stacked group analyses, i.e., both require
two dataloads per iteration. Thus, the time required to solve
group PCA is significantly longer than with MPOWIT when a
large number of subjects are included [see definition of “large” in
Section Sub-Sampled Time PCA (STP)].

Data and Preprocessing
We use 1600 pre-processed subjects from resting state fMRI data
(a superset of the data presented in Allen et al., 2011) and perform
group PCA. Pre-processing steps include image realignment
using INRIalign (Freire et al., 2002), slice-timing correction using
the middle slice as reference, spatial normalization (Friston et al.,
1995) and 3D Gaussian smoothing with a kernel size of 10 ×
10 × 10mm. No normalization is done on the BOLD fMRI
timeseries (e.g., dividing by the variance or mean as is sometimes
done for ICA approaches). Scans from 3 to 150 are included
in the analysis to match the same time-points across subjects.
A common mask is applied on all subjects to include only in-
brain voxels. The common mask for all the subjects is generated
by using element-wise multiplication on the individual subject
masks. A widely used approach to generate individual subject
masks is to eliminate non-brain voxels by keeping voxels with
values above or equal to the mean over an entire volume for each
timepoint.

In the initial subject-level PCA step of group ICA (Calhoun
et al., 2001), each individual subject’s fMRI data of dimensions
v × t is reduced to a few whitened principal components of
dimensions v × p (see Figure 1). We use EVD to reduce subject
specific fMRI data and retain p = 100 components, capturing
near-maximal individual subject variability during the first PCA
step (Erhardt et al., 2011). In the second PCA step (group-level
PCA), data from each subject in the first PCA step is stacked

Frontiers in Neuroscience | www.frontiersin.org 8 February 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

along the (reduced) time dimension. As the number of subjects
increases, the memory requirement increases since the data is
temporally concatenated. On all reported experiments, without
loss of generality, we used a typical fMRI acquisition setting
where the whole scanning field is sampled at 3× 3× 3mm voxel
resolution (resulting in a matrix of dimensions 53×63× 46) and
the number of time points is 148 with TR= 2000ms.

Experiments
A number of experiments have been conducted to assess
memory usage and computation time for all group PCAmethods
discussed previously. Firstly, we assessed memory usage for
varying number of subjects (M). Next, for each group-level
PCA algorithm tested in this paper, we conducted 20 different
group ICA analyses, varying the number of subjects (M) used
in each analysis by 100, 200, 400, 800, and 1600, and the
number of components (k) by 25, 50, 75, and 100. The group-
level PCA algorithms considered were EVD, Large PCA, multi
power iteration (MPOWIT), subsampled voxel PCA (SVP), and
subsampled time PCA (STP). For STP, the number of subjects in
each group (g) was selected to be as large as possible and such
that the analysis did not exceed 4 GB RAM (g = 20 in our
analyses). Since, Large PCA and MPOWIT could also be carried
out by loading one dataset at a time per PCA iteration, we also
included the un-stacked group PCA cases in the analyses. In total,
7 × (5 × 4) = 7 × 20 = 140 different group-level PCA cases
were considered for comparison in terms of their accuracy and
required computing time. In addition, the number of iterations
until convergence was assessed for Large PCA and MPOWIT
on each scenario. Finally, we illustrated the total group ICA
pipeline computing times attainable using the MPOWITmethod
(stacked and un-stacked) in the group-level PCA stage (including
dataloading times).

RESULTS

Memory Requirements
After applying a common binary mask to all time points, there
were 66,745 in-brain voxels per time point. Figure 2 summarizes
the memory requirements for each group PCA algorithm applied
on this data, using the parameters specified in Section Accuracy,
Computing Time, and Convergence. Note that for M ≥ 800,
the voxel dimension is smaller than the stacked time dimension
(i.e., v < Mp). Still, we cannot use Equation (5) to compute
the covariance matrix in the voxel dimension because the voxel
dimension is also very large and it may take several hours to
compute if loading each dataset at a time. Thus, EVD is not
scalable for large data analysis as both the memory burden to
compute the covariance matrix and the computational burden
to solve the eigenvalue problem increase exponentially. On
the other hand, the un-stacked versions of randomized PCA
approaches like Large PCA and MPOWIT are scalable for large
datasets, meaning that Large PCA and MPOWIT could load
each subject’s dataset Yi at a time for each PCA iteration. Thus,
un-stacked versions of these algorithms are also considered.
Subsampled EVD methods like SVP and STP are also considered

FIGURE 2 | Approximate memory required in gigabytes (GB) to solve

the group PCA problem. The number of in-brain voxels is v = 66745, the

number of PCA components in the first PCA step is p = 100, the number of

components in the second PCA step is k = 100 and the number of subjects

(M) selected are 100, 200, 400, 800, and 1600. We used the number of block

iterations j = 6 and block size b = 170 for Large PCA (see Appendix Section

Parameter Selection for Large PCA; Supplementary Material), and the block

multiplier l was set to 5 for MPOWIT (see Appendix Section How to Select the

Projecting Subspace Size (l) for MPOWIT?; Supplementary Material). The

number of subjects in each group (g) is set to 20 when estimating PCA using

STP. We give the equations used to estimate the memory required by each

PCA algorithm discussed in this paper in Appendix Section How Much

Memory is Required during the Group-Level PCA Step? (Supplementary

Material).

as these have fixed memory requirements and are independent of
the number of subjects analyzed.

Some notes about multi-band EPI sequences and subject-level
PCA are in order here. First, even if the fMRI data were acquired
at a 2 × 2 × 2mm voxel resolution (roughly, v = 180000
in-brain voxels) and collected for 30min using multi-band EPI
sequences with TR = 200ms, there would be no significant
impact on the memory required to solve the first PCA step,
including computations of the subject-specific covariancematrix.
This is because the time dimension would still be considered
“small” since t = 30 × 60 × 5 = 9000 < 10000. With
less than 10,000 time points, the first PCA step could be easily
solved by loading the data in blocks along the voxel dimension,
summing covariance matrices of dimension t × t across blocks,

i.e.,
∑blocks

n=1 (Ctt)n = F3FT , and using the EVD (IRAM) method
[eigs (·) function in MATLAB]. The memory required by EVD
to solve the ensuing group-level PCA, however, increases with
the number of components p retained in the first PCA step,
the number of subjects M, and the number of in-brain voxels
v, assuming the entire temporally stacked data Y is loaded in
memory, which makes it unscalable. Unlike EVD, MPOWIT
(un-stacked) would solve this group PCA problem using less
than 4 GB RAM even if p was increased from 100 to 200
components and v was increased from 60000 to 180000 in-brain
voxels, assuming M = 5000 subjects, highlighting its scalability
strengths.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

Accuracy, Computing Time, and
Convergence
Here, we present results for the group PCA experiments
described in Section Data and Preprocessing. If not specified
otherwise, all processes were tested on a server running Linux
Centos OS release 6.4 with 512 GB RAM, and MATLAB R2012a.
We also note that the files with the results from the initial
subject-level PCA step were always saved as uncompressed
“.mat” files to later speed up the data loading process during
the group PCA step. The parameter settings used to solve
the group PCA problem for each algorithm are described
below:

(a) EVD: The covariance matrix is always computed in the
smallest dimension of the temporally stacked data. The
IRAM algorithm is used to find the desired eigenvectors.
In this study, we used MATLAB’s eigs (·) function, which is
built on the IRAM method. The maximum error tolerance
selected was δ = 10−6 and the maximum number of
iterations was set to 1000.

(b) Large PCA: Here, we used settings based on the Pareto-
optimal study in Appendix Section Parameter Selection for
Large PCA (Supplementary Material). The block length was
set to b = 170, the number of initial block iterations j0 was
set to 6 and the error tolerance was set to 10−6. Note that as
the number of block iterations (j) executed until convergence
increases, the performance of the algorithm decreases (i.e.,
higher memory and lower speed).

(c) MPOWIT: The maximum error tolerance and maximum
number of iterations were set to 10−6 and 1000, respectively.
The multiplier l was set to 5 (see Appendix Section How
to Select the Projecting Subspace Size (l) for MPOWIT?;
SupplementaryMaterial) to improve the rate of convergence.
As the value of l increases, the rate of convergence
and accuracy increase but the computational performance
decreases (i.e., higher memory and lower speed in each
iteration).

(d) SVP: A value of 2 is selected as subsampling depth and 500
intermediate PCA components are estimated for odd and
even voxel spaces.

(e) STP: The number of subjects included in each group is 20,
and 500 intermediate PCA components are estimated per
group.

The L2-norm of the absolute difference between the top k
eigenvalues obtained from the randomized PCA methods and
those from the EVD (IRAM) method were used to determine
the accuracy of the estimated PCA components. The eigenvalues
from the EVD method are always considered the ground-truth.

From Figure 3, it is evident that both the Large PCA and
MPOWIT methods give more accurate results than subsampled
PCA methods SVP and STP across all model orders. Overall,
STP estimates components with higher accuracy than SVP across
all model orders. We also note that, generally, Large PCA
estimates PCA components with slightly better accuracy than
MPOWIT. Figure 4 compares the computing time taken in

FIGURE 3 | Estimation error as compared to EVD (IRAM). L2-norm of error is computed between the eigenvalues of each method and the eigenvalues of the

EVD method.

Frontiers in Neuroscience | www.frontiersin.org 10 February 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

FIGURE 4 | Computing time (in minutes) taken to solve group-level PCA using EVD (IRAM), Large PCA, MPOWIT, SVP, and STP algorithms. Using

different numbers of subjects and components. The computing time of both Large PCA (un-stacked) and MPOWIT (un-stacked) are also reported.

minutes by each algorithm to solve the group-level PCA problem.
Subsampled PCA methods like SVP and STP outperform EVD
and unstacked versions of MPOWIT and Large PCA at the
cost of accuracy. MPOWIT and Large PCA outperform EVD
when the entire data is loaded in memory, i.e., when Y fits
in RAM. When the data is not loaded in memory, MPOWIT
(un-stacked) marginally outperforms EVD and Large PCA (un-
stacked) at lower model orders (k = 25 and k = 50) whereas
at higher model orders (k = 75 and k = 100), Large PCA
(un-stacked) marginally outperforms both EVD and MPOWIT
(un-stacked). Finally, Figure 5 shows the number of iterations
MPOWIT and Large PCA take to converge. Overall, Large PCA
takes fewer iterations to converge than MPOWIT due to larger
block sizes. However, note from Figure 2 that MPOWIT (un-
stacked) requires considerably less memory than Large PCA
(un-stacked) with fairly sublinear increase in memory use as M
increases.

Group ICA and Subject
Back-Reconstruction
Spatial ICA was performed on the final group-level PCA
components to determine maximally statistically independent
components. The Infomax ICA algorithm (Bell and Sejnowski,
1995) was repeated 10 times in an ICASSO framework (Himberg
et al., 2004) with a different random initialization at each
run. The most stable run estimates were used instead of using
centrotype estimates (Ma et al., 2011). We used the GICA1
back-reconstruction method (Erhardt et al., 2011) to reconstruct
individual subject component maps and timecourses for each
analysis. Individual subject component maps and timecourses

were then scaled to Z-scores. In Figure 6, we illustrate the
total group ICA analysis computing times attainable using the
MPOWIT method (stacked and un-stacked, respectively) in the
group-level PCA stage (including dataloading time).

DISCUSSION

We demonstrated the entire group ICA process including the
group PCA step on a Linux server with 512 GB RAM. We
infer from Figure 2 that a large group ICA analysis using un-
stacked versions of MPOWIT and Large PCA can be performed
on machines with only 4 GB RAM. Moreover, the un-stacked
versions of MPOWIT and Large PCA are designed to solve the
group PCA problem by loading one dataset at a time. This is a
nice feature which makes these algorithms ideal for PCA of “big
data” where chunks of data can be extracted one at a time using
memory mapping techniques.

Comparing among EVD, Large PCA, and MPOWIT, we
notice that MPOWIT and Large PCA outperform EVD (IRAM)
in terms of speed when all datasets are already loaded in memory.
As depicted in Figure 4, pink (Large PCA) and light green
(MPOWIT) bars are always shorter than the blue (EVD) bar.
When only one subject’s dataset can be loaded in memory at
a time, in which case un-stacked MPOWIT and un-stacked
Large PCA have to be used, the computation time increases
as showed by the dark green (MPOWIT un-stacked) and red
bars (Large PCA un-stacked) in Figure 4. Overall, blue and
dark green bars are comparable at various model orders. Dark
green bars marginally outperform dark red and blue bars at
lower model orders whereas dark red bars marginally outperform

Frontiers in Neuroscience | www.frontiersin.org 11 February 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

FIGURE 5 | Number of iterations required for convergence for both Large PCA and MPOWIT algorithms.

dark green and blue bars at higher model orders. We note that
un-stacked Large PCA uses larger block size (Krylov subspace)
than un-stacked MPOWIT and, therefore, converges faster.
In our experiments, both Large PCA and MPOWIT take at
least seven iterations to converge to the PCA solution. With
increasing datasets, data loading could be a big bottleneck in
computational performance. To speed up the process further, we
recommend using PCA estimates from subsampled PCA [Section
Sub-sampled Time PCA (STP)] instead of random initialization.
In our examples,MPOWIT and Large PCAmethods provide very
similar principal components, differing by less than 10−6.

The PCA methods we discussed in this paper are generic and
can be applied to any dataset without any major modifications.
However, our goal here is to demonstrate the applicability of
these algorithms to real-valued fMRI data in the context of group
ICA.

The execution time for the largest group ICA analysis in this
paper, i.e., 1600 subjects and 100 independent components, using
the un-stacked version of our MPOWIT PCA algorithm for the
group-level PCA, was 329min (5.48 h, Figure 6). Reloading the
datasets from the first PCA step was fast in our Linux server
due to the Operating System’s “cache effect.” We repeated the
1600 subject group-PCA problem with model orders 50 and 100
on a Windows desktop with 4 GB RAM using both MPOWIT
and Large PCA. To speed up the PCA estimation of MPOWIT
and Large PCA, 500 PCA components from subsampled PCA
[Section Sub-Sampled Time PCA (STP)] were used as the initial

PCA subspace. Since components estimated by STP method are
more accurate than SVPmethod (Figure 3), STP components are
used as initial subspace. Figure 7 shows that both MPOWIT and
Large PCA successfully recovered 100 group PCA components
with high accuracy in little more than 3 h (including the STP
PCA estimation). MPOWIT required three iterations and large
PCA required two block iterations to solve the largest group PCA
problem in this paper which would have been an impossible
problem to solve using EVD or assuming the entire (reduced)
data from the first PCA step had to be loaded in memory during
the group PCA step (Figure 2). A significant speedup can still be
achieved if the entire group ICA process is run in parallel using,
for example, GPU acceleration or distributed clusters.

Our results also emphasize that EVD is not preferred for
large scale analysis as there is an extra cost in storing the
covariance matrix in memory. One way to overcome this issue
is based on Equation (5). If one dimension of the data is
fixed, the covariance matrix can be computed in that dimension
and the net covariance matrix could be computed by adding
the covariance matrices across subjects. Moreover, since the
covariance matrix is symmetric, only the lower or upper
triangular portions need to be stored in memory (for eigenvalue
problems). LAPACK8 eigen solvers such as DSPEVX or SSPEVX
leverage this property and use only lower or upper triangular
portions of the matrix. However, the performance (computing

8http://www.netlib.org/lapack/

Frontiers in Neuroscience | www.frontiersin.org 12 February 2016 | Volume 10 | Article 17

http://www.netlib.org/lapack/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

speed) of these algorithms will still be poor if the covariance
matrix is very large.

The PCA methods applied for performing spatial group ICA
are equally valid for temporal group ICA (Smith et al., 2012). In
temporal group ICA, subject-level PCA is not performed and,
thus, group PCA is computed directly on the preprocessed fMRI
datasets stacked along the time dimension (Boubela et al., 2013).

FIGURE 6 | Total time to solve the entire group ICA analysis using

MPOWIT for the group PCA step (in minutes). Computing times when all

the data is loaded in memory (stacked) and when datasets are loaded each at

a time in every iteration (un-stacked).

The memory requirements for the temporal group PCA step
using the PCA methods we presented here could be computed
using p = t (See Appendix Section How Much Memory is
Required during the Group-Level PCA Step?; Supplementary
Material). Notice that loading the full preprocessed fMRI datasets
instead of loading just the subject-level PCA results (as in
spatial group PCA) is considerably more time-consuming.
Conveniently, our MPOWIT PCA approach supports processing
un-stacked datasets and, thus, is highly suitable for very large
temporal group PCA of multi-band EPI fMRI.

Based on the methods discussed here, we present our findings
in a flowchart (Figure 8), indicating our recommendations for
selection of the PCAmethod given the problem size and its order
of complexity (k). The EVD (IRAM) method is preferred when
the problem size is small (i.e., v ≤ 10000 or Mp ≤ 10000).
Note, however, that MPOWIT could also be applied directly
on the covariance matrix [Equation (30), left-hand side]. Thus,
if the smallest dimension of the data is less than or equal to
10000, applying MPOWIT on the covariance matrix requires
only a single dataload per subject and is more computationally
efficient than Equation (30) (right-hand side), which requires
one dataload per subject in each iteration. Finally, randomized
PCA methods such as MPOWIT, EM PCA (accelerated), and
Large PCA are efficient in memory and/or speed on large data
problems that could be fit in the computer RAM. However, when
the data is too large to fit in the computer RAM, un-stacked

FIGURE 7 | Comparison of MPOWIT and Large PCA on Windows desktop with 4 GB RAM. Initial PCA subspace is selected from STP method to accelerate

algorithms MPOWIT and Large PCA for very large data (both un-stacked). Error in top row second column is computed using L2 - norm of difference between the

eigenvalues obtained from the selected PCA method and EVD method.

Frontiers in Neuroscience | www.frontiersin.org 13 February 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

FIGURE 8 | PCA Algorithm selection. This flowchart summarizes our recommendations for selection of the most appropriate PCA method given the dimensions of

the data (v×Mp), where v is the number of in-brain voxels, p is the number of components retained in the first PCA step, and M is the number of subjects.

versions of MPOWIT or Large PCA are preferred with PCA
subspace initialization from STP method. At most 2–3 iterations
are required to estimate PCA components with high accuracy
when the PCA subspace is initialized using STP. However, the
performance of Large PCA is highly dependent on the correct
tuning of j0 and b (see Appendix Section Parameter Selection
for Large PCA; Supplementary Material) for each given dataset.
MPOWIT, on the other hand, seems to produce comparable
results with little need for tuning of l (see Appendix Section
How to Select the Projecting Subspace Size (l) for MPOWIT?;
Supplementary Material).

CONCLUSIONS

We presented a new approach for PCA-based data reduction
for group ICA called MPOWIT and demonstrated that it
can efficiently solve the large scale PCA problem without
compromising accuracy. The un-stacked version of MPOWIT
takes almost the same time to complete the analysis as compared
to EVD but requires much less RAM. We showed that MPOWIT
enables group ICA on very large cohorts using standard fMRI
acquisition parameters within 4 GB RAM. Computationally
efficient data reduction approaches like MPOWIT are becoming
more important due to the larger datasets resulting from new
studies using high-frequency multi-band EPI sequences and
from an increased tendency to share data in the neuroimaging

community. Even in such challenging scenarios, un-stacked
MPOWIT could realistically solve group-level PCA on virtually
any number of subjects, limited only by time, not memory,
constraints. Given its high scalability and right fit for parallelism,
MPOWIT sets the stage for future groundbreaking developments
toward extremely efficient PCA of big data using GPU
acceleration and distributed implementations.

AUTHOR CONTRIBUTIONS

SR—Developed PCA algorithm (MPOWIT) for data reduction.
RS—Worked extensively on revising paper and helped
with mathematical proofs. JL—Gave good feedback on
improving the manuscript. VC—Gave good feedback on
improving the manuscript and also work was done under his
supervision.

FUNDING

This work was funded by NIH 2R01EB000840, R01EB020407,
and COBRE 5P20RR021938/P20GM103472 (Calhoun).

ACKNOWLEDGMENTS

The authors would like to thank Tim Mounce, IT
administrator at the MIND Research Network, for

Frontiers in Neuroscience | www.frontiersin.org 14 February 2016 | Volume 10 | Article 17

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rachakonda et al. Memory Efficient PCA for ICA

valuable help installing and mounting software and
drives in our Linux servers. We would also like to
thank Dr. Tülay Adalı, Professor at the University
of Maryland Baltimore County, for giving valuable
comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2016.00017

REFERENCES

Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., et al.

(2011). A baseline for the multivariate comparison of resting-state networks.

Front. Syst. Neurosci. 5:2. doi: 10.3389/fnsys.2011.00002

Beckmann, C. F., and Smith, S. M. (2004). Probabilistic independent component

analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging

23, 137–152. doi: 10.1109/TMI.2003.822821

Bell, A. J., and Sejnowski, T. J. (1995). An information maximisation approach to

blind separation and blind deconvolution. Neural Comput. 7, 1129–1159. doi:

10.1162/neco.1995.7.6.1129

Biswal, B. B., Mennes,M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S.M., et al. (2010).

Toward discovery science of human brain function. Proc. Natl. Acad. Sci. 107,

4734–4739. doi: 10.1073/pnas.0911855107

Boubela, R. N., Kalcher, K., Huf, W., Kronnerwetter, C., Filzmoser, P., and

Moser, E. (2013). Beyond noise: using temporal ICA to extract meaningful

information from high-frequency fMRI signal fluctuations during rest. Front.

Hum. Neurosci. 7:168. doi: 10.3389/fnhum.2013.00168

Brand, M. (2003). “Fast online SVD revisions for lightweight recommender

systems,” in 2003 SIAM International Conference on Data Mining, eds D.

Barbara and C. Kamath. (San Francisco, CA: SIAM).

Calhoun, V. D., and Adali, T. (2012). Multisubject independent component

analysis of fMRI: a decade of intrinsic networks, default mode, and

neurodiagnostic discovery. IEEE Rev. Biomed. Eng. 5, 60–73. doi:

10.1109/RBME.2012.2211076

Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2001). A method

for making group inferences from functional MRI data using independent

component analysis. Hum. Brain Mapp. 14, 140–151. doi: 10.1002/hbm.1048

Calhoun, V. D., Egolf, E., Rachakonda, S. (2004). Group ICA of fMRI Toobox.

Available online at: http://mialab.mrn.org/software/gift

Calhoun, V. D., Silva, R. F., Adali, T., and Rachakonda, S. (2015). Comparison

of PCA approaches for very large group ICA. Neuroimage 118, 662–666. doi:

10.1016/j.neuroimage.2015.05.047

Erhardt, E. B., Rachakonda, S., Bedrick, E. J., Allen, E. A., Adali, T., and Calhoun,

V. D. (2011). Comparison of multi-subject ICA methods for analysis of fMRI

data. Hum. Brain Mapp. 32, 2075–2095. doi: 10.1002/hbm.21170

Feinberg, D. A., and Setsompop, K. (2013). Ultra-fast MRI of the human brain

with simultaneous multi-slice imaging. J. Magn. Reson. 229, 90–100. doi:

10.1016/j.jmr.2013.02.002

Feinberg, D. A., Moeller, S., Smith, S. M., Auerbach, E., Ramanna, S., Glasser,

M. F., et al. (2010). Multiplexed echo planar imaging for Sub-Second

Whole Brain FMRI and fast diffusion imaging. PLoS ONE 5:e15710. doi:

10.1371/journal.pone.0015710

Freire, L., Roche, A., and Mangin, J. F. (2002). What is the best similarity measure

for motion correction in fMRI time series? IEEE Trans. Med. Imaging 21,

470–484. doi: 10.1109/TMI.2002.1009383

Friston, K., Holmes, A., Worsley, K. J., Poline, J. P., Frith, C. D., and Frackowiak,

R. S. (1995). Statistical parametric maps in functional imaging: a general linear

approach. Hum. Brain Mapp. 2, 189–210. doi: 10.1002/hbm.460020402

Funk, S. (2006). Netflix Update: Try This at Home. Available online at: http://sifter.

org/~simon/journal/20061211.html (Accessed April 10, 2015).

Halko, N., Martinsson, P. G., Shkolnisky, Y., and Tygert, M. (2011a). An algorithm

for the principal component analysis of large data sets. SIAM J. Sci. Comput. 33,

2580–2594. doi: 10.1137/100804139

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011b). Finding structure with

randomness: probabilistic algorithms for constructing approximate matrix

decompositions. SIAM Rev. 53, 217–288. doi: 10.1137/090771806

Himberg, J., Hyvarinen, A., and Esposito, F. (2004). Validating the independent

components of neuroimaging time series via clustering and visualization.

Neuroimage 22, 1214–1222. doi: 10.1016/j.neuroimage.2004.03.027

Kuczynski, J., and Wozniakowski, H. (1992). Estimating the largest eigenvalue by

the power and lanczos algorithms with a random start. SIAM J. Matrix Anal.

Appl. 13, 1094–1122. doi: 10.1137/0613066

Lehoucq, R., Sorensen, D., and Yang, C. (1998). ARPACK Users’ Guide: Solution

of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.

Philadelphia, PA: SIAM.

Lehoucq, R. B., and Sorensen, D. C. (1996). Deflation techniques for an implicitly

restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. 17, 789–821. doi:

10.1137/S0895479895281484

Li, Y. (2004). On incremental and robust subspace learning. Pattern Recognit. 37,

1509–1518. doi: 10.1016/j.patcog.2003.11.010

Li, Y.-O., Adali, T., and Calhoun, V. D. (2007). Estimating the number

of independent components for functional magnetic resonance

imaging data. Hum. Brain Mapp. 28, 1251–1266. doi: 10.1002/hbm.

20359

Ma, S., Correa, N. M., Li, X. L., Eichele, T., Calhoun, V. D., and Adali,

T. (2011). Automatic identification of functional clusters in fMRI data

using spatial dependence. IEEE Trans. Biomed. Eng. 58, 3406–3417. doi:

10.1109/TBME.2011.2167149

Martinsson, P.-G., Szlam, A., and Tygert, M. (2010). “Normalized power iterations

for the computation of SVD,” in Neural Information Processing Systems

Workshop 2010. (Whistler, BC).

Mitliagkas, I., Caramanis, C., and Jain, P. (2013). “Memory limited, streaming

PCA,” in Advances in Neural Information Processing Systems 26, eds C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Q. Weinberger (Curran

Associates, Inc.), 2886–2894.

Recktenwald, W. (2000). Introduction to Numerical Methods and MATLAB:

Implementations and Applications. Upper Saddle River, NJ: Prentice Hall.

Roweis, S. (1997). “EM Algorithms for PCA and SPCA,” in Neural Information

Processing Systems (NIPS 1997), eds M. Jordan, M. Kearns, and S. Solla (Denver,

CO: The MIT Press).

Rutishauser, H. (1970). Simultaneous iteration method for symmetric matrices.

Num. Math. 16, 205–223. doi: 10.1007/BF02219773

Saad, Y. (2011).Numerical Methods for Large Eigenvalue Problems: Revised Edition.

Philadelphia, PA: SIAM.

Setsompop, K., Gagoski, B. A., Polimeni, J. R., Witzel, T., Wedeen, V. J., andWald,

L. L. (2012). Blipped-controlled aliasing in parallel imaging for simultaneous

multislice echo planar imaging with reduced g-factor penalty. Magn. Reson.

Med. 67, 1210–1224. doi: 10.1002/mrm.23097

Smith, S. M., Hyvärinen, A., Varoquaux, G., Miller, K. L., and Beckmann, C. F.

(2014). Group-PCA for very large fMRI datasets. Neuroimage 101, 738–749.

doi: 10.1016/j.neuroimage.2014.07.051

Smith, S. M., Miller, K. L., Moeller, S., Xu, J. Q., Auerbach, E. J.,

Woolrich, M. W., et al. (2012). Temporally-independent functional modes of

spontaneous brain activity. Proc. Natl. Acad. Sci. U.S.A. 109, 3131–3136. doi:

10.1073/pnas.1121329109

Wang, Z., Wang, J., Calhoun, V. D., Rao, H., Detre, J. A., and Childress, A. R.

(2006). Strategies for reducing large fMRI data sets for ICA. Magn. Reson.

Imaging 24, 591–596. doi: 10.1016/j.mri.2005.12.013

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Rachakonda, Silva, Liu and Calhoun. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 February 2016 | Volume 10 | Article 17

http://journal.frontiersin.org/article/10.3389/fnins.2016.00017
http://mialab.mrn.org/software/gift
http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Memory Efficient PCA Methods for Large Group ICA
	Introduction
	Materials and Methods
	Group ICA
	Group-Level PCA
	Eigenvalue Decomposition (EVD)
	Subsampled PCA
	Subsampled voxel PCA (SVP)
	Sub-sampled time PCA (STP)

	Large PCA
	Multi Power Iteration (MPOWIT)
	MPOWIT and Expectation Maximization PCA (EM PCA)

	Data and Preprocessing
	Experiments

	Results
	Memory Requirements
	Accuracy, Computing Time, and Convergence
	Group ICA and Subject Back-Reconstruction

	Discussion
	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

