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Estimating the speed and direction of moving objects is a crucial component of agents

behaving in a dynamic world. Biological organisms perform this task by means of the

neural connections originating from their retinal ganglion cells. In artificial systems the

optic flow is usually extracted by comparing activity of two or more frames captured

with a vision sensor. Designing artificial motion flow detectors which are as fast, robust,

and efficient as the ones found in biological systems is however a challenging task.

Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking

activity of the direction-selective ganglion cells in the rabbit’s retina, we introduce an

architecture for robust optical flow extraction with an analog neuromorphic multi-chip

system. The task is performed by a feed-forward network of analog integrate-and-fire

neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation

is supported by the precise time of spike emission, and the extraction of the optical flow is

based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our

neuromorphic detectors encode the amplitude and the direction of the apparent visual

motion in their output spiking pattern. Hereby we describe the architectural aspects,

discuss its latency, scalability, and robustness properties and demonstrate that a network

of mismatched delicate analog elements can reliably extract the optical flow from a

simple visual scene. This work shows how precise time of spike emission used as

a computational basis, biological inspiration, and neuromorphic systems can be used

together for solving specific tasks.

Keywords: spike-based, motion-flow, analog VLSI, silicon retina

1. INTRODUCTION

Take a pen, move it in front of an optical sensor and try to state, from the sensor output, its
direction, and speed. How can we extract information about its motion? And how can we encode
and communicate this information? It is an interesting problem related to simple questions.
Answering these questions would pave the way toward the design of smart sensors performing
object segmentation (Tian and Shah, 1996; Zitnick et al., 2005), autonomous robot navigation and
obstacle avoidance (Nelson and Aloimonos, 1989; Srinivasan and Gregory, 1992; Ilic et al., 1994;
Camus et al., 1996; Coombs et al., 1998). It is therefore not surprising that a large amount of
scientific effort has been devoted in trying to answer them, using different approaches.
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Traditional ways to solve this problem rely on off-the-
shelf hardware and start with freezing the visual scene in a
sequence of fixed frames. Frames are then analyzed to obtain
the visual flow information. Various algorithms exist to perform
this task: some estimate the flow using velocity-tuned filters
designed in the Fourier domain (Watson and Ahumada, 1983;
Heeger, 1987, 1988); others exploit phase-based methods Barron
et al. (1994); many compute correlation indexes or search
for matching regions in adjacent frames (Sutton et al., 1983;
Kories and Zimmermann, 1986; Anandan, 1989; Singh, 1991;
Camus, 1995; Banks and Corke, 2001); other methods use spatio-
temporal derivatives of image intensity under the constraint of
a constant brightness (Horn and Schunck, 1981; Nagel, 1987;
Galvin et al., 1998). All these methods are tied to frames,
and to the frequency at which they are captured. Their high
computational cost makes embedding them on compact devices
for real-time applications challenging. Nevertheless, noticeable
examples have been published (Mehta and Etienne-Cummings,
2003; Grue and Etienne-Cummings, 2004). They partially rely
on the computational power of a dedicated microcontroller to
extract the optical flow using simplified versions of gradient-
based methods.

Biological systems rely on different operating principles:
information is not represented in frames, but by means of data-
driven pulsed messages exchanged by complex nervous cells;
information processing is not performed algorithmically, but
supported by specific neural circuitry. For example, Barlow and
Levick (1965) demonstrated that an inhibitory mechanism is at
the basis of the computation the biological retina performs to
extract the direction of motion of an object in the visual field.
Inspired by these studies, we hereby present an architecture that
does not rely on capturing and processing frames. We make use
of neuromorphic retinas (Mead andMahowald, 1988; Culurciello
et al., 2003; Culurciello and Andreou, 2006; Lichtsteiner et al.,
2008; Delbruck et al., 2010; Posch et al., 2011; Serrano-
Gotarredona and Linares-Barranco, 2013): they are frame-free
devices whose pixels, each independently and asynchronously,
can directly communicate with the next processing stage without
having to wait for a global synchronization step that collects
all their output in a frame. By doing so the precise timing at
which a pixel is activated becomes a computational variable
which is readily available. Neuromorphic pixels react only to light
changes and are blind to a steady state of illumination, in analogy
with ganglion cells, their biological counterparts. Since motion
induces sparse spatio-temporal activity, retina pre-processing
opens the way to lighter methods of analysis (Bauer et al., 2007;
Serrano-Gotarredona et al., 2009; Clady et al., 2014) more suited
for hardware implementations in smart sensors.

Here we present a neural architecture that receives the
retina output and computes the optical flow with milliseconds
latency. This work is a neural implementation of the event-based
optical developed in Benosman et al. (2014), not surprisingly
the implementation matches the original work of Barlow and
Levick (1965) on the direction-selective ganglion cells in the
rabbit’s retina. Our neuromorphic architecture provides possible
answers to both the questions posed above on how the motion
information can be extracted and how it can be communicated
in hardware. The specific goal of this work is to use a

neural architecture inspired by the motion estimators found by
Barlow and Levick, implement it using analog VLSI neurons to
extract direction and speed estimation on specific scenarios in
neuromorphic hardware.

The next Section reviews previous approaches to extract
motion information, using standard computers or neuromorphic
hardware. Section 2.2 describes the system architecture and
the components used, presenting a robust processing method,
tolerant to noise and parameters’ mismatch. In Section 3 we
demonstrate the performance of our approach by running
increasingly complex experiments. We finally discuss its
limitations and propose some future developments in Section 4.

2. MATERIALS AND METHODS

2.1. Review of Neuromorphic Motion
Sensors
In 1986 Tanner andMead (Tanner, 1986; Tanner andMead, 1986)
presented their first compact neuromorphic motion detector.
They designed a photosensitive matrix including analog circuits
implementing a gradient-based algorithm in every pixel (Horn
and Schunck, 1981). These systems suffered from low accuracy
in divisions performed with analog circuitry. Nevertheless, their
results boosted the field and various groups adopted the same
approach in the subsequent years (Deutschmann and Koch,
1998; Stocker and Douglas, 1998; Stocker, 2004). In particular in
Stocker (2004) the author describes a two layer recurrent network
which performs object segmentation and solves the aperture
problem. They rely on the Horn and Schunck equations and on a
smoothness constraint to compute the optical flow. They do so by
separating an input layer which uses an array of photoreceptors
to compute the derivatives of the image brightness, and feeds
them to a second layer, a resistive network, which imposes the
smoothness constraint. The output of their system is a set of
analog values read by a scanning circuitry.

The drawback of gradient-based algorithms is that they
assume a constant illumination. An alternative solution is offered
by the motion detection system studied in 1956 by Hassenstein
and Reichardt (Hassenstein and Reichardt, 1956). They proposed
an ElementaryMotionUnit (EMU)which correlates illumination
levels recorded at different instants and positions of the image.
To implement EMUs only photo-pixel, delays and multipliers
are required, and multipliers can even be substituted with other
forms of comparator simpler to design (Gottardi and Yang, 1993;
Harrison, 2005; Pant and Higgins, 2007).

Using the adaptive retina photopixels as the front-end for the
EMUs, correlation takes place between light-changes rather than
on absolute light intensities. This solution guarantees sensitivity
over a wide range of illumination levels and simplicity in the
implementation. For these reasons this solution is one of the
most widely adopted (Horiuchi et al., 1990; Andreou et al., 1991;
Delbruck, 1993; Etienne-Cummings et al., 1993; Meitzler et al.,
1993, 1995; Harrison and Koch, 1999; Liu, 2000).

Based on delays and correlation, the units proposed by
Reichardt are translated into a particular speed value to which
they respond maximally. By changing the correlation method
and its parameters the speed selectivity range of an EMU can
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be tuned from just a narrow to a wide range of speeds (Kramer
and Koch, 1997). In other words, by increasing the range it is
possible to create an EMU measuring the time a light variation
takes to travel from a pixel to another. Various circuits have
been studied to explicitly compute the time-of-travel of the light-
change. They are all based on similar mechanisms: when a light-
change is firstly detected, a facilitation signal starts a sort of
analog counter, typically a decaying voltage trace; when the light-
change is detected by the second pixel, the decaying trace is
directly read (Facilitate and Sample; Kramer and Koch, 1997;
Indiveri et al., 1999; Möckel, 2012) or compared with another
signal (Facilitate and Compare; Deutschmann and Koch, 1998)
to provide the time-of-travel. In Kramer and Koch (1997) and
Kramer (1996) the authors also propose to encode the time-of-
travel in the duration of a pulse determined by the activity of
adjacent photopixels.

Rather than using Reichardt detectors, in Arreguit et al.
(1996), the authors use a random pattern (on a mouse ball)
to subsequently activate an array of photodiodes; the difference
of activation of neighboring photodiodes gives the direction of
movement, while the magnitude of the speed is given by the
number of photodiodes responding tomoving edges. This system
relies on a particular—rather than general—scene to be analyzed;
it will hardly estimate the speed of a single point, with the same
size of a photodiode, displaced across the photodiode array.

In these above the output of motion detectors is directly read
via dedicated access points or through ad-hoc scanning systems.
The issue of accessing all the extracted motion information at
every pixel location is not discussed in depth. The reason is
that the authors either focus on implementing a single motion-
detector or present their devices as ego-motion detectors, where
a single global averaged value should be provided as output.

It is possible to draw an analogy between some artificial and
natural motion detection systems. Barlow and Levick (1965)
described a pulse-based mechanism similar to the one proposed
by Kramer (1996) where direction selectivity derives from lateral
asymmetric inhibition pulses. Benson and Delbrück (1991)
reports a fully analog device based on this idea. Barlow and Levick
proposed their inhibition-based scheme to explain the activity of
the Direction Selective (DS) ganglion cells in the rabbit’s retina. In
theirmodel the pulses coding for speed are post-synaptic currents
that induce firing activity in the DS ganglion cells. Their scheme
requires just three neurons (see Figure 1, left panel): two triggers,
a start and a stop one, and an output counter (which corresponds
to the DS cell). A spike emitted by the start neuron excites the
counter which starts firing until a spike from the stop neuron
inhibits it (see Figure 1, right panels). The number of spikes
emitted by the counter is proportional to the start-stop delay.
If the duration of the excitatory pulse is much shorter than the
length of the inhibitory one, this simple unit becomes selective,
up to a certain delay, to the sequence of trigger activation, e.g., to
the direction of motion.

With this scheme Barlow and Levick answer our question
on how motion information can be coded and extracted,
and also provide an answer to our second question, on how
such information can be communicated: they are proposing
asynchronous spiking communication over the optical nerve.

FIGURE 1 | Direction Selective cell. On the left panels the three-neurons

architecture consisting of a start trigger (the excitatory orange neuron) a stop

trigger (the inhibitory blue neuron) and the output counter neuron (in gray).

Excitatory and inhibitory post-synaptic current pulses cause the output neuron

to fire only when the object is moving in the preferred direction (right panels).

Their DS units are the core of our system: we use a silicon
retina to provide an input to the DS units and we obtain
motion information from the output spike trains. The complete
architecture is described in details in the next Section.

2.2. Information Processing Architecture
Our proposed architecture comprises three neuronal layers
arranged in a feed-forward fashion: retinal neurons, edge-
detectors neurons, and output counter neurons. To prepare
our information processing chain we followed these steps: we
grouped the retinal pixels in a grid of macropixels, each sensing a
different area of the visual field; we connected each macropixel
to a different neuron to obtain robust edge-transit detectors.
We added a layer of output neurons (the direction sensitive
ganglion cells, or DS) and we followed the Barlow and Levick
model for their afferent connections to obtain direction selective
units. We tested the entire chain under controlled conditions and
tuned neuronal and synaptic parameters as well as macropixels
dimension and position to obtain reliable motion extraction over
the desired range of speeds.

Figure 2 shows the hardware setup hosting the architecture.
The following paragraphs discuss in details the crucial aspects of
this information processing chain.

2.3. Retinal Layer
As a visual front-end we use the ATIS retina described in
Posch et al. (2011). It is a matrix of 304 × 240 photopixels of
which we use just a central part of 45 × 45 pixels. In addition
to adaptive, contrast-sensitive photopixels, the ATIS retina can
also measure absolute levels of illumination. However, we do
not use this feature in this work. Every adaptive photopixel
is connected with two neurons, one emitting events (spikes)
only when illumination increases, one firing when illumination
decreases. Up to a certain limit, larger or faster light changes
cause the emission of bursts with higher spike frequencies. In
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FIGURE 2 | ATIS neuromorphic retina in front of a screen with a moving bar projected by the DMD. Spikes from the retina are fed into the neural chips

(central panel) hosting a 3×3 matrix of motion detectors. The network output is monitored by a PC for on- and off-line data visualization.

this work we exploit only those neurons encoding for dark-
to-bright transitions, which react to the passage of the leading
edge of a bright moving bar. Our retina is placed in front of a
screen, pointing at bright moving bars. Its output is transmitted
to two neuromorphic chips (see Figure 2), dubbed FLANN (Final
Learning Attractor Neural Network (Giulioni et al., 2008) and
described in the following paragraph. The bar is projected on
the screen using a Digital Micromirror Device (DMD) by Texas
Instruments which ensures a frame rate of 1 kHz, so as to avoid
temporal artifacts on the retina output.

The output from the silicon retina is not perfectly
homogeneous over the entire matrix. Its analog circuits are
subject to parameter mismatch that derives from imperfections
in the manufacturing process. Therefore, some pixels may be
highly sensitive, while others may be hard to activate. Noise on
photodiodes is another source of variability which, along with
mismatch, frequently causes many false-positive detections. And
false negatives are also possible.

To reduce edge detection errors, we group single retina pixels
in macropixels of 5 × 5 pixels each, and we convey the spiking
activity of each macropixel onto a single FLANN neuron. As
explained in the next section, this neuron acts as a robust edge
detector.

2.4. FLANN Chip
FLANN chips are described in details (Giulioni et al., 2008). Each
chip accommodates 128 neurons with 128 synapses per neuron.
FLANN neurons are integrate-and-fire ones endowed with linear
decay (β) and a lower bound (Vmin) for the membrane potential
V . They implement in hardware the model described in Fusi and
Mattia (1998):

CV̇(t) = −β + I(t) β ≥ 0

If V(t) ≤ Vmin, then V → Vmin

where C is the membrane capacitance, I(t) is the total afferent
synaptic current. When V(t) = θ a spike is emitted and V
resets to Vmin. Upon the arrival of a pre-synaptic spike synapses
generate rectangular post-synaptic currents. Synapses also have
an internal dynamics designed for Hebbian plasticity that, for this

work, has been disabled. The synaptic matrix can be reconfigured
at will to implement different kinds of networks.

FLANN chips host the DS units: one chip host the triggers the
other one hosts the output counters. Every trigger receives spikes
from a different retina macropixel and acts as a robust visual
edge detector. To obtain robustness the neuronal and synaptic
parameters have been tuned such that a trigger reaches its firing
threshold only when at least five retinal pixels fire within a small
time period. β is tuned to 3.5 ± 0.5 in units of [(θ − Vmin)/s]
and the efficacy of synapses is 0.20± 0.05 in units of [θ − Vmin].
Regarding the trigger neurons we found convenient to exploit
their analog properties to filter out noise.

Put differently, in the macropixel-to-trigger connection, we
are using redundancy and averaging, together with the neuronal
non-linearity, to reduce both wrong and missed detections.
A convergent many-to-one connection seems to be adopted
also by biological systems in the inner retina layers (Masland,
2001), although in this case cells interact through analog signals,
rather than using spikes. In our implementation spikes are more
convenient, since retinal neurons and DS units are hosted on
different chips, and inter chip communication is more efficient
with spikes (in the form of digital asynchronous pulses) than with
analog values.

2.5. Asynchronous Spike Communication
Spike communication amongst chips preserves the precise spike
timing which is at the basis of our computational architecture.
Off-chip communication is handled through an asynchronous
protocol named Address-Event Representation (AER; Boahen,
1999) which, in regimes of sparse activity, guarantees high timing
accuracy by encoding time in the occurrence of the event itself.
The output of the retina is thus an asynchronous and continuous
flow of data. It encodes implicitly the time of a light variation, and
explicitly, in the neuronal addresses, the light-change location.

Communication along this feed-forward chain is mediated by
the PCI-AER board (Dante et al., 2005; Chicca et al., 2007) which,
in hardware, maintains the mapping table for the connectivity.
The maximum transmission latency on the AER bus is half a
microsecond per spike, absolutely negligible in our experiments.
The same board lets us monitor the AER traffic, also in real-time.
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We use this feature for on-line visualization of the optical
flow.

2.6. 2D Motion Detectors
A single direction sensitive (DS) unit provides information only
if the object moves in its preferred direction (see Figure 1),
otherwise it stays silent. To extract a 2D time-of-travel vector
we combined four DS units together in a single motion detector
(see Figure 3, upper panels). The four DS units share the same
start (orange) neuron while they have four different stop neurons
mapped onto the retina macropixels such that they are selective
to upwards, downwards, leftwards, or rightwards movements. It
is worth noting a four-directions system is used in biological
systems as a valid complete base for focal planemotion extraction
(Masland, 2001). Correspondingly, each 2D motion detector
has four output counters. In our implementation, rather than
using just a single neuron as counter, we use a set of three
neurons per counter. This redundancy helps to reduce the effects
of mismatch due to fabrication imperfections in the analog

circuitry. Synaptic and neuronal parameters are set such that
excitatory currents make counters fire regularly at about 300
Hz while inhibitory currents act as shunting inhibition. Our
complete system comprises nine motion detectors organized in
a 3× 3 grid.

3. RESULTS

3.1. Single Motion Detector
In order to characterize the basic units of our system, we
projected a vertical bar moving rightwards on the DMD screen. A
schematic view of the moving bar is presented in the top panel of
Figure 3; the Figure shows different time instants to characterize
how different neurons are activated as the bar is passing. The
top panel shows a logic representation of the connectivity of the
macropixel rather than a geometric one; in reality the excitatory
and inhibitory neurons are arranged in two parallel populations
and deployed in different chips. The elicited network activity
for a single motion detector is reported in the raster plots of

FIGURE 3 | Top panel reports a schematic view of a vertical bar moving rightwards, and reports the logical organization of the macropixel

connectivity. The other panels show the spiking activity elicited in the three layers (retina, triggers, and output counters) of our feed-forward network. The last two

panels represent spikes from the trigger and output neurons, represented as diamonds and circles, respectively; different orientations have been coded with different

colors. It can be noted that the red trigger fires after only 3 spikes, due to mismatch. In the trigger panel we also report the duration of the post-synaptic currents after

each spike, lasting, in this test, 60 ms for the inhibitory neurons and 34 ms for the excitatory one. In the lower panel we report data from only 1 neuron per output

counter (in fact we use 3 neurons per counter to average out process mismatch, see text for details); correctly only the rightwards output neuron gets activated.
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Figure 3. Spikes from retinal neurons are grouped according to
the emitting macropixel. The last two panels represent spikes
from the trigger and output neurons, represented as diamonds
and circles, respectively; different orientations have been coded
with different colors. As time goes on, spiking activity shifts
toward different neurons, following the leading edge of the
moving bar at time t = 35 ms the excitatory trigger emits a spike
and consequently the rightward counter, and only that counter,
starts firing until the inhibitory stop trigger, shown in blue,
blocks it. This demonstrates, in hardware, the correct behavior
of the basic building block of our network. As stated above, we
make use of three neurons per counter (in Figure 3 only one
neuron per counter is shown for easy visualization). Frequently
mismatch derives from fabrication imperfections. To reduce this
discrepancy, if necessary, the counters’ outputs could be averaged
in a successive computational stage.

Triggers emit just a single spike, and then enter a long
absolute refractory period in which they are insensitive to afferent
currents. Each trigger extracts a single bit of information from
an incoming spike. It also filters out the noisy, false positive
spikes as explained above, and prevents the counter activity from
global variations in the retina output. The activity of the pixels
is affected, although only slightly, by the room temperature,
by the level of steady illumination and by the speed of the
bar. Regarding triggers, the working conditions of the counters
remain always the same and this greatly simplifies the tuning of
their parameters. Counters could still work even if the triggers
were to be removed, but their tuning would be more challenging.

The use of a vertical or horizontal bar with DS units oriented
in the XY directions creates a critical condition for the system:
at t = 35 ms (in Figure 3) the shared start trigger fires almost
simultaneously with the the upward and downward stop neurons.
They do not fire exactly at the same time because of the noisy
retina activity and of the mismatch. If one of the two stop triggers
arrives too late, the corresponding counter fires at least one spike,
signaling a very short delay (i.e., very high speed) in the wrong
direction. To avoid this effect, parameters need to be set such
that a certain amount of misalignment can be tolerated. This boils
down to two constraints: (1) the firing rate of the counter should
not be too high, thus guaranteeing a safe latency time before the
first spike emission (about 3 ms in our case), and (2) inhibitory
post-synaptic currents should ensure a rapid shunting effect,
which means that the rising edge of the post-synaptic current
should be fast, as it is for our rectangular current pulses. Apart
from these technical details, this critical condition also suggests
to remain in the domain of time-of-travels when performing
further computation. When moving to the domain of speeds, a
single wrong spike could mean the highest possible evaluation
error.

3.2. Optical Flow in the 3 × 3 Detectors
Grid
We now consider a complete system comprising a 3 × 3 grid
of motion detectors, and we expose the system to bars moving
in different directions. Figure 4 presents both the retina output
and delay vectors obtained from the counters’ activity. Each row
in Figure 4 corresponds to a different trial. In each trial the bar

moves at a fixed speed in a given direction. The vector field is
obtained from the off-line analysis of the recorded spike train.
In the figure we plot our data in the form of a sequence of
frames. Each frame is built using all the spikes received in a
50 ms time window. Even though a frame-based representation
does not convey detailed information on the spike timing, it
provides an intuitive visualization of our data which, we stress,
are provided asynchronously, continuously and in real-time by
our feed-forward network.

By monitoring the continuous stream of output spikes, the
vector field can be computed and visualized in real-time. The only
critical issue is defining when the measurement is completed.
For our real-time tests we relied a successive approximation
procedure. Consider the output of a single detector: upon the
emission of the first spike, a first approximation of the time-of-
travel vector can be plotted; the vector orientation and its length
can then be further updated on the emission of other spikes. This
successive approximation process should end when spikes are not
fired for a period exceeding a certain threshold; in our real-time
tests this period was safely set to 10 ms.

We stress that this method of data analysis relies only on the
activity of our output neurons. All the necessary information is
encoded in the bursts emitted by the counters, and spikes are
only fired when a moving object is detected: the computation is
data driven and redundancy is eliminated at the sensor level. A
first estimation of the optical flow is available a few milliseconds
after the passage of the object. By waiting a bit more, a more
precise measure is obtained. This is another interesting feature
of our system, which opens to different levels of approximation
in successive elaboration stages.

As visible in Figure 4 not all the delay-vector, from a single
trial, have the exact same length and orientation. This is due
to noise and mismatch. To evaluate the repeatability of the
measurement we stimulate 10 times the system with a vertical bar
moving leftwards at given speed. We accumulated the results in
the left panel of Figure 5which provides an intuitive visualization
of the data. Quantitatively, for what concerns the absolute value
of the measured delay, the CV of a single detector output, ranges
from 0.05 to 0.12. The variability in a single detector output
is mainly due to the noise in the retina output which is not
completely removed by the macropixels-to-trigger convergent
connections. Another important measure is the amount of
mismatch among different detectors: considering a single passage
of the bar, the distribution of the nine detector outputs, on
average, have a CV of 0.12. In the right panel of the figure we
accumulated data from different detectors and different passages
of the bar. The overall CV is 0.12.

Varying the direction of bar motion over 360◦ and recording
network output to single passages of the bar we obtained the data
plotted in Figure 6; the graph compares the actual direction of
the bar with the detected one. The straight line and the small error
bars demonstrate the level of reliability of the system; the highest
error is below±3◦.

3.3. Motion Amplitude Detection
We now focus on the response of the system to a bar moving
at different speeds and tilted by 45◦. When the bar moves
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FIGURE 4 | Delay vector fields (colored arrows) overlapped to retina spiking activity accumulated over 0.2 s (in grayscale). Black dots in the figures mark

the locations of the DS detectors. Arrows are reconstructed from the spiking activity of the output counter neurons (see text). The visual input consists in a single

passage of a bar moving perpendicularly to its axis. Every row of panels refers to a different bar orientation. Each frame is built using all the spikes received in a 50 ms

time window. The length of the arrow is proportional to the number of spikes produced by the detector.

toward the upper-left corner of the visual field, to obtain vectors
tilted exactly by an angle of 45◦ with respect to the x-axis,
upwards and leftwards counters should fire the same number
of spikes. The average number of spikes emitted by the nine
detectors, together with the corresponding standard deviation,
is reported in Figure 7 for different bar speeds (the maximum
coefficient of variation in the x-range 1.5–15 [ms/pixel] is 0.13).
As expected, for positive speeds only the upward (red) and
leftward (green) DS units detect the motion, while the other
units do not emit spikes. Moreover, the red and green curves
largely overlap, signaling a 45◦ apparent motion. The system
works correctly although errors, due to noise, exist in some trials.
We note here that a simple way to reduce the residual error,
if necessary, would be to add an extra layer of averaging so as
to have the nine detectors contributing to a single output. This
extra averaging would be in line with biological data, where many
sub-DS units converge on single DS ganglion cells (Masland,
2001).

The graph also shows a linear response of the detector.
Linearity derives from the rectangular shape of the post-
synaptic current pulses, from the reliability of the light-to-spike
transduction operated by the retina and from the noise-filtering
ability of the trigger neurons.

In Figure 7, the leftmost points show the major limitation of
the system. We have spikes from right and downwards counters
but also from the leftwards one. Undesired spikes are emitted
because inhibition ends before the excitatory synaptic currents.
The maximum delay correctly measured by the system equals the
difference in lengths between the excitatory and inhibitory pulses.
Spikes from opponent counters signal the limits of the system.
We note that Barlow and Levick observed the same issue in the
rabbit’s DS ganglion cells (see the Section 4 for further details).
Another limitation of the system can be observed for instance
at−5 ms/pixel for the upward direction detector: this is the most
serious limitation of our system happening when mismatch and
noise combine together disrupting the trigger spike-timing.
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FIGURE 5 | Measurement repeatability: we stimulated the system 10 times with a vertical bar moving leftwards at a given speed. The left hand panel

shows an intuitive representation of the data, where each repetition across the nine detector is explicitly represented by an arrow; the length of the arrow is

proportional to the number of spikes produced by the detector. The distribution of the nine detector outputs shows the accumulated data from different detectors and

different passages of the bar. The overall CV is 0.12.

FIGURE 6 | Measured vs. actual angle. On the x-axis the actual direction of

motion of the bar, on the y-axis the measured value. Data are collected from

the nine detectors. The line x = y is overlaid to the data. Bars represent the

standard deviation.

3.4. Emulation of Larger Detectors Grids
Our network architecture is fully asynchronous and parallel and
the nine detectors act independently from each other. In other
words the system is scalable. The maximum size of the detector
grid is set by the number of neurons in our neural chips. In larger
chips, a larger grid can be deployed without affecting the system
performance. In the last two experiments we emulate a larger
detector grid to show the scalability of the proposed approach.
To obtain those vector fields we follow this procedure: (1) we
record the output of the retina observing the entire scene, (2) we
split the retinal spike train into 6 × 6 parts related to different

scene areas, (3) we send, one-by-one, the retinal spike trains to
the neural chips which compute, in real-time, the optical flow,
and (4) we collect together all the output spikes to visualize the
vector fields of the entire original scene in a single figure.

The first experiment shows the motion direction and
amplitude of the system while responding to a bar rotating at a
constant angular speed ω. Results are presented in Figure 8: the
top panel shows the lower left quadrant of the retinal input, with
the vector field superimposed so as to show the direction and
amplitude of the detected movement. The length of the arrows
(i.e., the average number of spikes emitted by the counters)
decreases as the speed increases toward the edge of the bar. Each
grayscale frame is obtained accumulating retina spikes for 0.1 s.
The lower part of Figure 8 shows the detected motion amplitude
plotted against the theoretically predicted one. It is worth noting
that above a delay of 15 ms/pixel we incur in the same saturation
limits discussed in the previous section and that can be observed
in Figure 7, thus showing the working range of our system.

The last experiment shows the performance of our proposed
architecture in a natural environment, by estimating the motion
direction of a man jumping from in front of the visual sensor.
The whole clip, lasting around 2 s, comprises 409,445 events
from the retina, corresponding to about 200 KEv/s and it is
available in the Supplementary Material. Parameters have been
tuned such that the first reliable trigger spike is obtained up to
50 ms delay from first retina spike to avoid false positives. The
first estimation of direction of motion is given after just 3 ms
after the trigger spike, corresponding to a frame rate of 300 fps.
A reliable output is obtained after 20 ms (equivalent to 50 fps);
output is provided with microsecond accuracy. It is worth noting
that detection happens in parallel and is transmitted across all the
output locations, so as to be able to compute both local and global
motion.

Figure 9 shows a series of snapshots, each taken every 50 ms,
of both camera events and computation status for the system. The
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FIGURE 7 | Delay vs. number of output spikes. Data refers to a bar tilted by 45◦ with respect to x-axis, moving perpendicularly to its axis. The x-axis reports the

inverse of the bar speed. Negative values refer to bars moving toward the down-right corner, positive values correspond to bars moving toward the upper-left corner.

The y-axis shows the average number of spikes fired by the nine detectors after a single passage of the bar at a given speed. Bars report the standard error.

FIGURE 8 | (A) Delay vector fields accumulated over time from a rotating bar. Each grayscale frame is obtained accumulating retina spikes for 0.1 s. The vector fields

have been obtained from an off-line analysis thought to emulate a number of DS detectors larger than those actually implemented on-chip (see text for details). The

central detectors have been disabled. (B) Measured and predicted speed magnitude, expressed as a delay (ms/pixel), and relative error.

effects of noise can also be observed, for example in frame 10 and
12. The direction of each arrow indicates the estimated direction
of movement as seen by the detector, while the length is inversely
proportional to the speed estimate (longer arrows correspond
to slower speeds). Importantly, as computation is performed
asynchronously (not based on a frame time), each panel shows an
intermediate measurement state for each detector. A frame-based
representation, while offering a visualization in function of time,
is not fully adequate to present the results of the system as each
detector initiates and terminates a measurement asynchronously.

Figure 10 shows the output of each motion detector
independently, and the result of the asynchronous computation
is reported by an arrow in the lower panel. As opposed to
the previous Figure which samples the state of each detector

at given time intervals, in this Figure we have collected the
outputs of the detectors as they are produced asynchronously.
For each detector we report only its first measurement. While
we have not implemented any clustering or segmentation
for the output detectors, different colors ease the figure
understanding and show how data can be segmented to represent
global motion of different objects (in this case different body
parts).

4. DISCUSSION

This paper has presented a system architecture sensitive to time-
of-travels varying over more than 1 order of magnitude. The
lower limit is set by the “reaction time” (about 3 ms) of our
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FIGURE 9 | Sixteen successive frames of a video (available in the Supplementary Material). Each frames is obtained by accumulating 50 ms of data. The

direction of each arrow indicates the estimated direction of movement as computed by the detector, and the length of the arrow is inversely proportional to the

computed speed (longer arrows correspond to slower speeds). As a consequence of the fact that computation is performed asynchronously (not based on a frame

time) by the elements in our system, each frame shows an intermediate measurement state for each detector.

read-out neurons, the counters (see Section 3.1). The upper limit
derives from the longest controllable on-chip inhibitory pulse
(about 1 s). This limited range could be seen as a major limitation
for our architecture. In literature, similar motion detectors either
work on analogous ranges (Kramer, 1996) or are selective to
a single speed value (Benson and Delbrück, 1991). In Etienne-
Cummings et al. (1997) a different motion detector, implemented
with analog differentiators and digital cells, is shown to work over
a range of 3 orders of magnitude. Its output is a digital pulse
whose duration codes for the time-of-travel. With the on-chip
read-out system, an analog integrator for global pixel averaging,
the range reduces to 2 orders of magnitude. To the best of our
knowledge this is the motion detector with the most extended
working range.

We propose a different architecture that, while not reaching
such a working speed range, opens to new possibilities for
further computational layers. Entirely built from integrate-and-
fire neurons, our system output coincides with the bursting
activity of the various counters easing implementation of further
neural layers for a full local, parallel asynchronous neuromorphic
solution. An example consists in cells encoding the time-of-
travels in the length of emitted spike bursts, as observed in the
rabbit’s retina (Barlow and Levick, 1965). Further computational
layers could also extend the speed range, as envisaged in what
follows.

Up to a certain limit, we can shift the speed range by varying
the distance amongst the macropixels, hence changing the size
of the motion detector receptive fields. In our architecture
this would simply require remapping the retina-to-trigger
connection. Adjacent, or even overlapping macropixels could
be used in case of slow moving objects, while largely spaced
macropixels would be convenient to detect fast motion. One can
also imagine, as found in biological systems (Vaney et al., 2001),
to design a system of DS units with heterogeneous visual fields.
A source of natural heterogeneity in analog systems comes from
the mismatch amongst the units, neurons, and synapses. As a
result, some units react faster than others. Such property could be
exploited to design heterogeneous overlapping “fast” and “slow”
motion estimation paths. An extra layer of computation could
use this information, leading to an increase of the working range
of the proposed architecture.

The speed range of the architecture is linked to the size of the
receptive fields of the DS units or, in other terms, by their spatial
resolution. In this work we propose a macropixel-to-trigger
convergence scheme. Although this could slightly reduce the
system resolution, the gained robustness is worth the price. Even
though similar convergent schemes are often find in biological
systems, to our knowledge no other neuromorphic motion
sensor performs analogous local averaging. Robustness in the
computation derives also from the inhibition-based algorithm.
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FIGURE 10 | 16×16 delay vector field accumulated over time. Grayscale

frames are obtained from 0.1 s of the retina activity. Colors have been

introduced by hand just to improve the visualization, no object-segmentation

algorithms have been used. Blue vectors track the head, red ones the chest,

yellow ones the arm and green is used for the legs.

The correlation or gradient-based methods adopted in other
works require quite an accurate tuning of the parameters (see
Möckel, 2012 for a review), otherwise accuracy could be severely
affected. On the opposite, the scheme proposed by Barlow
and Levick is less affected by mismatch since it is just a veto
mechanism with a shunting inhibition that should last much
more than the excitatory synaptic currents. This is sufficient
to obtain reliable results. In our architecture the only critical
parameter is the firing rate of the output neurons; without an
informed user, all the counters should fire at similar frequencies.
We enforced this simply by using a redundant number of
excitatory synapses and a small set of three neurons per counter.

Other than biological inspiration and robustness to noise, IF
neurons naturally allow to build a specific structure and encode
information in the spike timing. Geometry of connections and
event timing are the basic elements to perform computation
in our architecture. The same elements can be found in the
mathematical formulation of the “space of events” introduced
in Benosman et al. (2014) where every event is represented as a
(x,y,t) tuple. Starting from this “space of events” they propose a
fully differential solution for the optical flow computation. Our
architecture can be seen as a neuromorphic realization of such a
mathematical formulation.

Wemove from a differential formulation of the problem in the
mathematical space of the events, to a hardware neuromorphic
network, by encoding the computation critical quantities on ISIs,
proposing a neuromorphic network for real-time extraction of
the optical flow.

5. CONCLUSION

We demonstrated a fully frame-less autonomous neuromorphic
system performing apparent visual motion detection. In this
work we have presented an example of how mathematical
properties of the event space can be systematically exploited to
solve a specific task, optical flow estimation, in neuromorphic
hardware. Our architecture is built on few simple ideas
supported by specific biological evidences: (1) an inhibition-
based mechanism to extract visual motion, (2) convergent many-
to-one connections, (3) parallel computation based on precise
spike timing, and (4) asynchronous spiking communication.
We demonstrated the robustness of this approach to input
noise and to circuital mismatch. Using the ATIS retina and the
FLANN chips with simple visual scene we demonstrated reliable
extraction of the optical flow in real-time. The low computational
load and the fast response of the system make it appealing for
autonomous robotic application.
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