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Classical Poincaré plot is a standard way to measure nonlinear regulation of

cardiovascular control. In our work we propose a generalized form of Poincaré plot where

we track correlation between the duration of j preceding and k next RR intervals. The

investigation was done in healthy subjects and patients with atrial fibrillation, by varying

j,k ≤ 100. In cases where j = k, in healthy subjects the typical pattern was observed

by “paths” that were substituting scatterplots and that were initiated and ended by

loops of Poincaré plot points. This was not the case for atrial fibrillation patients where

Poincaré plot had a simple scattered form. More, a typical matrix of Pearson’s correlation

coefficients, r(j,k), showed different positions of local maxima, depending on the subject’s

health condition. In both groups, local maxima were grouped into four clusters which

probably determined specific regulatory mechanisms according to correlations between

the duration of symmetric and asymmetric observedRR intervals.We quantifiedmatrices’

degrees of asymmetry and found that they were significantly different: distributed around

zero in healthy, while being negative in atrial fibrillation. Also, Pearson’s coefficients

were higher in healthy than in atrial fibrillation or in signals with reshuffled intervals. Our

hypothesis is that by this novel method we can observe heart rate regimes typical for

baseline conditions and “defense reaction” in healthy subjects. These data indicate that

neural control mechanisms of heart rate are operating in healthy subjects in contrast

with atrial fibrillation, identifying it as the state of risk for stress-dependent pathologies.

Regulatory regimes of heart rate can be further quantified and explored by the proposed

novel method.

Keywords: Poincaré plot, autonomic nervous system, heart rate, atrial fibrillation, indexes of asymmetry, neural

control regimes

INTRODUCTION

Standardized Poincaré plot of the first order is a graphical representation of temporal correlations
within time series of inter-beat intervals in which an RR interval is plotted against its first
predecessor. Generally it is the measure of nonlinearity in heart rate (HR) neural regulatory
systems. Classically, a standardized Poincaré plot can quantitatively be evaluated by two measures
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of variability, i.e., two measures of standard deviation: SD1, the
measure of variability across the line of identity, measuring how
big the difference in duration of two successive RR intervals can
be; SD2, on the other hand, is the measure of variability along the
identity line, measuring how dispersed successive RR intervals
of equal or similar durations can be (Guzik et al., 2006; Porta
et al., 2008). Theirmajor contribution is in the field of recognition
of different types of cardiac arrhythmias (Zhang et al., 2015),
dilated cardiomyopathy (Voss et al., 2012), and in the research
of physiology of aging and gender (Voss et al., 2015).

Nonlinearity is a well-known characteristic of HR regulatory
systems. In physiological circumstances, different cardiovascular
(Eckberg, 1980; Ottesen and Olufsen, 2011) and extra
cardiovascular systems (Wu et al., 2005; Kapidžić et al., 2014)
influence its dynamics. In physiological situations (Delaney and
Brodie, 2000), and pathophysiological situations, like heart rate
arrhythmias, nonlinearity of HR changes in a specific manner,
making it possible to distinguish different types of arrhythmias.
Poincaré plot is a typical example of presenting how these
nonlinearities are manifested (Zhang et al., 2015).

Atrial fibrillation (AF) is a sympathovagally triggered disease
with dominant vagal role in the initiation of a paroxysmal episode
(Chou and Chen, 2009). It is one of the pathophysiological
models where altered neural control can be observed and
evaluated. Once initiated, it is characterized by multifocal atrial
electrical activity that irregularly passes through atrioventricular
conductive pathway and depolarizes the ventricules. Atrial
fibrillation is a typical neurocardiovascular disease with specific
heart rate rhythm pattern but the specificities of autonomic
remodeling that takes place in this pathology are still unknown.
It is known that increased sympathetic innervation is present in
patients with persistent AF, testifying that autonomic remodeling
is present. In order to evaluate common functional modulation
of both sympathetic and parasympathetic branches of cardiac
autonomic nervous system, in the sense of a “black box” system,
we applied a novel generalized modality of Poincaré plot in
healthy and AF subjects. This is the first time that the generalized
Poincaré plot (gPp) is proposed and in order to test its potential,
we applied it on healthy subjects and AF patients.

METHODS

Subjects
Ethic Committee of the Faculty of Medicine, University of
Belgrade approved this study. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.
Ambulatory patients with permanent atrial fibrillation (mean age
73; range 51–89) were included. Control subjects were gender
matched, 10 men and 3 women. Control group were healthy
middle aged subjects (mean age 41; range 35–45 years).

Data Acquisition
Measurements were done in the morning between 9.00 and
12.00 a.m. Subjects were supine with spontaneous breathing
during 20min of ECG measurements (without moving and
verbal communications). The ECG was acquired with sampling
frequency of 1 kHz by BiopacMP100 systemwith AcqKnowledge

3.9.1. software (BIOPAC System, Inc., Santa Barbara, CA, USA).
ECG data were collected using 100C electrocardiogram amplifier
module, leads and on subjects applied AgCl electrodes—Lead
I. RR(t) inter-beat intervals was extracted from ECG using
OriginPro 8.6 (OriginLab Corporation, USA), visually checked
and manually corrected if necessary.

Generalized Poincaré Plots
Further analysis was done with our original programs developed
within MATLAB 6.5 (MathWorks Inc., Natick, MA 01760-2098
United States). In the following text, RRn−j refers to summed
duration of previous successive j RR intervals, while RRn+k
denotes the same quantity for the next successive k intervals.
Both quantities were calculated by simply adding the durations
of the corresponding intervals around a chosen R wave which
was moving along the ECG signal. However, a natural limitation
imposed on the number of points in these generalized Poincaré
plots had to be observed: for an ECG signal with a total of N
RR intervals, only N – j – k points could be drawn. In order
to differentiate results obtained with specific values of j and k,
for a pair of number of intervals, (j,k), we propose the term
“order of the gPp.” Increased complexity of gPp scatter grams,
compared to classical Poincaré plots, allows one to study their
different properties. In this work we concentratedmostly on their
visual characterization and on the resulting Pearson’s coefficients
of linear correlation r(RRn−j,RRn+k).

While in case of classical Poincaré plots only one value for
each ECG recording is obtained, here we were dealing with
matrices r(RRn−j,RRn+k) which we briefly denoted as r(j,k).
Out of many possible characteristics of these matrices, we were
interested in the asymmetry of their element values, since we
noticed that this property was very sensitive to the state of
patient’s health. In order to quantify it, we introduce a normalized
asymmetry index (NAI), which for a m × n type matrix is
defined as

NAI =
1

m× n

1

r

m
∑

j= 1

n
∑

k=j+ 1

(

r(k, j)− r(j, k)
)

where r(j,k) represents matrix element, while

r =
1

m× n

m
∑

j= 1

n
∑

k= 1

∣

∣r(j, k)
∣

∣ .

By introducing this particular type of normalization, we were
able to compare asymmetry indexes calculated from matrices of
different range of their element values, as well as their different
sizes.

Another property of these Pearson’s matrices which drew our
attentionwas the appearance and positions of localmaxima, since
each local maximum of correlation could potentially signify a
temporal range in which a neurocardial regulatory mechanism
is operating. However, one should be very careful to verify that
a physiological mechanism is lying beneath the appearance of
a particular maximum, rather than any of numerous artifactual
causes. It is not easy to separate these two causes, both for
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FIGURE 1 | Visualization of the system dynamics with generalized Poincaré plot for j = k = 100 RR intervals, in patient with atrial fibrillation (A) and

healthy subject (B). SD1 and SD2, drawn with solid lines, are measures of dispersion of 100 successive summed RR intervals along and away from the identity line.

asymmetry and local maxima, but one of the approaches
described in the literature is the method of random reshuffling of
the detected RR intervals, which we adopted in this work (Guzik
et al., 2006; Burykin et al., 2014). More, for each individual, r(j,k)
matrices obtained for 10 repeated reshufflings were averaged
and the corresponding NAIsh indexes calculated. Finally, the
corrected version of an asymmetry index, NAIC, was obtained as
their difference: NAIC = NAI−NAIsh.

Statistics
Mann Whitney U test was used to compare indexes of
asymmetry, NAIsh and NAIC, between healthy subjects and AF
patients as well as their values in every group. To identify groups
with different values of the Pearson’s correlation coefficients
maxima, a k-means clustering analysis was performed. As each
local maximum was characterized by three coordinates: its
position on the (j,k) plane and its value r(j,k), three dimensional
clustering was performed according to these variables. The
number of clusters was determined by two-step clustering
procedure. Pearson’s coefficients, as the third coordinate of
cluster centroids, were compared between AF patients and
healthy subjects, also by using theMannWhitney U test. The data
are given as mean values ± standard errors. A value of p < 0.05
was considered significant. Statistical analyses were performed
using the software package SPSS Statistics (version 17.0, SPSS
Inc., USA).

RESULTS

Characterization of Generalized Poincaré
Plots
As the first step of our analysis we calculated generalized Poincaré
plots where j = k and (j,k) = 1, . . . , 100. In healthy subjects,
as the order of gPp increased, classical Poincaré plots slowly
changed into a more organized pattern. They were characterized
by trajectories that were substituting scatterplots and which were
initiated and ended by “hanks” or clustered points. This was not
the case for AF patients, where Poincaré plots maintained their
scattered forms (Figure 1).

FIGURE 2 | Interpretation of elements of a generalized Poencaré plot in

healthy. (A) Tachycardic “hank”; (B) Bradycardic “hank”; (a) longer RR

intervals entering the analysis; (b) shorter RR intervals exiting the analysis.

In healthy subjects, in basal conditions, two subregimes can
be observed in a gPp (Figure 2). One zone, denoted with (A),
corresponds to a tachycardic regime, while the other one (B)

corresponds to bradycardic regime. A two-phase transition from
(A) to (B) is also visible: along (a) longer RR intervals enter the
analysis, while along (b) shorter RR intervals exit the analysis
window.

Analysis of r(j,k) Matrices
The analysis was expanded to j 6= k, resulting in a matrix
of Pearson coefficients r(j,k). The reshuffled data were also
analyzed and compared with measured data, generating rsh(j,k)
matrices. Examples of two typical r(j,k)matrices, their reshuffled
counterparts, rsh(j,k) and their differences r(j,k) − rsh(j,k), are
presented on Figures 3, 4.

For two groups of subjects we studied the distribution of
index of asymmetry of reshuffled dataNAIsh and corrected index

Frontiers in Neuroscience | www.frontiersin.org 3 February 2016 | Volume 10 | Article 38

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Platiša et al. Generalized Poincaré Plots

FIGURE 3 | (A) Examples of three matrices of Pearson’s correlation coefficients (r) between k following and j preceding RR intervals: physiological (B), reshuffled (C),

and corrected (D) for generalized Poincaré plot of the 100th order in patient with atrial fibrillation.

FIGURE 4 | (A) Examples of three matrices of Pearson’s correlation coefficients (r) between k following and j preceding RR intervals: physiological (B), reshuffled (C),

and corrected (D) for generalized Poincaré plot of the 100th order in healthy subject. Physiological and corrected matrices appear as one surface because rsh(j,k) ≈ 0.

of asymmetry NAIC, for j,k ≤ 100. In AF subjects the two
distributions were sharply different (p = 0.007, Z=−2.691): for
reshuffled data mean values ofNAIshwere 0.0063± 0.0084, while
all NAIC values were negative and asymmetrical in shape with
mean values −0.047 ± 0.014 (Figure 5). As expected, the NAIsh
was not different between groups (p = 0.801, Z = 0.778), but

NAICwas (p < 0.001, Z=−4.283) (Figure 5). Their mean values
for healthy were 0.0025 ± 0.0063 for NAIsh; 0.0138 ± 0.0056 for
NAIC.

From Figures 3, 4 it could be observed that local maxima
of Pearson coefficients matrix were present, with different
amplitudes and distributions both in AF patients and healthy
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FIGURE 5 | Distributions of NAIsh (normalized index of asymmetry for

rsh(j,k) matrices) and NAIC (corrected normalized index of asymmetry

for r(j,k) matrices) in subjects with AF and healthy control H.

subjects. Coordinates of all detected local maxima, from 13 AF
patients, as well as from their 13 averaged reshuffled data, were
measured and pooled. These data are presented as points in
Figures 6A,C,E, while the same data for healthy subjects are
drawn on Figures 6B,D,F. Coordinates of pooled local maxima
for physiological (not reshuffled) data that were subjected to four
cluster k-means algorithm are presented on Figures 7A–C.

The first cluster is located at position corresponding to a
relatively low order of the Poincaré plot for both groups ((j,k) =
1,. . . , 50 in AF and (j,k) = 1, . . . , 30 in healthy subjects) but
the values of local maxima of Pearson’s coefficients in AF were
significantly different from these values obtained in healthy
subjects (Table 1). High values in healthy subjects and low values
of r in AF indicate that correlation between summed durations of
RR intervals in AF diminished in this short-range of observation.
In healthy subjects, maxima with the highest values of Pearson’s
coefficients were located at j,k = 1 which corresponds to values
for standardized Pp (not shown in Table 1). There is no statistical
difference in maxima of Pearson coefficients between groups
in the third cluster which is characterized by low correlation
between large values of k and small values of j. Contrary, in
the opposite second cluster, estimated for small values of k
and larger values of j, significant correlation existed only in
healthy subjects. Statistically significant difference between AF
and healthy subjects was also found for maxima of Pearson’s
coefficients in the fourth cluster determined for j,k = 50, . . . , 100
(Table 1).

Method Validation Using Synthetic Signals
In order to validate our method, a special MATLAB program was
designed to generate a series of synthetic RR intervals in such
a way that maximal correlation should be achieved for a given
pair (j,k) of j preceding and k following intervals. When choosing
initial parameters of this synthesis, we tried to imitate as much as
possible the physiological values that were present in our subjects.
By observing a typical histogram of measured RR intervals (not
shown), we generated in our algorithm first j+k RR intervals as

uncorrelated, by using a normal distribution, within the range
0.75–1.2 s (“randn” command in MATLAB). Next, an iterative
scheme was programmed so that, with each step, duration of the
next included interval was calculated so that the value of summed
next k intervals tends to compensate the change in duration of the
previous j intervals. However, if this compensation resulted in a
value that violated the adopted range (0.75–1.2 s), the limitation
posed by this range was applied as stronger, therefore introducing
a desired degree of variability within the system.

We generated two series of data, by setting maximal
correlation for j = 5, k = 10 (case where j < k) in the first
synthetic signal, and j = 20, k = 15 (j > k) in the second
example (Figure 8). Each signal was subjected to the same
analytical procedure as our physiological data, and the results are
presented on Figures 8A–D. As observed, in both cases maximal
correlation was detected precisely at those values of j and k
which were set prior to the analysis. Regarding the sign of NAI,
as expected, it was negative (−0. 0723) in the first case, where
maximal r was positioned above the identity diagonal, while
a positive value (0.0380) was obtained in the second synthetic
signal, where it was situated below this line.

DISCUSSION

It is well-known that blood pressure–heart rate baroreflex
operates under different regimes, depending on the metabolic
demand and different level of “central command” input (Sagawa,
1983; Rowell, 1993; McIlveen et al., 2001; Zoccoli et al., 2001;
Bojić, 2003). This “baroreflex resetting” is visible both under the
exercise (dominantly metabolic demand) and “defense reaction”
(dominantly central command; Bauer et al., 1988; Jansen et al.,
1995). These aforementioned drives change independently both
the heart rate and arterial blood pressure set point (Sagawa,
1983; Bauer et al., 1988; McIlveen et al., 2001). By our novel
analysis we are able to visualize different regimes (or “set
points”) of heart rate control in the form of loops, which
are delineating the areas of different regimes present in the
conditions of basal metabolic demands. These regimes of HR
regulation are connected with transitional “paths” connecting
one HR regime with the other (Figure 2). It is plausible that
in our baseline metabolic condition the HR regulatory system
passes through different regimes due to different attentional
and emotional states, psychological stress or even “defensive
behavior” (in physiological terms—different levels and patterns
of “central command”; Dampney et al., 2008; Peressutti et al.,
2012). The parasympathetic control of heart rate, which is the
dominant mechanism of heart rate control in basal conditions
(Rowell, 1993) is shown to relate to emotional and attentional
state of the subject (Porges, 1992; Suess et al., 1994; Thayer
et al., 2009). The fact that “the regimes” were not registered in
AF patients speaks for the presence of lower HR adaptiveness
in these patients, especially in the circumstances of increased
central command in different attentional and emotional states.
The dominant adaptive mechanism to “defensive reaction”
in AF patients is an increase of stroke volume by an
increased cardiac contractility, while HR increase is less present
(Goldstain, 2001). This maladaptive pattern creates the diathesis
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FIGURE 6 | Distribution of pooled local maxima of Pearson’s correlation coefficient matrices – max r(j,k) in patients with atrial fibrillation (A) and

healthy subjects (B) and their corresponding reshuffled data. AF, AF patients; AFrsh, AF reshuffled; H, healthy; Hrsh, H reshuffled. Contour plots are given with

corresponding maxima points for patients with AF (C) and their reshuffled data (E), and healthy subjects (D) and their reshuffled data (F). Contour plots are surface

graphs of (j,k, max r(j,k)) data where ranges of max r(j,k) values are distinguished by different colors.

FIGURE 7 | Clusters of subjects’ pooled local maxima of Pearson’s correlation coefficients matrices – max r(j,k) in patients with atrial fibrillation and

healthy subjects (A), and corresponding contour plots with local maxima points in patients with AF (B) and healthy subjects (C). Contour plots are

surface graphs of (j,k, max r(j,k)) data where ranges of max r(j,k) values are distinguished by different colors.
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to hypertrophic cardiomiopathy and subsequent degenerative
changes of myocardium (Goldstain, 2001). The maladaptive
mechanism of AF in defensive reaction is dominantly an increase
of cardiac contractility (an increase of stroke volume) and less
an increase of heart rate. An increase of cardiac contractility
by activation of beta adrenergic receptors increases intracellular
concentration of calcium by an increase of voltage gated CaV1.2
channels. An increase of intracellular calcium through different
intracellular mechanisms in time results with an increase in size
of cardiomyocites and consequently, the thickening of the heart
muscle. This condition, known as hypertrophic cardiomyopathy
is characterized by serious structural and electrical abnormalities
of the heart. It is known that hypertrophic cardiomyopathy
coexists with AF (Kumar et al., 2015). The fact that distinct HR
regimes lack in AF patients make this group of patients especially
vulnerable for the more severe development of hypertrophic

TABLE 1 | Mean values and standard errors of Pearson’s correlation

coefficients (r) between k and j intervals in clusters determined for

patients with atrial fibrillation (AF) and healthy subjects.

Clusters AF Healthy Z p

N r N r

1st 121 0.161± 0.016 50 0.627±0.021 −9.692 0.001

2nd 21 0.084± 0.017 18 0.428±0.027 −5.324 0.001

3rd 41 0.227± 0.033 7 0.388±0.014 −1.738 0.082

4th 46 0.296± 0.034 20 0.4768±0.0013 −5.302 0.001

cardiomyopathy with respect to subjects with normal cardiac
rhythm. This is especially valid if the AF patients are exposed to
repeated and continuous stressful circumstances. Future studies
need to address the question whether the absence of different
heart rate regimes can be considered as the data having an AF
diagnostic value.

Regarding the distribution of NAIsh and NAIC indexes
presented on Figure 5, where AF patients exhibited negative
and significantly lower NAIC values than in case of healthy or
reshuffled data, it would be interesting to give at least a technical
interpretation of the results. Let us observe the r(j,k) matrix and
its identity diagonal (j = k). According to the NAI definition
equation, NAI is negative if the sum of r(j,k) below the identity
diagonal is less than the sum of r(j,k) above it, in the system
of reference where j is on abscissa, k on the ordinate. In that
case average correlation for k > j should be greater than the
one for k < j. In other words, since k > j refers to shorter
preceding and longer following summed RR intervals, negative
NAI means that shorter preceding intervals are more correlated
with longer following intervals than the other way round. An
attempt to give this fact a physiological interpretation, on the
other hand, is much more difficult. Probably some kind of
memory mechanism is involved here, but details of this remain
to be explored in our future studies. The fact is that both our
groups were registered in basal conditions where, in healthy
patients, 75% of heart rate control is under vagal influence.
In AF patients we have strong sympathoexcitatory background
even in basal conditions. We can only hypothesize that the
asymmetry of NAI in AF can represent different dynamics of

FIGURE 8 | Matrices of Pearson’s correlation coefficients (r) between j preceding and k following RR intervals, obtained for two synthetic signals. The

first signal was generated in such a way that maximal correlation is to be achieved when summed j = 5, k = 10 intervals are being observed (case where j < k, A and

B), while in case of the second one the values were j = 20, k = 15 (j > k, C and D). As presented, in both cases the analysis was able to detect correctly positions of

rmax .
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sympathetic withdrawal (negative NAI, shorter preceding and
longer following summed RR intervals) versus the effect of
sympathetic stimulation on heart rate control. It is necessary
to emphasize that both branches of autonomic nervous system
act in synergy and that vagal contribution to this phenomenon
cannot be excluded. Further pharmacological studies are needed
for pathophysiological evaluation of NAI.

According to distance between the observed number of
RR intervals and local maxima of their Pearson’s correlation
coefficients, four different clusters were recognized. In the first
cluster, in healthy subjects, two such maxima were found, one
for j, k = 1 and one for j, k ≈ 10. Since these findings
were lacking in reshuffled data, we deduced that they were
the result of physiological mechanism(s). These phenomena
correspond to the dynamics of two dominant neural control
mechanisms - parasympathetic and sympathetic. It is known
that high values of Pearson’s coefficients of correlation, in case
of standardized Poincaré plots (j, k = 1), correspond to
strong correlation between each two successive RR intervals,
independently of their duration (equally for pairs of shorter or
longer RR intervals). Parasympathetic control acts fast, is quite
powerful (efficient) and can change heart rate within one heart
beat (Eckberg, 1980; Levy and Martin, 1996). Due to different
dynamics of neurotransmitter release, different intracellular
effector molecular mechanisms and different mechanisms of
neurotransmitter removal from neuromuscular synaptic cleft,
sympathetic nervous system acts slowly with respect to the
parasympathetic system (with delay of ∼10 s, Rowell, 1993;
Zoccoli et al., 2001; Bojić, 2003). On the basis of these data
we hypothesize that the two positions of local maxima of
Pearson’s correlation coefficients might correspond to the zones
of control of parasympathetic (j, k = 1) and sympathetic
control (j, k ≈ 10). In healthy subjects these two maxima
are well defined, implying that both heart rate neural controls
are operative, while in AF patients they are diminished. In
the second cluster of Pearson’s correlation coefficient maxima,
defined for small values of k and larger values of j, significant
correlation existed only in healthy subjects, while there was
no significant difference between healthy and AF subjects in
the third cluster characterized by weak correlations between
small values of j and larger values of k. Again, absence
of these correlations in reshuffled data and especially their
asymmetry in AF patients indicates their physiological origin.
According to the duration of observed RR intervals belonging
to the third cluster, we can only conclude that here regulatory
mechanisms with a slower response (in the range of a few
minutes) are involved, which are again disturbed by AF. The
fourth cluster of pooled subjects’ local maxima of Pearson’s
coefficient was also influenced by AF and probably quantify very
slow regulatory mechanisms with a response longer than 3min,
which include termoregulatory mechanisms, renin-angiotesin
system, hormonal, metabolic, vagal influence, etc. (Task Force,
1996). In the absence of pharmacological identification of
underlying functional mechanisms we can only speculate on
the identity and characteristics of the AF Pearson’s correlation
coefficient maxima, but our approach clearly showed that the
pattern of heart rate neural regulation in AF patients is highly

distorted, shifted toward higher frequencies and acquired some
characteristics of random pattern. However, it is important to
emphasize that our results showed that high irregularity of
heart rhythm in AF patients was present only in the range
of short time scales (approximately shorter than 30 RR) when
correlation between RR intervals didn’t exist. But, in the range
of larger scales (approximately larger than 30 RR intervals)
correlations between RR intervals appeared. Correlations were
asymmetrically distributed and in general smaller then in healthy
subjects. The last feature indicates existence of specific residual
determinism in AF patients’ heart rhythm which probably
originated from some kinds of slower regulatory mechanisms.
Future pharmacological identification studies need to be done in
order to clear these findings.

One more important limitation of our study is the fact that
the control group and the experimental group were not age
matched. The lack of age-matching could be serious bias in
heart rate variability study. We could not age match the groups
because it was impossible to create the control group in the
range 51–89 years without some cardiovascular pathology. This
finding is in accordance with World Heart Federation statement
that cardiovascular disease becomes increasingly common with
age (http://www.world-heart-federation.org). Inclusion of age
matched control subjects with cardiovascular pathology would
surely bias the results of our analysis, while, on the other side,
we had an interest in heart rate pattern of AF, and there were
no data in the literature that the AF pattern is age dependent.
We created the control group that was in age category as close as
possible to the age catergory of the experimental group. With this
precaution on mind, we believe that we obtained the comparison
of AF pattern with clear physiological pattern of control subjects
and that obtained results can be interpreted as the result of
physiological regulatory mechanisms in control group and their
pathophysiological modulation due to AF in the patient group.

In our study, by a newly developed generalized Poincaré
plot analysis, we gave some new insights into regulation
mechanisms of heart dynamics. The proposed method revealed
two phenomena: first, transient regimes of system dynamics in
summed heart period time series of healthy subjects; second,
asymmetry of correlations between RR intervals in patients with
atrial fibrillation.
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