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After five decades of research in adult neurogenesis (AN) it is far from easy to make a balance. If
this field was a movie genre, brain repair goals would be a dreary mystery (with cell replacement
therapies approaching fantasy), opportunities would be high quality science fiction, and limits
could well belong to a hopeless thriller. Though apparently depicting a pessimistic screenplay,
these aspects actually represent very exciting plots in which the only pitfall had been the attitude
of those main characters (the scientists) who, starting with the re-discovery of AN (Paton and
Nottebohm, 1984; Lois and Alvarez-Buylla, 1994), looked for neuronal cell replacement. The
chimera of regenerative outcomes led to an exponential burst of studies: more than 7500 articles
on PubMed with the keyword “adult neurogenesis.” Why such an interest many years after the first
demonstration of AN (Altman andDas, 1965)?Maybe because the first isolation of neural stem cells
(NSCs) took place in the same period (Reynolds andWeiss, 1992), thus making it possible to figure
out continuous replenishment of new neurons throughout a brain’s life (Gage, 2000; Alvarez-Buylla
et al., 2001). At the same time, the possibility to play in vitro with the NSC plasticity (Galli et al.,
2003) might explain why the AN articles in PubMed become 23,000 when the keyword “neural
stem cell” is employed.

REVISITING THE HISTORY OF AN

Most AN review articles start with Altman’s pioneering studies, disregarded at the time by most
neurobiologists and then upgraded to the death of a dogma (Gross, 2000). What is more difficult
to find is a critical evaluation of what happened after the nineties. Briefly, an intense phase of AN
characterization contributed to persuade the scientific community that stem cells actually persist
in the adult mammalian brain (Palmer et al., 1997; Doetsch et al., 1999), making the integration
of new neurons a real phenomenon producing anatomical and functional changes (Gage, 2000;
Alvarez-Buylla et al., 2001; Lledo et al., 2006). The stem cell niches of two main neurogenic sites
(subventricular zone and hippocampal dentate gyrus) were identified and progressively defined
in their structure and regulation (Figure 1). On these solid bases, a sort of gold rush-like fever
aiming at demonstrating new sites of AN grew exponentially (Gould et al., 1999, 2001; Zhao et al.,
2003; Dayer et al., 2005; Shapiro et al., 2007). Yet, some of the “alternative” neurogenic regions
were subsequently denied by independent studies (references in Bonfanti and Peretto, 2011; Nacher
and Bonfanti, 2015). In parallel, it was shown that neurogenesis can be induced by different types
of injury or disease (lesion-induced, reactive neurogenesis), either by mobilization of cells from
the neurogenic sites (Arvidsson et al., 2002) or by local activation of parenchymal progenitors
(Magnusson et al., 2014; Nato et al., 2015; Figure 1). Nevertheless, though large numbers of
neuroblasts can be produced in response to stroke or inflammation (Arvidsson et al., 2002; Ohira
et al., 2010; Magnusson et al., 2014; Nato et al., 2015), the mechanisms of such responses as well as
the ultimate fate of the newborn cells remain largely unknown, as acknowledged by leading experts
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in the field (Lindvall and Kokaia, 2015). In addition, only limited
spontaneous recovery occurs (Sohur et al., 2006; Bonfanti, 2011)
and some promising results published on megahit journals have
not been reproduced (Magavi et al., 2000; Nakatomi et al., 2002).
Finally, the huge effort for obtaining regenerative outcomes by
using exogenous sources of stem/progenitor cells has also led,
until now, to scarce results in terms of reliability and effectiveness
(Li et al., 2010), although some therapeutic perspectives might
come from the use of stem cell-derived dopaminergic cells in
Parkinson disease (Barker et al., 2015).

How can we find an explanation for recurrent failures
in obtaining cell replacement from AN? Maybe the answer
resides in a psychological attitude: the initial burst of optimism
affecting scientists with the biased vision that “new neurons
equals brain repair” persisted too long under translational
pressures, in forgetfulness of a basic fact: the mammalian
central nervous system (CNS) evolved to be substantially
nonrenewable, relatively hardwired, non-self repairing (Weil
et al., 2008). Further proof come from examples of spontaneous
“parenchymal” (non-canonical) neurogenesis detectable in other
mammals: the outcome of these newly-produced neurons is
quite different from that performed in canonical NSC niches
(Feliciano et al., 2015) since “transient” neural cells are mostly
produced (Gould et al., 2001; Luzzati et al., 2014). More recently,
some neurogenic activity has been shown in the hypothalamus,
starting from tanycytes harbored within a germinal layer-derived
zone, linked with feeding regulation and energy balance, and
responding to external stimuli (Migaud et al., 2010). Yet, low
levels of neurons are generated in basal conditions, and their final
outcome is far from clear.

Hence, if regarding AN as a “full biological process”
(from NSC activation to neuronal integration), all neurogenic
phenomena occurring out of the hippocampus and olfactory
bulb should be classified as “incomplete” (Bonfanti and Peretto,
2011), both spontaneously-occurring and reactive neurogenic
events appearing as “unwanted hosts” in the mature brain tissue
(Figure 1K).

THE BIG QUESTIONS IN AN

By putting together data learned over 50 years of AN research
with CNS evolutionary history, it appears clear that: (i) AN
has lost most of its capacity for brain repair in mammals
with respect to other vertebrates (Grandel and Brand, 2013),
its role being largely restricted to physiological plasticity of
specific systems (Peretto and Bonfanti, 2014); (ii) this feature
might not primarily depend on the availability of stem cells
(AN does exist in mammals!) rather on CNS structural, cellular,
molecular organization, as a result of its postnatal development
and immunological responses (Bonfanti, 2011). Hence, one big
question concerns the intermix of biological events leading to
such a loss of regenerative capacity.

Many scientists working in the field focus on the question:
how NSCs divide and regulate their quiescent/active state
in vivo? (in the perspective of modulating—usually intended as
“increasing”—their mitotic activity and neuronal fate). These
actually are crucial points in NSC basic biology. Yet, beside

the common viewpoint considering the neurogenic potential of
NSCs to be beneficial, the fact is emerging that having more
new neurons or synapses is not always better (Tang et al., 2014;
e.g., hippocampal AN can be implicated in memory erasure,
Akers et al., 2014; Kitamura and Inokuchi, 2014). By contrast,
I consider as essential questions: whether, how, when different
types of progenitor cells can produce a progeny which can
actually survive and functionally integrate in the brain regions
in which they are needed, out of the two canonical niches.
Even within the niches, specific subsets of progenitors occupying
precise topographical subregions produce only selected neuronal
types for selected tissue domains (Obernier et al., 2014), thus
confirming that mature brain neurogenic plasticity occurs only
within restricted bounds. Also in gliogenesis, the amount of
oligodendrocyte precursor cells (OPCs) generated daily in the
adult CNS (Young et al., 2013; Boda and Buffo, 2014) clashes
with the slow rate of myelin turnover, suggesting that only a small
fraction of them actually integrate. Moreover, they appear able
to sustain remyelination after acute lesion or disease but not in
chronic phases (Franklin, 2002).

A fundamental issue regards the molecular and cellular
features which make the mature mammalian brain environment
refractory to substantial reshaping or repair, both in physiological
and pathological states, with respect to the permissive conditions
existing in non-mammalian vertebrates (Kyritsis et al., 2014;
Figures 1J,K). Unfortunately, the tools at present available to
address such aspect are scarce. One possible way could reside
in neurodevelopmental studies aimed at unraveling how the
embryonic, permissive tissue environment shifts to mature, more
restrictive conditions (Peretto et al., 2005), taking into account
that a regulated balance of stability and plasticity is required
for optimal functioning of neuronal circuits (Abraham and
Robins, 2005; Akers et al., 2014). This approach could open new
landscapes from the re-expression of developmental programs
(Sohur et al., 2012) to the cutting edge frontier of homeosis
(Arlotta and Hobert, 2015).

Another fundamental question remains substantially
unanswered (and often skipped by scientists hurrying in search
for reparative roles of AN): concerns the function of AN
(Figure 1M). It seems clear that AN can play a physiological role
in memory and learning, yet rapid adaptation of hippocampal
neurogenesis to experimental challenges appears to be a
characteristic of laboratory rodents, whereas low or missing
AN in bats and dolphins argues against a critical role in spatial
learning (Amrein and Lipp, 2009). Wild mammals show species-
specific, rather stable hippocampal neurogenesis, which appears
related to demands that characterize the niche exploited by a
species rather than to acute events in the life of its members
(Amrein, 2015). It is worthwhile to remember that AN itself
should not be considered as a “function,” rather a tool the brain
can use to perform different functions (see also Hersman et al.,
2016). As stated by Anderson and Finlay (2014), “Mounting
evidence from allometric, developmental, comparative, systems-
physiological, neuroimaging, and neurological studies suggests
that brain elements are used and reused in multiple functional
systems.” They suggest that “this variable allocation can be seen
in neuroplasticity over the life span,” and that “the same processes
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FIGURE 1 | Graphic representation of multifaceted aspects and new opportunities arisen in neurobiology by the study of adult neurogenesis (AN).

Circled L indicate when substantial limits are also present. (A) An image originally referring to brain hemisphere asymmetry (http://thebiointernet.org/training-of-right-

brain-hemisphere-and-intuitive-information-sight-in-bratislava/) is used here to represent the new vision of brain plasticity after AN discoveries; beside remarkable

limits still existing in brain repair (pale pink), most opportunities involve new forms of structural plasticity with respect to the old dogma of a static brain (rainbow

(Continued)
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FIGURE 1 | Continued

colors). (B) Canonical sites of AN, harboring well characterized stem cell niches (Tong and Alvarez-Buylla, 2014; Vadodaria and Gage, 2014). (C) Different types and

locations of non-canonical neurogenesis do occur in various brain regions, depending on the species (Luzzati et al., 2006; Ponti et al., 2008; Feliciano et al., 2015).

(D) NSCs are astrocytes originating from bipotent radial glia cells (Kriegstein and Alvarez-Buylla, 2009); (E) the occurrence of stem cells in the brain gives rise to

(theoretically endless) in vitro manipulations. (F) Parenchymal progenitors are less known; most of them are gliogenic, yet some are responsible for

species-specific/region-specific, non-canonical neurogenesis, and some others can be activated after lesion (G) (Nishiyama et al., 2009; Feliciano et al., 2015; Nato

et al., 2015). (H) The outcome of canonical and non-canonical neurogenesis is different, only the former leading to functional integration of the newborn neurons

(Bonfanti and Peretto, 2011); blue dots: synaptic contacts between the new neurons and the pre-existing neural circuits. (I) Strictly speaking, AN should be restricted

to the continuous, “persistent” genesis of new neurons, which is different from “protracted” neurogenesis (delayed developmental processes, e.g., postnatal genesis

of cerebellar granule cells, postnatal streams of neuroblasts directed to the cortex; Luzzati et al., 2003; Ponti et al., 2006, 2008), and “transient” genesis of neuronal

populations within restricted temporal windows (e.g., striatal neurogenesis in guinea pig; Luzzati et al., 2014). (L) Reactive neurogenesis can be observed in different

injury/disease states both as a cell mobilization from neurogenic sites and as a local activation of parenchymal progenitors (Arvidsson et al., 2002; Magnusson et al.,

2014; Nato et al., 2015). (J) Evolutionary constraints have dramatically reduced the reparative role of AN, involving tissue reactions far more deleterious than in

non-mammalian vertebrates (Weil et al., 2008; Bonfanti, 2011). (K) Failure in mammalian CNS repair/regeneration is likely linked to mature tissue environment, clearly

refractory to new neuron integration outside the two canonical NSC niches and relative neural systems; this fact confines AN to physiological/homeostatic roles, which

remain undefined in terms of “function.” (M) The role of AN strictly depends on the animal species, evolutionary history and ecological niche; its rate and outcome is

affected by different internal and external cues; although not being strictly a function, AN can impact several brain functions (Voss et al., 2013; Aimone et al., 2014;

Amrein, 2015). (N) Different anatomy, physiology, and lifespan in mammals do affect AN rate and outcome; periventricular AN is highly reduced in large-brained

mammals (Sanai et al., 2011; Paredes et al., 2015; Parolisi et al., 2015). (O) Studies on AN carried out by using markers of immaturity (e.g., DCX and PSA-NCAM)

have revealed other forms of plasticity (non-neurogenic), being well represented in large-brained mammals (Gomez-Climent et al., 2008; Bonfanti and Nacher, 2012).

r, rodents; h, humans; d, dolphins; nm, non-rodent mammals. Drawings by the Author.

are evident in brain evolution (interaction between evolutionary
and developmental mechanisms to produce distributed and
overlapping functional architectures in the brain).” That is to say:
brain evolution is an ultimate expression of neuroplasticity, and
more systematic information about evolutionary perspectives is
needed to set out the question of the normal functionality of new
neurons.

ASTROCYTES AND OTHER, WIDELY
RAMIFIED, OPPORTUNITIES

The most counterintuitive discovery in half a century of AN
research concerned the central role of astrocytes as primary
progenitors for neuron production (Alvarez-Buylla et al., 2001).
Across the years, new roles for these glial cells progressively
emerged in different steps of the AN process, from maintenance
of the NSC niche, through substrate for migration and functional
integration of the newlyborn neurons (Sultan et al., 2015), to
that of parenchymal progenitors activated by lesion (Magnusson
et al., 2014; Nato et al., 2015). The regional and temporal
heterogeneity of astrocytes should be among the big issues
for future investigation of brain plasticity (Bayraktar et al.,
2015), but this is only one example indicating how deeply
different is our vision of brain structure and function before
and after AN discovery. More recent breakthroughs concern
the modulatory effects of lifestyle on AN (e.g., how exercise
protects and restores the brain; Voss et al., 2013), and many
emerging roles of the new neurons in impacting brain functions
such as social interaction, reproduction, memory, learning,
pattern separation, overgeneralization of sensory stimuli, and
anxiety disorders (Leuner and Gould, 2010; Sahay et al., 2011;
Feierstein, 2012; Kheirbek et al., 2012; Figure 1M). Furthermore,
a vast range of “bystander effects” acting through paracrine or
immunemodulatory mechanisms can exert beneficial effects by
modifying the microenvironment at the injury site through the
release of chemokines/cytokines (Martino et al., 2011; Kokaia
et al., 2012; Pluchino and Cossetti, 2013). Other ramifications

involve the big chapter of widespread gliogenesis (Nishiyama
et al., 2009), whose effects are not limited to glial cell renewal,
since bystander functions are also emerging for OPCs (Boda and
Buffo, 2014; Birey et al., 2015). Yet, in the complex intermix of
interactions involved in AN, most processes remain ill-defined
as “ghost outcomes” of the stem cell activity (including the
transient existence of the progeny), thus being worthwhile of
further investigation.

Finally, unexpected trends are emerging from comparative
studies showing how the spatial and temporal extent of AN
dramatically decreases in large-brained, long-living species (e.g.,
humans and dolphins; Sanai et al., 2011; Parolisi et al., 2015;
Patzke et al., 2015) with respect to small-brained, short-living
rodents (Paredes et al., 2015; Figure 1N). The use of markers
usually expressed in newly born neurons (e.g., doublecortin)
led to reveal the existence of immature, non-newly generated
cells (Gomez-Climent et al., 2008) which are more abundant in
large-brained species (Luzzati et al., 2009; Bonfanti and Nacher,
2012; Figure 1O). This fact opens new hypothesis about the
evolutionary choices in terms of structural plasticity among
mammals, again underlining the importance of comparative
studies (Lindsey and Tropepe, 2006; Bonfanti et al., 2011).

CONCLUSION

Even if we are still far from healing most brain lesions and
neurodegenerative diseases, we have gained a fully new vision
of brain plasticity (Figure 1A). In AN history, it seems that
scientists have made serious sins in their approach. Yet, there
are many reasons for forgiveness linked to the extremely
innovative character of their work aimed at unraveling the
dynamic nature of a brain tissue constrained within limits
of invariability imposed by evolution. Five decades after
the first demonstration of AN we still need to place it in
the domain of basic research aimed at unraveling cellular,
molecular, and evolutionary aspects of an extremely complex
biological process. Maintaining a substantial independence from
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translational pressures (what implies hard work of teaching the
values of fundamental research to grantmakers) could lead to
higher achievements: the understanding of brain function and
plasticity.

Looking back to its origin and forward to its future, the AN
research field is maybe one of the best movies ever shot in the
neurosciences, with passion and love for the unknown prevailing
at the beginning of the story, then gradually shifting to magical
realism toward the end.
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