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Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention

as materials for neural electrodes due to their superior physical and electrochemical

properties, however their biocompatibility remains largely unexplored. In this work, we

aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional

titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High

quality BDD films were synthesized on electrodes intended for use as an implantable

neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent

to the electrodes were obtained for histological analysis. Both types of implants were

contained in a thin fibrous encapsulation layer, the thickness of which decreased

with time. Although the level of neovascularization around the implants was similar,

BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory

reaction at both time points. These results suggest that BDD films may constitute an

appropriate material to support stable performance of implantable neural electrodes over

time.

Keywords: nanocrystalline diamond, neuroprosthetic interfaces, neural electrodes, boron-doped diamond,

titanium nitride, foreign body reaction, biocompatible materials, in vivo models

INTRODUCTION

In recent years boron-doped nanocrystalline diamond (BDD) has become an established electrode
material for electrochemical applications due to its many outstanding properties, which include
high corrosion resistance, a wide potential window of water stability, and low background
currents (Park et al., 2005; Luong et al., 2009; Roeser et al., 2013). In the context of in vivo
biomedical applications, BDD electrodes have been primarily applied in the development of
biochemical sensors exhibiting high precision and stability for the detection of neurotransmitters
and various other biomolecules (Suzuki et al., 2007; Fierro et al., 2012, 2013). The capability
of BDD electrodes to measure bioelectrical activity and provide neural stimulation have been
first explored by Halpern et al. using the marine mollusk Aplysia californica as a neural circuit
model (Halpern et al., 2006, 2010). Further studies have shown the feasibility of using conductive
diamond for the acute measurement of bioelectric potentials from mammalian neural cells, but
the recording performance of the electrodes in these studies was limited due to low double
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layer capacitances and high impedances (Ariano et al., 2009;
Chan et al., 2009). In recent years, diverse nanomaterials have
emerged as means to increase the electrochemically active
surface area of neural electrodes, allowing the fabrication of
microelectrodes with superior electrochemical performance as
compared to the unmodified counterparts (Boehler et al., 2015;
Kim et al., 2015). This new generation of microelectrodes,
in perspective, may allow the development of novel neural
prostheses possessing high sensitivity and spatial resolution.
Similarly, studies have indicated that the limitations of BDDmay
be overcome by providing a nanostructured surface onto which
the diamond films are grown (Hébert et al., 2014; He et al., 2015;
Meijs et al., 2015b). The specific increase in surface area brought
by the three-dimensional nanostructures has demonstrated a
significant improvement in neural recording and stimulation
capabilities of BDDmicroelectrodes in neural tissue preparations
(Piret et al., 2015). These recent advances have contributed to
the increased interest in BDD electrodes for electrical interfacing
with neural cells, such as implantable neural prostheses and
brain-computer interfaces.

While BDD electrodes appear to be well-suited for acute
neural interfacing applications, it remains unknown if
chronically implanted BDD electrodes are able to efficiently
record and/or activate neurons over time. An essential
requirement to ensure a stable long-term performance in
implantable neural devices is an interface that minimizes the
healing response to implantation known as the foreign body
reaction (Merrill, 2014). The presence of encapsulation tissue
seriously compromises the quality of signals recorded from
electrodes chronically implanted in the brain and peripheral
nerves (Grill and Mortimer, 1994; Marin and Fernández, 2010).
In neural stimulation applications, the encapsulation tissue
increases the demand of charge needed for cell activation, which
might cause irreversible damage to the electrode and tissue
(Merrill et al., 2005). Although, the biocompatibility of undoped
diamond films has been addressed by several studies (Tang et al.,
1995; Amaral et al., 2008; Smisdom et al., 2009; Kloss et al.,
2011), reports concerning the biological effects of highly doped
BDD materials are still scarce. The early investigations have
been focused on the assessment of bone-derived cell cultures
on BDD films, showing that BDD surfaces do not exhibit
cytotoxicity, support adhesion, proliferation, and osteogenic
differentiation of the cells (Kopecek et al., 2008; Kromka et al.,
2010; Grausova et al., 2011). Recent studies have addressed the
biocompatibility of BDD using neural cell cultures, showing
that BDD surfaces are suitable for adhesion and proliferation of
neuroblastoma cell lines (Vaitkuviene et al., 2015) and human
neural stem cells (Taylor A. C. et al., 2015). In addition, the in
vivo biocompatibility of BDD has been recently assessed using
BDD coated disks subcutaneously implanted in guinea pigs
(Garrett et al., 2016). BDD implants elicited the formation of
thin fibrous capsules, evidencing a soft tissue response that was
milder than that obtained using silicone polymer disks.

Our aim is to investigate the performance of BDD neural
electrodes, which belong to a system designed for the treatment of
urinary incontinence through a minimally invasive implantation
procedure (Martens et al., 2010). In preliminary experiments,

we have assessed in vitro the electrochemical properties of
these BDD electrodes (Meijs et al., 2013). As compared to
electrodes coated with smooth titanium nitride (TiN), BDD
electrodes displayed similar charge injection capacity, a larger
charge storage capacity, and a wider potential window (Meijs
et al., 2013). The aim of this study is to describe the surface
properties of BDD neural electrodes and to investigate the in vivo
biocompatibility of these electrodes using a rat subcutaneous
implantation model. The biological performance of BDD in vivo
is assessed in relation to conventional TiN electrodes.

MATERIALS AND METHODS

Implant Fabrication
The test implants consisted of metallic contacts of a monopolar
extraneural electrode, which is intended for genital nerve
stimulation for the treatment of urinary incontinence (Meijs
et al., 2014). The metallic contact is made of Ti6Al4V alloy
grade 5 (ELOS Medtech Pinol A/S, Denmark) and comprise
of a stem and a semi-spherical head with a surface area of
6mm2. To fabricate the BDD implants, the electrode heads were
seeded with a nanodiamond dispersion with an average mean
crystal size of 4–6 nm (NanoAmando R©B, NanoCarbon Research
Institute Ltd., Japan). BDD films were grown using a microwave
plasma enhanced chemical vapor deposition (CVD) apparatus
with linear antenna delivery system operating at low pressures
with a CH4 /H2 gas mixture (2.5% CH4 + 97.5% H2) with
trimethylboron as a boron dopant (B/C = 15000 ppm; Taylor
et al., 2014). The TiN coatings were applied to the implants
using magnetron sputtering, following a method that has been
previously described (Meijs et al., 2015a). Uncoated Ti6Al4V
implants were used as controls (designated as Ti implants).
Figure 1A displays the final aspect of the three types of implants
used in this study.

Implant Surface Characterization
Scanning electron microscopy (SEM) was performed to
investigate the morphology of the BDD films using a
Tescan FERA 3 tool (Tescan, Brno, Czech Republic). Raman
spectroscopy was carried out at room temperature using a
Renishaw inVia Raman microscope at a wavelength of 488 nm
and a laser power of 6mW at the sample.

Animal Model and Implantation Procedure
All in vivo experimental procedures were carried out according
to the national laws and guidelines concerning animal
experimentation. The study protocol was approved by the
Danish Animal Experiments Inspectorate.

Twelve adult Wistar rats (250–300 g) were used for this
study. The animals were kept in separate cages, with food and
water ad libitum. Animals were anesthetized by a subcutaneous
injection of 0.2ml/100 g body weight of a mixture of Hypnorm
(VetaPharma) and Dormicum (Accord Healthcare). The dorsum
of the rats was shaved and cleaned. Four sterilized electrode
pins were implanted on each rat through incisions that were
made in the skin along the midline using an 18 G needle. A
total of 16 electrodes were implanted for each material type,
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FIGURE 1 | Surface characterization of the BDD electrodes. (A) The

three types of implants used in this study are displayed for comparison: bare Ti

(1), TiN coated (2), and BDD coated implant (3). Scale bar denotes 5mm. (B)

Scanning electron microscopy image of the surface of a BDD implant. Scale

bar denotes 2µm. (C) 488 nm Raman spectrum obtained from a BDD implant.

eight for each time point. The wounds were closed using a non-
absorbable nylon suture by a single surgical knot. The animals
were monitored on a daily basis for indications of infection,
abnormal wound healing or unusual behavior.

Histological Examination
After either 2 or 4 weeks of implantation, animals were
euthanized by CO2 inhalation. For the histological assessment,
the tissue surrounding the implants were cut and immersed in
10% buffered formalin. After 1 week of fixation, the implants
were carefully removed and the tissue samples were sectioned,
processed and paraffin embedded. The tissue samples were
sectioned at the locations that contained the electrode heads,
perpendicularly to the main axis of the implants, as depicted
in the Supplementary Figure 1. Histological sections (4–5µm
thick) were stained with hematoxylin and eosin (HE) and
Masson’s trichrome (MT). Stained sections were observed under
an inverted microscope using ×10 and ×20 objectives (Axio
Observer.Z1, Carl Zeiss) and images were acquired using a digital
color camera (Axio Cam MRc, Carl Zeiss). Using the MT images
taken at ×20, the thickness of the collagen capsule around
each implant was measured at multiple random locations on
the implant interface using ImageJ (NIH, Bethesda, MD). In
addition, for a semi-quantitative assessment of the local effects of
the implants, 12 fields for each implant type per time point were
acquired from the HE stained sections at higher magnification
(×40). The inflammatory response was determined by assessing
the presence of polymorphonuclear cells, lymphocytes, plasma
cells, macrophages, giant cells, and necrosis. Neovascularization

scores were obtained quantifying the number of blood vessels
adjacent to the interface. Scores were given for each image
based on the criteria presented as supplementary information
(Supplementary Tables I, II). The researcher scoring the images
was blinded in regards to the identity of the images.

Statistical Analysis
Capsule thickness values were compared using Kruskal
Wallis’ non-parametric test with Dunn’s multiple comparison
in GraphPad Prism 6 (GraphPad Software, La Jolla, CA).
Inflammation and vascularization scores were analyzed by
ordinal logistic regression using SPSS Statistics v21 (IBM), in
which the covariates were the material types and the time.
Statistical significance was assigned to differences with P < 0.01,
unless otherwise specified.

RESULTS

Quality Assessment of the Diamond Films
The quality of the BDD surfaces was assessed using SEM and
Raman spectroscopy. A typical SEM micrograph of the BDD
film grown on the electrode head is displayed in Figure 1B. The
surface of the deposited BDD films consisted on a dense array of
sharp-edged diamond crystallites with random crystallographic
orientation. Raman spectroscopy revealed good homogeneity
across all samples. Figure 1C shows a representative spectrum
obtained from a BDD film grown on the electrode head. The
diamond related sp3 peak is observed down shifted from its usual
1332 cm−1 position due to boron incorporation. Also present are
broad features at 1150 and 1490 cm−1 that are generally accepted
as originating from transpolyacetylene lying in grain boundaries
(Ferrari and Robertson, 2001). In addition, bands at 500 and
1230 cm−1 related to boron incorporation are present. Semi-
quantitative analysis of the Raman spectra revealed an average
sp3/sp2 (diamond/graphite) ratio of 94% and an average boron
incorporation of 4.4E+ 21 cm−3 in the BDD layers.

General Outcome of the In vivo Study
During the course of the in vivo experiments, no signs of
infection, abnormal wound healing, or unusual behavior was
observed in any of the experimentation animals. At the time
of implant retrieval, macroscopic analysis of the tissue around
the implants revealed good quality healing and no evidence of
wound dehiscence. An image of a BDD electrode after 2 weeks of
implantation is shown in the Supplementary Figure 1.

Histological Analysis
The histological examination of the HE stained sections
revealed a fairly uniform tissue reaction to the implanted
materials (Figure 2). At 2 weeks, all implants evidenced the
formation of thin capsules, consisting of a layer of collagen
fibers aligned parallel to the implant surface, with variable
presence of fibroblasts and some inflammatory cells. After
4 weeks, the number of cells surrounding the implants
seemed to decrease, while the collagen fibers at the interface
appeared to be denser. This observation was more evident
for capsules around Ti and BDD implants. Image analysis of
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FIGURE 2 | Hematoxilin and eosin stained sections of the tissue adjacent to the subcutaneously implanted electrodes. The overview images show the

histological appearance of the pericapsular connective tissue after 2 and 4 weeks. For better visualization of the cells adjacent to the implants, magnified pictures of

the area delimited by the white squares are presented below each overview image. Arrowheads indicate fibroblasts (green), inflammatory cells (yellow), and blood

vessels (blue). Scale bar denotes 400µm.

MT stained sections enabled assessment of collagen deposition
and quantification of the fibrous capsule thickness (Figure 3).
As shown in Figure 3B, the median thickness of the capsules
consistently decreased with the implantation time. This decrease
was statistically significant for all the implanted materials
(p < 0.01). While the capsules formed around the BDD
implants were equivalent to those on Ti, the capsules around
TiN were significantly thicker at both time points (p <

0.01).
Analysis of high magnification images at the implant interface

allowed the scoring of inflammatory cells representing the
different phases of the foreign body reaction as well as the
presence of blood vessels. No giant cells or necrotic areas

were observed for any of the implants. Figure 4 shows the
frequency distributions for the inflammation scores obtained
following the criteria presented in the Supplementary Table I.
The scores obtained for the BDD samples represent a minimal
tissue reaction, which was not significantly different from that
obtained on the Ti implants. On the other hand, the TiN
implants elicited aminimal tomild inflammatory reaction at both
time points, which represent a significantly higher inflammatory
activity than Ti (p < 0.01). Regarding the neovascularization
scores, although both TiN and BDD seemed to display an
increased vascularization density after 4 weeks, no statistically
significant differences were found for any of the implants
types.
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FIGURE 3 | Assessment of fibrous capsules formed around the implants. (A) The Masson’s trichrome staining highlights in dark blue the collagen fibers

adjacent to the implants. Arrows indicate the boundaries of the fibrous capsules. Scale bar denotes 100µm. (B) The thickness of fibrous capsules is presented as

median with interquartile range (25th to 75th percentile). The groups entail at least n = 50 measurements. Statistically significant differences (P < 0.01) are indicated

with respect to bare Ti implants (*).

DISCUSSION

The aim of this work was to assess the in vivo biocompatibility
of BDD electrodes using a subcutaneous implantation model
that is typically used to test for local effects after implantation.
The electrodes were implanted through relatively small openings,
to reduce the implantation time and the tissue damage caused
by insertion. It is therefore assumed that the results of this
study reflect reasonably well the foreign body response to
BDD electrodes after implantation using minimally invasive
techniques. TiN has been chosen as a reference material since it is
widely used as coating for neural interfacing electrodes and also
cardiac pacing leads (Schaldach et al., 1990; Weiland et al., 2002;
Cogan, 2008).

The growth conditions for the BDD films were chosen
as in a previous study, to obtain electrochemical parameters

suitable for neural stimulation purposes (Meijs et al., 2013). In
particular, films possessed an average impedance of 200 ohms
at 1 kHz, which was consistent with their high boron content
(Meijs et al., 2013). Boron incorporation was also evident form
the characteristic B related peaks at 500 and 1230 cm−1 in
the Raman spectrum (Prawer and Nemanich, 2004) and by
the down shifting of the sp3 diamond related peak (Taylor
et al., 2014). As revealed by the surface analysis, the CVD
synthesis produced homogeneous and high quality BDD films
on the electrodes, in agreement with previous studies using the
microwave plasma enhanced linear antenna deposition system
(Taylor et al., 2014; Taylor A. et al., 2015). The homogenous
distribution of diamond crystallites also indicates the high
cohesion of the synthesized films. The Ti6Al4V alloy has been
previously reported to constitute an excellent substrate for the
deposition of homogeneous and cohesive NCD films, thanks
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FIGURE 4 | Distribution of histomorphometric assessment scores. The bar height indicates the number of images assigned to each score category. Statistically

significant differences between distributions (P < 0.01) are indicated with respect to bare Ti implants (*).

to the formation of a titanium carbide layer, which serves as
precursor for the nucleation and growth of crystals during CVD
(Booth et al., 2011). In particular, boron doped NCD films have
been previously reported to exhibit high adhesion strength to
Ti6Al4V substrates, displaying a resistance to delamination at
normal stresses above 2 GPa (Liang et al., 2009). The high sp3/sp2

ratio also supports a strong coating adhesion, as a relatively high
content of graphite in NCD films is usually associated with poor
tribological properties and film delamination (Catledge et al.,
2013).

The histological analysis of the HE and MT stained sections
showed that BDD implants exhibited significantly thinner fibrous
capsules and lower inflammation scores at both time points
as compared to the TiN counterparts. An increased density of
blood vessels around implants might suggest the persistence of
granulation tissue at the interface; however, we did not observe
any significant difference amongst the different implants. Our
results are in agreement with a study from Garrett et al, who have
reported reduced fibrous encapsulation to BDD implants after 4
weeks as compared to silicone polymer. The median thicknesses
reported by their study are, however, slightly larger than the ones
obtained here (86 vs. 18µm). Since the magnitude and severity
of the foreign body reaction is affected by several parameters, this
difference might be explained by the different volume and shape
of the implants. The effect of these parameters on the foreign
body reaction has been described for several types of neural
electrodes implanted in different locations (Szarowski et al., 2003;
Polikov et al., 2005; Seymour and Kipke, 2007; Ortiz-Catalan
et al., 2012). The apparent delayed healing response to the TiN
implants observed here is consistent with a previous study by
Satomi et al. who compared the tissue reaction to various Ti based

materials using a rat subcutaneous implantation model (Satomi
et al., 1988). They have shown that the subacute tissue response
to TiN was less favorable than for pure Ti implants, as evidenced
by the presence of granulation tissue around TiN implants after
3 and 7 days. After 14 days, the process of fibrous encapsulation
was still not complete for TiN and only after 84 days the capsules
were equivalent for all the implanted materials (Satomi et al.,
1988).

Overall, our results reveal that the foreign body response
to BDD appears to be essentially equivalent to that observed
for the Ti alloy implants. Pure Ti and its alloys spontaneously
build up a stable and inert oxide layer, which is associated
with a slight inflammatory reaction upon implantation and a
thin fibrous encapsulation over the course of a few weeks. The
minimal tissue reaction to the BDD electrodes might be in part
explained by its hydrogen terminated surface, providing an inert
non-polar surface chemistry which is resistant to fouling by
proteins (Shin et al., 2005). We have recently compared in vitro
the protein adsorption and fibroblast adhesion to hydrogen
terminated undoped and boron doped diamond films (Pennisi
et al., 2014). Our study revealed that both intrinsic and boron-
doped films grown on textured Ti substrates displayed resistance
to protein adsorption and a slightly enhanced proliferation rate
in comparison to bare Ti surfaces. Correspondingly, another
factor affecting the foreign body reaction is the ability of the
implant surface to promote the adhesion of cells involved
in the wound healing process. In subcutaneous implants, an
increased connective tissue attachment to the biomaterial surface
is associated with decreased inflammatory response and fibrous
encapsulation (Jensen et al., 2012). This correlation has also
been shown for implants with intrinsic nanocrystalline diamond
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coatings, indicating that surface wettability and termination play
an important role mediating the foreign body reaction (Kloss
et al., 2011).

In this work we have for the first time synthesized high-quality
BDD films on neural electrodes for an in vivo biocompatibility
assessment in a rat subcutaneous implantation model. In
summary, as compared to conventional TiN electrodes, BDD
electrodes developed thinner fibrous capsules and elicited lower
local inflammation scores, indicating that the foreign body
reaction to the material was milder and had a faster resolution
rate. The overall local tissue response to BDD implants was not
significantly different than that of the control TiAlV alloy. The
surface properties offered by diamond films may contribute to
reduce the adsorption of serum proteins and promote cellular
attachment in vivo, consequently minimizing the cascade of
inflammatory events leading to foreign body reaction. The
reduced protein fouling characteristics and the presence of a
thinner fibrous encapsulation layer indicates that BDD electrodes
may present a reduced impedance pathway for the transmission
of electrical signals. In perspective, BDD films might provide
electrodes providing safe and stable performance over time
for chronic implantable neural prostheses and brain-computer
interfaces.
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