
MINI REVIEW
published: 11 March 2016

doi: 10.3389/fnins.2016.00101

Frontiers in Neuroscience | www.frontiersin.org 1 March 2016 | Volume 10 | Article 101

Edited by:

Michele Giugliano,

University of Antwerp, Belgium

Reviewed by:

Joost Le Feber,

University of Twente, Netherlands

Diego Ghezzi,

Ecole Polytechnique Fédérale de

Lausanne, Switzerland

Young-Tae Kim,

University of Texas at Arlington, USA

*Correspondence:

Francesco Difato

francesco.difato@iit.it

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 21 December 2015

Accepted: 26 February 2016

Published: 11 March 2016

Citation:

Soloperto A, Palazzolo G, Tsushima H,

Chieregatti E, Vassalli M and Difato F

(2016) Laser Nano-Neurosurgery from

Gentle Manipulation to Nano-Incision

of Neuronal Cells and Scaffolds: An

Advanced Neurotechnology Tool.

Front. Neurosci. 10:101.

doi: 10.3389/fnins.2016.00101

Laser Nano-Neurosurgery from
Gentle Manipulation to Nano-Incision
of Neuronal Cells and Scaffolds: An
Advanced Neurotechnology Tool

Alessandro Soloperto 1†, Gemma Palazzolo 1†, Hanako Tsushima 1, Evelina Chieregatti 1,

Massimo Vassalli 2 and Francesco Difato 1*

1Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa, Italy, 2 Institute of Biophysics,

National Research Council of Italy, Genoa, Italy

Current optical approaches are progressing far beyond the scope of monitoring the

structure and function of living matter, and they are becoming widely recognized as

extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation

of living tissues, single cells, or even single-molecules is becoming a well-established

methodology, thus founding the onset of new experimental paradigms and research

fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as

developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating,

or even ablating single cells with subcellular precision, and operating intracellular surgical

protocols at the level of single organelles. In the present review, we report the state of the

art of laser manipulation in neuroscience, to inspire future applications of light-assisted

tools in nano-neurosurgery.

Keywords: laser nano-surgery, photo-polymerization, photo-stimulation, opto-transfection, intracellular surgery,

laser dissection

INTRODUCTION

The etymology of the word “surgery” is derived from the ancient Greek word cheirourgike, or the
Latin expression chirurgiae, which refer to the “hand work”. Conventionally, surgery is performed
through the physical contact of tools operated by the hands of a highly skilled and experienced
surgeon. Currently, manipulation of living matter has entered a new era exploiting alternative
approaches and devices that assist or even substitute the human hands through tele-operated
devices and miniaturized tools. As a prominent example, recent advances of laser technology and
optical systems pushed the central role of light not only to observe the living matter at greater
resolution, but also to perform tissue manipulation through “hands of light”. The resolution of the
light touch is so precise that light represents, at present, the only tool providing access to real micro-
and even nano-scale surgery.

Light manipulation tools can be classified in two main categories: gentle and invasive. The
former non-invasive approach concerns the exploitation of optical forces, as in optical tweezers, to
manipulate viruses, cells, as well as molecules in living cells (Oddershede, 2012). The latter consists
of exploiting the energy of high photon flux to overcome the break-down threshold of the sample,
and induce local ablation.
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Despite the presence of a numerous literature proposing the
adoption of optical trapping in surgical operations (Waleed et al.,
2013), in vivo application of such an approach is still limited by
themaximum forces that optical tweezers can generate, even with
state of the art optical fiber-based set-ups (Liberale et al., 2007).
Indeed, forces in the pico-newton range are certainly suitable
for in vitro studies of single molecules and/or single living cells,
but they are too small to apply a significant strain to induce
local deformations or to move small entities in the crowded and
dense environment of a living tissue. On the other hand, laser
ablation is a much more effective tool applicable either in vitro or
in vivo. Moreover, an accurate choice of the working parameters
(laser wavelength, pulse energy, pulse duration, spatial beam
profile, pulse repetition rate, and irradiation time) allows tuning
the interaction of light with biological matter, from reversible
manipulation to irreversible hard cuts (Rudhall et al., 2012).

Laser tools are highly controllable through dedicated
electronics, which could be integrated in robotic surgery
systems, enabling precise task definition and repeatability.
Although research in laser surgery is still in its infancy for broad
clinical applications, it has given an important contribution
to understand the physiology (Hayes et al., 2012) of distinct
pathologies at single cell level (Tilve et al., 2015), and it has
demonstrated the potentiality to directly focus the area of
intervention in living tissues with minimal scar formation.
Indeed, applications of lasers in eye surgery or in laparoscopic
systems are becoming widespread approaches in clinic (Mattos
and Caldwell, 2012).

Moreover, laser technology opens the avenue for new
applications in the emerging field of nano-medicine. Light can
be used to trigger the action of chemically engineered nano-
particles, designed to recognize molecular targets, and loaded
with specialized photo-sensitizers. The action of light on such
carriers can be multivalent: a caged compound can be delivered
directly on the target tissue upon illumination (Yang et al., 2012),
as well as a local enhancement of the light can induce a cell
specific apoptotic effect (Pekkanen et al., 2014).

In the present review, prominent applications of laser
nano-surgery will be highlighted, starting from the design of
extracellular environment with micro- and nano-scale features,
to the intracellular ablation of cellular compartments. All the
reported examples, which are currently employed or could be
exploited in the field of laser nano-neurosurgery, will provide an
overview of the capability of laser manipulation.

LASER PROCESSING OF NEURONAL
MICRO-ENVIRONMENT: ENGINEERING
NEURON-SCAFFOLD INTERACTIONS

Engineering of neuronal scaffolds is gaining importance to
reproduce neural circuits in vitro as well as in vivo to repair
injuries, to locally deliver cells or molecules, and to promote
regeneration. Mimicking the extracellular physiological milieu
remains a major challenge, because it is extremely heterogeneous
in terms of topographical/mechanical/biochemical features. In
this context, the use of light for modeling optically transparent

three-dimensional (3D) hydrogels has been successfully applied
to direct cell differentiation toward specific lineages or to
promote and guide the outgrowth of neuronal processes.
Design of topographical properties of such hydrogels can
be accomplished by different strategies: photo-polymerization
or photo-ablation (see Figure 1). Complex 3D structures can
be photo-polymerized with a stereo-lithographic approach
(Zorlutuna et al., 2011), or with ultrashort pulsed lasers exploiting
the multi-photon absorption process within a femto-liter volume
(Cumpston et al., 1999; Simitzi et al., 2015). Currently, super
resolution techniques and development of new photo-resins
are exploited to reduce the minimum size of features that can
be generated (Scott et al., 2009; Gan et al., 2013). Indeed,
there is growing evidence that the roughness of the surface
could enhance cell differentiation, and direct the growth of
neuronal projections (Bugnicourt et al., 2014; Marino et al.,
2014). Otherwise, directional growth of neurons within a pre-
existing hydrogel can be also obtained by post-processing of
the scaffolds already containing the cells (Odawara et al., 2013).
In this case, neurons are free to establish their hierarchical
connectivity within the scaffold, and successive laser-mediated
ablation of micro-channels opens the way for neurite sprouting
(Sarig-Nadir et al., 2009). Otherwise, photo-cleavage of chemical
moieties integrated in the hydrogel can locally modify hydrogel
structures and allows the formation of in vitro neural networks
with a specific geometry (McKinnon et al., 2014).

Mechanical properties of hydrogels can be also tuned by
photo-degradation. Incorporating photo-sensitive moieties into
the monomers that are assembled in the polymer backbone
enables degradation of selected volumes by laser irradiation after
the polymerization process. In particular, the spatial/temporal
degradation of the hydrogel, leading to local modulation of
the mechanical properties, can be finely controlled by the laser
intensity (Kloxin et al., 2009), or by the use of a photo-
mask (Lewis and Anseth, 2013). In this way the same scaffold
could potentially mimic the mechanical properties of any tissue.
Indeed, softening of a scaffold can be tuned to match the elastic
properties of the nervous tissue to induce neural stem cell
differentiation (Engler et al., 2006).

Biochemical functionalization of the extracellular
environment through laser light can locally stimulate important
cell functions. The first photo-chemical patterning of peptides
in 3D hydrogels was performed by using photo-caged thiols,
which upon irradiation with a focused laser, were freed to react
with maleimide-modified peptides. The resulting biochemical
channels promoted axonal sprouting (Luo and Shoichet, 2004).
Further, photo-chemical immobilization of peptides or even
whole proteins enables to pattern different growth factors in
distinct volumes within the same 3D hydrogel (Wylie and
Shoichet, 2011). Otherwise, two-photon laser scanning based
lithography has been used in conjunction with photo-initiators
to immobilize biomolecules during the photo-polymerization
process at microscale resolution (Lee et al., 2008). Therefore,
photo-patterning to generate biomolecular gradients (Owen
et al., 2013), or concomitant functionalization with multiple
proteins in 3D matrices (Wylie et al., 2011) allows achieving
bioplatforms with high degree of complexity and mimicry of the
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FIGURE 1 | Laser based approaches to produce bioscaffolds. The photo-polymerization/ablation of polymers has permitted the production of complex

polymeric structures which can be used as bioscaffolds. Hydrogels are produced from monomers (blue curves) by crosslinking of reactive groups (green lines).

Neuronal cells can be seeded within or on the scaffolds prior or post-processing. Homogenous hydrogels (light blue circles) can be obtained by bulk

photo-polymerization of the suspension. Then, physical channels (white rectangles) can be generated in the pre-formed gels by photo-ablation, in order to set out the

path directing neurite elongation. Instead selected volumes (light blue rectangles) of the gel suspension can be photo-polymerized with the use of a focused laser or

photo-masks. Biochemical properties can be further introduced by photo-patterning of peptides (purple triangles) and/or whole proteins (yellow stars), with function of

grow factors, adhesion cues, enzymes, and so on.

native counterparts. Another possibility is to create hydrogels
whose biochemical and physical properties can be reshaped
by the cells themselves. For example, photo-polymerization of
hydrogels containing enzymatically cleavable peptides enables
the cell mediated remodeling of the scaffold by the expression of
the cellular enzymes matrix metalloproteinases (Anderson et al.,
2011).

Overall, the use of laser-based technologies within optically
transparent biomaterials offers highly versatile tools for
the processing and imaging of multifunctional scaffolding
biosystems (Lewis and Anseth, 2013) that are suitable for neural
tissue engineering.

GENTLE LASER MANIPULATION OF
NEURONAL CELLS

Probing and manipulating the complex structure and function
of a neural circuit, without prompting any permanent
morphological change, allows understanding the functional
connectivity of neural circuits, and treating their pathological
activities non-invasively. The interaction of light with living
tissues induces focal perturbations (see the laser surgery
tool in Figure 2), that can be transiently applied to perform
cell stimulation. As an example, the possibility to locally
generate shockwaves through microplasma-cavitation effects
in water has been proposed as a high-throughput approach to
exert mechanical stimulation of cells (Compton et al., 2014;
Figure 2A). The ability to precisely control the mechanical
environment of brain tissue is raising enormous attention
especially after the discovery that the brain is one of the
most mechanosensitive organs (Tyler, 2012). Inducing
mechanical alterations would therefore allow to understand

the mechanobiology of neuronal migration and development,
providing important insights into the design of efficient neuronal
scaffolds (Palazzolo et al., 2015). In other studies, a high-
throughput mechanical stimulation of cells has been engaged to
understand how abrupt stimulation of integrins could produce
mild-traumatic brain injury (Hemphill et al., 2011; Grevesse
et al., 2015).

Another way to achieve neuronal stimulation by laser
irradiation is based on photo-thermal effects occurring in the
laser focus. The earliest report of direct laser stimulation on
neuronal cells was described by Fork on Aplysia ganglion
neurons (Fork, 1971). The development of ultrashort pulsed
sources incorporated in advanced two-photon microscopy set-
ups permitted the exploitation of the non-linear excitation in
the focal volume to directly stimulate neurons without using
any caged compounds or fluorescent molecules (Hirase et al.,
2002). Recently, microparticles or light sensitive conjugated
polymers have been used to produce patterned photo-stimulation
of neuronal circuits (Farah et al., 2013) or to develop new retinal
prosthetic devices (Ghezzi et al., 2013). The main mechanism
producing direct neuronal stimulation is photo-thermal but it
does not require temperature-sensitive channels. Indeed, it was
shown that thermal stimulation of cells was related to the rate
of temperature increase (instead of the maximum temperature
reached), which modified the capacitive properties of the cell
membrane (Shapiro et al., 2012). However, depending on the
light intensity delivered to the cells, other mechanisms could
be involved in the direct stimulation of neurons (Beier et al.,
2014), as seen in transient plasma membrane nano-poration
(Figure 2Bb1). Although membrane opto-poration provides
single cell stimulation, it cannot be exploited as an efficient
protocol when repetitive cycles of stimulation are required.
However, transient disruption of the cell membrane represents
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FIGURE 2 | Laser surgery tool: from gentle touch to nano-incision. The surgery tool is based on a laser beam tightly focused in the sample. The ablation

volume of the laser is restricted to a small volume in the center of the focal spot (red spot). An accurate choice of the laser type and a precise setting of laser power

and number of delivered light pulse allow to modulate the invasiveness of the surgery tool from gentle touch to nano-incision. In panel (A), the laser focus is not placed

in direct contact with the cells, in order to induce a local micro-bubble cavitation. The micro-bubble induces a fluid flow which exerts shear stress forces on the nearby

cells. In panel (B), the laser focus is positioned on the plasma membrane of a cell. The laser generates a transient pore on the membrane (shown in the enlarged inset

of the cell portion highlighted by the black box), through which an osmotic influx of solute occurs. In case of ions influx, the laser can induce a direct stimulation of a

neuronal cell (panel b1). In case of plasmid influx, it is possible to transfect a cell which, for example, starts to produce a green fluorescent protein (panel b2). In panel

(C), the laser focus is positioned within the cell. Because the ablation occurs only in a small volume in the focus, the laser could be used to selectively disrupt an

organelle of the cell. In panel (D), the laser spot is scanned over a portion of the cell to produce a precise and confined cut, i.e., laser axotomy.

an intriguing approach to inject foreign molecules intracellularly,
which in the specific case of nucleic acids injection, it can be used
to achieve single cell opto-transfection (Figure 2b2). Tirlapur
et al. (Tirlapur and König, 2002) reported the first evidence
of optical-assisted delivery of foreign DNA into cells in vitro,
thus showing the possibility to inject non membrane-permeable
molecules. In such a way, it is possible to experimentally observe
the consequences of delivering molecules into specific subcellular
regions. For example, the introduction of specific mRNA in
the dendrites or in the soma of living neurons highlighted the
importance of subcellular localization of transcription factors
in distinct cellular compartments (Barrett et al., 2006). A
variety of lasers have been used to perform single cell opto-
poration/transfection (Paterson et al., 2005; Marchington et al.,
2010). Engineered beam shapes have been exploited to raise the
throughput of opto-transfection (Rendall et al., 2012; Breunig
et al., 2014). Recently, the application of extremely ultrashort
femtosecond laser decreased the power necessary to nano-
process cells (Uchugonova et al., 2008) by more than one
order of magnitude. Therefore, optical re-programing of human
cells into induced human pluripotent stem cells is becoming a
safe and efficient approach (Breunig et al., 2015). Furthermore,

opto-transfection of single neurons has been proposed in
combination with optogenetic (Antkowiak et al., 2013), and
technical efforts have been spent to apply the technique in
an in vivo scenario (Ma et al., 2011). Optical transfection of
single cells to induce expression of optogenetic probes could
circumvent the need for viral particles or vectors to target specific
cells, and it could provide a way to apply complex optical
stimulation patterns with single cell resolution also on awake
animals (Antkowiak et al., 2013).

SURGERY AT THE NANO-SCALE: FROM
INTRACELLULAR ABLATION TO
SUBCELLULAR DISSECTION IN VIVO

Nano-fabrication has a tremendous impact in pharmaceutical
and medical fields. Nano-scale knife (Kruskal et al., 2015), and
implants are discovering new aspects in biology at the molecular
scale (Betancourt and Brannon-Peppas, 2006). Proper control
and manipulation of these nano-tools burden the development
of robotic devices and automated control to operate them in
living matter (Chang et al., 2010). On the contrary, the massless
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hands of light can be applied at the nano-scale through far
field projection. Therefore, producing few nano-meters shift of
the light focus requires physical displacement of active optical
element in the micro-meter scale, which can be attained at
several hundreds of kHz (i.e., using galvo mirrors, DMD, or
AOD devices). Moreover, wavefront engineering enables the
simultaneous projection of several light foci at distinct locations
(Difato et al., 2012), or to modify the light wavefront to
compensate the spherical aberration induced by the sample, in
order to reach deep layers in tissues (Wang et al., 2014).

One of the most important aspects of laser surgery is the
capability to overcome physical barriers, i.e., the cell membrane,
with minimal perturbation in order to perform intracellular
surgery in distinct compartments (Shen et al., 2005), such as
the nucleus (König et al., 2001) or the cytoplasm (Colombelli
et al., 2005). Laser irradiation has been applied to induce damage
in submicron regions of the nucleus to study the molecular
mechanisms underlying the repair of damaged DNA (Saquilabon
Cruz et al., 2015). In addition, even though biotechnology offers
several protocols to perform genetic engineering of cells and
tissues (e.g., RNAi, gene knockouts, gene mutation), there is a
growing demand for tools allowing intracellular manipulations
at the level of single organelles. For example, intracellular laser
surgery revealed that axonal elongation does not require a
centrosomal microtubule organizing center (Stiess et al., 2010;
Figure 2C).

Study on axonal differentiation and regeneration is another
important application of laser nano-surgery (Figure 2D).
Neurons are highly polarized cells which extend neurites that
differentiate into several dendrites and a unique axon. When the
axon is cut near the soma of the cell, one of the dendrites turns
into a new axon. If instead the axotomy is performed far from
the cell body, the proximal neurite stump tries to regenerate
and regrow (Bradke et al., 2012). Several in vitro (Kim et al.,
2009) and in vivo (Allegra Mascaro et al., 2013) models have
been developed to evaluate the capability of different cell types
to regenerate their injured axon. In vitro, a partial lesion of the
axon can be induced with high repeatability, in order to study
the age related ability of axonal regeneration, and to test various
treatments to enhance axonal regeneration (Difato et al., 2011b).
In vivo models of laser axotomy consented understanding
whether axonal regrowth was correlated to a functional recovery
(Yanik et al., 2004).

When laser nano-surgery is combined with monitoring
devices associating a functional modification to the structural
changes of neuronal circuits, it provides a powerful arena to
develop repeatable injury models. Combining optical and/or
electrical monitoring of neural networks with laser dissection
in vitro (Difato et al., 2011a) produces simple and reliable
injury models to test new prosthetic devices that restore the
lost properties (Bonifazi et al., 2013). Indeed, laser nano-surgery
facilitates to scale down the dimension of the injury to single
connection, to single cell, to partial or complete lesion of an
axonal bundle (Habibey et al., 2015), and thus test the efficiency
of in silico neural network to recover distinct levels of lesion (Patel
et al., 2012).

In vivo, laser nano-surgery can be employed to observe
intrinsic homeostatic response restoring the synaptic density

in local cortical circuits (Canty et al., 2013), to evaluate the
detrimental effects of small strokes generated by laser induced
clotting of microvessels (Nishimura et al., 2006), or to study
the role of microglia when the vessels are completely disrupted
(Davalos et al., 2005). Finally, laser scissors can be applied
to precisely isolate cells within cultures, or subpopulation of
cells from brain tissues to apply targeted proteomic studies
(Drummond et al., 2015), to remove pathological tissues, e.g.,
brain tumors, or alleviate epileptic seizures (Medvid et al., 2015).

NANO-COMPOSITES ASSISTED LASER
SURGERY

Nano-fabricated surgery tools are still challenging to handle,
suffer mechanical vibration, and are fragile structures when
inserted in tissues. On the contrary, light-based tools are
contact free utensils which offer the advantages of avoiding
contamination, and inducing negligible scars (Canty et al., 2013).

Moreover, the targeted delivery of caged moieties, photo-
sensitizers, or the expression of light-sensitive ion channels
provide an additional control on the nature of light-matter
interaction. For example, genetic engineering of novel light
sensitive constructs are now used to ablate specific cells in vivo
or to dissect and inactivate specific proteins in living cells, thus
achieving molecular surgery specificity (Williams et al., 2013).

Usually, surgical procedures have been classified in two
types of interventions: the cutting aimed at the reshaping
or removal of pathological tissues, and the manipulation and
rejoining of healthy portion of a tissue. A better understanding
of light-matter interaction could lead to not only perform
surgery down to the molecular scale, but also to control
and modulate the induced local effect. Therefore, we can
assume that laser nano-surgery could establish a new surgical
paradigm associated with a wider range of tissue manipulations:
the choice of the targeted nano-composites and the light
dose could produce either activation (Papagiakoumou et al.,
2013)/sensitization (He et al., 2016), or inactivation/ablation of
single cells as well as molecules in living tissues (Bergeron et al.,
2015).

Finally, the development of compact and cost-effective diode-
pumped lasers, which significantly reduce the complexity and
price of multiphoton systems (König et al., 2015), together
with the in situ enhancement of the light effect through
engineered nano-compounds (Taratula et al., 2015), allows
high resolution targeting deep in tissues, thereby paving
the way for the future of laser nano-surgery in clinical
applications.
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