
ORIGINAL RESEARCH
published: 18 March 2016

doi: 10.3389/fnins.2016.00104

Frontiers in Neuroscience | www.frontiersin.org 1 March 2016 | Volume 10 | Article 104

Edited by:

Tim Pearce,

University of Leicester, UK

Reviewed by:

Dan Hammerstrom,

Portland State University, USA

Zhijun Yang,

Middlesex University, UK

*Correspondence:

Chetan Singh Thakur

c.singhthakur@uws.edu.au

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 12 December 2015

Accepted: 03 March 2016

Published: 18 March 2016

Citation:

Thakur CS, Afshar S, Wang RM,

Hamilton TJ, Tapson J and van

Schaik A (2016) Bayesian Estimation

and Inference Using Stochastic

Electronics. Front. Neurosci. 10:104.

doi: 10.3389/fnins.2016.00104

Bayesian Estimation and Inference
Using Stochastic Electronics
Chetan Singh Thakur *, Saeed Afshar, Runchun M. Wang, Tara J. Hamilton,

Jonathan Tapson and André van Schaik

Biomedical Engineering and Neuroscience, The MARCS Institute, Western Sydney University, Sydney, NSW, Australia

In this paper, we present the implementation of two types of Bayesian inference problems

to demonstrate the potential of building probabilistic algorithms in hardware using single

set of building blocks with the ability to perform these computations in real time. The first

implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker),

demonstrates a simple problem where an observer uses an underlying Hidden Markov

Model (HMM) to track a target in one dimension. In this implementation, sensors make

noisy observations of the target position at discrete time steps. The tracker learns the

transition model for target movement, and the observation model for the noisy sensors,

and uses these to estimate the target position by solving the Bayesian recursive equation

online. We show the tracking performance of the system and demonstrate how it can

learn the observation model, the transition model, and the external distractor (noise)

probability interfering with the observations. In the second implementation, referred to

as the Bayesian INference in DAG (BIND), we show how inference can be performed in

a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building

blocks can be easily implemented using simple digital logic gates. An advantage of the

stochastic electronic implementation is that it is robust to certain types of noise, which

may become an issue in integrated circuit (IC) technology with feature sizes in the order

of tens of nanometers due to their low noise margin, the effect of high-energy cosmic

rays and the low supply voltage. In our framework, the flipping of random individual bits

would not affect the system performance because information is encoded in a bit stream.

Keywords: Bayesian inference, spiking neural networks, Hidden Markov models, Sequential Monte Carlo

sampling, direct acyclic graph, stochastic computation, probabilistic graphical models, neuromorphic engineering

INTRODUCTION

Bayesian systems arrive at decisions by interpreting new observations in view of prior knowledge
(O’Reilly et al., 2012). A growing body of evidence suggests that neurons in the nervous system
calculate Bayesian posterior probabilities of states and events based on observations provided by
sensory neurons (MacNeilage et al., 2008; Angelaki et al., 2009; Bobrowski et al., 2009; Fischer and
Peña, 2011; Lochmann and Deneve, 2011; Paulin and Hoffman, 2011; Paulin and van Schaik, 2014;
Paulin, 2015). It has also been shown that neuronal spikes in a network can act as Monte Carlo
samplers and perform Bayesian inference (Huang and Rao, 2014). Several computational models
have been proposed for Bayesian state estimation for arbitrary stochastic non-linear dynamical
systems (Gordon, 1993; Chen, 2003; Särkkä, 2013). Sequential Monte Carlo (SMC) is one such
online estimation algorithm that estimates the posterior density of state space by implementing

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00104
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00104&domain=pdf&date_stamp=2016-03-18
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:c.singhthakur@uws.edu.au
http://dx.doi.org/10.3389/fnins.2016.00104
http://journal.frontiersin.org/article/10.3389/fnins.2016.00104/abstract
http://loop.frontiersin.org/people/238900/overview
http://loop.frontiersin.org/people/95660/overview
http://loop.frontiersin.org/people/71414/overview
http://loop.frontiersin.org/people/21622/overview
http://loop.frontiersin.org/people/784/overview
http://loop.frontiersin.org/people/12768/overview

Thakur et al. Bayesian Estimation Using Stochastic Electronics

the Bayesian recursive equation. However, the SMC technique
is computationally expensive for real time applications. The
computational complexity of SMC arises from the need to
calculate a large number of discrete samples of the posterior,
which involve integrations over the high-dimensional space of
all possible random variables. Some real time implementations
of the SMC have been suggested that use clusters of computers to
implement the algorithm (Falcou and Chateau, 2006; Chitchian
et al., 2013). These are, however, very expensive solutions
in terms of area and computational power. One solution to
improve this would be to implement an Application Specific
Integrated Circuit. However, today’s smallest integrated circuit
(IC) technologies are susceptible to transient faults, known as soft
errors, due to IC reliability issues, alpha particles, cosmic rays
and reduction in noise margins by voltage scaling. This poses
enormous challenges in the design of deterministic circuits in
nanometer IC technology (Yu et al., 2008).

In this work, we describe two types of Probabilistic Graphical
Models (PGMs), namely the Hidden Markov Model (HMM) and
the Directed Acyclic Graph (DAG) network, and show how these
two popular classes of probabilistic algorithms can be built using
the same basic building blocks of stochastic hardware.

A PGM uses discrete data structures to efficiently encode
and manipulate probability distributions that involve up to
several thousands of variables (Pernkopf et al., 2014). Using the
HMM network, we propose a novel neuromorphic framework
for Bayesian computation, called the Bayesian Estimation and
Stochastic Tracker (BEAST) that utilizes SMC in spiking neural
networks. We show how the posterior probability distribution
of an HMM can be represented by the mean spike count
of a population of neurons. In order to explain the BEAST
framework, we use an example proposed by Paulin (2014), which
describes how the neurons in the optic lobe of a dragonfly could
infer the future location of a fruit fly based on the sensory spikes
generated as the fruit fly passes in front of the dragonfly’s retina.
In the second framework, referred to as the Bayesian INference
in DAG (BIND), we discuss how neural circuits can perform
inference in a DAG network. A DAG is a directed acyclic graph,
i.e., a graph with no path that starts and ends at the same vertex.
DAGs are used to encode a priori assumptions about individual
variables and among variables in causal structures (Koller and
Friedman, 2009). There are many DAG networks reported in the
literature. For example, Pradhan et al. (1994) have developed a
Computer-based Patient Case Simulation (CPCS) system, which
has 448 nodes and 908 arcs. These nodes represent various
diseases and predisposing factors or symptoms. Each node in the
CPCS graph has four possible values on average. Breese et al.
have developed another large DAG system for the diagnosis of
efficiency problems for large gas turbines (Breese et al., 1992).
Our proposed BIND hardware will allow such large networks to
run in real time.

There are some previous publications based on probabilistic
computation and pulse based arithmetic. Chakrapani et al. (2007)
introduced probabilistic CMOS architectures, where the output
of its gate primitives are probabilistic in nature due to the lower
supply voltage and the resulting small noise margin. Shanbhag
et al. (2010) have developed an Algorithmic Noise-Tolerance

(ANT) system, which exploits the statistical nature of application
level performance metrics, and matches it to the statistical
attributes of the device/circuit behavior. Murray (1989) has
developed pulse-based mixed signal neural network circuits.
Here, neurons generate pulses (spikes) based on their membrane
potential using a voltage controlled oscillator; and these spikes
are processed in the spike domain at the postsynaptic terminals
using pulse-based arithmetic. Pecevski et al. have also shown how
the spiking neurons carry out probabilistic inference through
sampling in the general graphical models (Pecevski et al., 2011).
In another work, Maass has shown how a network of spiking
neurons shares similarities with the Boltzmann machine and
how it can be applied in solving constraint satisfaction problems
and probabilistic inference (Maass, 2015). These prior works
concentrate on building deterministic systems from unreliable
parts (Chakrapani et al., 2007; Shanbhag et al., 2010) or
building neural network using pulse-based logic (Murray, 1989)
or developing probabilistic spiking algorithms, which are not
hardware friendly (Pecevski et al., 2011). Vigoda (2003) has
shown how analog circuits could perform probabilistic message
passing algorithms in binary factor graphs. Analog circuits are,
however, technology dependent and not easily portable across
different fabrication technologies. Although they are suitable
for smaller systems, it is difficult to build large systems using
analog circuits, as they are not programmable. In addition, the
design and testing of large analog systems is difficult compared to
digital systems because of the absence of standard design and test
flows. Furthermore, there are no standard compilers to convert
a model into analog circuits. Our implementations instead
build fundamentally probabilistic models for computation using
standard logic gates using state-of-the-art ASIC flow.

Here, we use Stochastic Computation (SC) as proposed by
Gaines (1969) for the hardware implementation of our proposed
Bayesian frameworks. A similar SC-based approach has been
described previously by Mansinghka et al. to implement Markov
Chain Monte Carlo algorithms in hardware (Mansinghka
et al., 2008). In the SC framework, numbers are represented
by bit-streams that can be processed using simple digital
circuits, and these numbers are interpreted as probabilities.
Standard computers are based on deterministic Boolean circuits
that simulate propositional deduction according to Boolean
algebra, while stochastic algorithms for solving inference under
uncertainty are best explained with probability theory. The
implementation of probabilistic algorithms on deterministic
computers has disadvantages such as the inability to exploit
parallelism of the algorithm, and inefficiency in terms of
computation time and memory usage. We have employed simple
logic gates to implement complex probabilistic algorithms using
the SC approach. Our work shows how to build Bayesian
computing machines using standard digital logic gates as
stochastic computational primitives.

MATERIALS AND METHODS

In this section we first describe the theory behind our approach
(2.1) followed by a section on the implementations (2.2). In

Frontiers in Neuroscience | www.frontiersin.org 2 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

the theory section, we first describe the principle of Bayesian
inference in an HMM. We then explain the BEAST and the
BIND frameworks. In the implementation section, we discuss
some canonical neural circuits, which serve as building blocks
for the implementation of the BEAST and BIND frameworks
in hardware. We then discuss the hardware implementation of
inference and learning in the BEAST framework, and inference
in the BIND framework.

Theory
Bayesian Inference in Hidden Markov Models
An HMM is a statistical tool for modeling a system characterized
by a process that itself is unobservable but generates an
observable sequence that depends on the underlying process.
In other words, it is a Markov process split into an observable
component and an unobservable or “hidden” component
(Rabiner, 1989). The unobserved component,Xt , may be referred
to as the signal process, and the observed component, Yt , as the
observation process. In a first order HMM, the evolution of a
hidden state depends only on its current state. The observation,
Yt , is a noisy function of Xt only. Xt may be estimated by
constructing its posterior distribution based only on the noisy
measurements or observations, Yt . For a discrete-time estimation
problem, the components of the first order HMM may be
represented as:

Xt = f (Xt−1, dt) (1)

Yt = g(Xt, vt) (2)

where, dt and vt represent random noise sequences with
unknown statistics in the discrete-time domain. The state
Equation (1) characterizes the state transitionmodel,P(Xt|Xt−1),
whereas equation (2) characterizes the observation model,
P(Yt|Xt). In a special case, where f and g are linear and dt
and vt are Gaussian, a closed loop analytical solution can be
obtained, which is known as the Kalman filter (Kalman, 1960).
The graphical model in Figure 1 illustrates the stochastic filtering
problem described as a generic state-space model. Given an
initial prior model, P(X0); a transition model, P(Xt|Xt−1); and
an observation model, P(Yt|Xt); the objective of the filtering
is to optimally estimate the current state at a time t, given the
observations up to time t, which amounts to estimating the
posterior density, P (Xt/Y1:t). The posterior density function
(PDF) may be obtained recursively in two stages—(i) prediction,
and (ii) update. In the prediction stage, the next state is predicted
from the current state using the state transition model, without
using any new observations. In the update stage, the predicted
state is corrected using the new observations at time, t.
Prediction stage:

P (Xt|Y1:t−1) =
∑

Xt−1

P (Xt,Xt−1|Y1:t−1)

Using the marginalization principle we obtain:

P (Xt|Y1:t−1) =
∑

Xt−1

P
(

Xt | Xt−1, Y1:t−1

)

P(Xt−1| Y1:t−1) (3)

FIGURE 1 | General architecture of an HMM. The random variable Xt is the

hidden state at time t. The random variable Yt is the observation at time t. The

arrows in the diagram denote conditional dependencies.

Since Xt does not depend on any past observations, the first term
on the RHS of Equation (3) is independent of Y1:t−1 so that we
can write:

P (Xt|Y1:t−1) =
∑

Xt−1

P (Xt | Xt−1)P(Xt−1| Y1:t−1)

where, P(Xt| Xt−1) is the transition model.
Update stage:

P (Xt|Y1:t) = P (Xt|Yt, Y1:t−1)

Using the marginalization principle again we get:

P (Xt|Y1:t) =
P(Yt | Xt)P

(

Xt| Y1:t−1

)

∑

Xt
P (Yt | Xt)P

(

Xt| Y1:t−1

) (4)

where, P(Yt |Xt) is the observation model, and P
(

Xt| Y1:t−1

)

is
as calculated in the prediction stage. For new data observed at
time t, the new information is used in the update stage using
Equation (4).

Bayesian Estimation and Stochastic Tracker (BEAST)

Framework
A simplified schematic of our BEAST framework for a dragonfly
observing a fruit fly is illustrated in Figure 2. It is a Bayesian
model that mimics a simplified neural system of a dragon fly,
as proposed by Paulin (2014). Here, a fruit fly moves against a
randomly flickering background. The sensory afferent neurons
in the optical lobe of the dragonfly fire probabilistically if there is
a fruit fly in the foreground, or if there is a false target (distractor)
in the background of the dragonfly’s receptive field. We have
simplified the BEAST framework by introducing two constraints:

(i) There will be only one fly in the field of vision of the
dragonfly at any time.

(ii) The fruit fly has only one degree of movement (one
dimensional motion), and it can move only one position to
the left, one position to the right, or stay at the same location.

In Figure 2, the first layer represents the sensory afferent
neurons, and each sensory neuron is connected to two Poisson
neurons (PN). Each PN generates spike trains of a firing rate
determined by the presence or absence of spike from the sensory

Frontiers in Neuroscience | www.frontiersin.org 3 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

FIGURE 2 | Simplified model of target tracking in a cluttered environment. A dragon fly tracks a fruit fly moving against a randomly flickering background. The

sensory afferent neurons of the dragonfly fire probabilistically if there is a fruit fly in the foreground, or a false target (black box) in the background of their receptive field.

Sensory neurons are implemented using a Poisson spike generation block (PN block). The inference neuron population computes the posterior probability distribution

by multiplying the sensory neuron output and the prior probability using a coincidence detector (implemented using an AND gate) and by normalizing the product

using a normalization circuit, which is shown as Norm. The prior probability of each state is calculated by sampling from the adjacent neuronal population posteriors

according to the transition probabilities. This is shown as the RS (resampling) block. The WTA block represents a winner-take-all circuit, which determines the

maximum of the posterior distribution across positions to estimate the fly position.

neuron. The firing rates of the PN neurons are functions of
the transition probability and the probability of the background
noise and these are learned in our model. The next layer
represents the inference neuronal circuits, which consist of
three different types of sub-circuits named according to their
functionality as the coincidence detector (CD) neuron, the
normalization (norm) neural circuit, and the resampling (RS)
neuron. The CD neuron fires a spike when all of its presynaptic
neurons fire at the same time. The norm neural circuit performs
normalization of the firing rate of its presynaptic neurons in
the spike domain. The RS neuron is connected spatially to its
neighbors, and reroutes the spikes based on the learned transition
probabilities. These sub-circuits are described in further detail
in Section Implementation. In our model, we assume that the
response time of the dragonfly is faster than the time taken by
the fruit fly to move a maximum of one step in one-dimensional
space. Thus, each RS neuron is spatially connected only to the
norm neural circuits of the neighboring receptive fields and
its own receptive field. For simplicity, let us consider that the
receptive field of the dragonfly has M sensory neurons, which
will divide the state space (Xt) into M discrete states reflecting
the fly’s position at time t. Each discrete state is associated
with a sensory neuron and an inference neuronal circuit. The
task of the dragonfly’s central nervous system is to predict the
fruit fly’s position in its receptive field at time t by using the
statistics of spikes generated by the sensory afferent neurons
until time (t − 1), and to update the prediction when it gets a

new observation, (Yt), at time t. The probabilities relevant to the
BEAST framework are:

(i) The probability of background activity, i.e., the presence of
a distractor in position k (bk = 1), is P

(

bk
)

= β

(ii) The probability of firing of the kth sensory neuron, either
due to a fruit fly or a distractor is P

(

Sk|fk,bk
)

= α

(iii) If there is a fly in the receptive field of the kth sensory
neuron, then it will fire with a probability α, independent
of what is in its receptive field background. The likelihoods
for the fly in this state, therefore, are:

L1k = P
(

Sk|fk
)

=

{

α if
(

spike if fly at k
)

1−α else (no spike if fly at k)

(iv) If there is no fly in the kth sensory neuron’s receptive
field, then there is a distractor in the receptive field with
probability β . The marginal likelihoods for no fly in this
state are:

L0k = P

(

Sk|
∼

fk

)

=

αβ if (spike when no fly, but
distractor at k)
1−αβ else (no spike when no fly
but distractor at k)

Since the dragon fly has no way of knowing whether a
sensory spike has resulted from a fly or from background
activity, both likelihoods are used each time a spike is
received.

Frontiers in Neuroscience | www.frontiersin.org 4 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

(v) We can estimate the fly’s position at time t using the
HMM framework. Using prediction and update according
to Equations (3) and (4), we can write:

P
(

ft|S1:t
)

∝ P(St | ft)
∑

Xt−1

P(ft | ft−1)P(ft−1|S1:t−1)

where, P(St |ft) is the likelihood, P(ft |ft−1) is the transition
probability, and P(ft−1|S1:t−1) is the posterior at the
previous time step. Here, S ∈ RM , where M is the total
number of states.

At each time step, we calculate the probability of the fly for
each state and a winner-take-all (WTA) circuit determines the
maximum a posteriori of the probability distribution across states
to estimate the fruit fly position.

Bayesian INference in DAG (BIND) Framework
As a second example of using stochastic electronics for Bayesian
Inference, we now demonstrate how spiking neurons can
perform inference in a DAG network. In the BIND framework,
we postulate a neural circuit for estimating the probability of
an event, based on multiple cues. As an example, consider a
simple Bayes network (Figure 3A), where a predator uses visual
(V) and auditory cues (A) to find its prey (denoted as Food,
F), with a probability distribution of P(F|V,A). The event of
catching the food, C, has a conditional probability distribution
of P(C|F). Another event, finding a mate (M), depends on the
fitness of the predator and is determined only by the visual
cue (V), with a conditional probability of P(M|V). Here, we
consider each random variable as binary, but the approach can
be generalized to use variables of multiple discrete values. In
Figure 3A, we have defined the various probabilities associated
with the different variables to demonstrate a simple DAG
network. The probability of a variable can be inferred from
the multivariate joint distribution by counting the number of
samples of the variable in a relevant time span. In the described
network, we sample each variable in a topological order. We
describe the steps below to show how this stochastic sampling
method (SSM) works and how a sample can be obtained:

1. Sample V from P(V) (say we get V = 1)
2. Sample A from P(A) (say we get A = 0)
3. Sample F from P(F|V = 1,A= 0) (say we get F = 1)
4. SampleM from P(M|V = 1) (say we getM = 1)
5. SampleM from P(C|F = 1) (say we get C = 0)

Now, we have a sample of the joint distribution
(V = 1, A = 0, F = 1, M = 1, C = 0). Similarly, we
repeat the above steps multiple times to obtain many samples. By
the law of large numbers, the actual probability of the variable
in our samples will converge to the true value. After sufficient
samples are obtained, the probability of any random variable, for
example, P(A|F,V) can be calculated as:

P (A|F,V) =
#samples with A = 1, when (F = 1&V = 1)

samples, when (F = 1&V = 1)

Implementation
Neuronal Building Blocks
In this section, we discuss the computational elements that
we have used to implement the proposed BEAST and BIND
frameworks. These neural circuits can be used to build massively
parallel, low precision circuits to solve the Bayesian inference
problem. Additionally, they provide the possibility of carrying
out complex computations with simple hardware, and offer a
number of benefits over other computing techniques, such as
using only very little silicon area, allowing simple communication
over one wire per signal, and a simple implementation. These
neural circuits also allow parallel hardware implementations,
thus increasing the computational speed. In this work, we have
used a bit width of 8 for all the parameters and the variables.

Poisson neuron
In a Poisson neuron (PN) model, the generation of each spike
depends only on the firing rate of the neuron and each spike is
independent of all the other spikes. In a PN model, the firing
rate of a neuron is proportional to the membrane potential
above some threshold (Heeger, 2000). We can implement this
by generating a sequence of random numbers, ri, uniformly
distributed between 0 and 1. For each time, if ri ≤ ρ, a
spike is generated, otherwise no spike is generated. Here, ρ

represents the firing rate. Since our implementation uses digital
logic gates, we represent probability with a precision of n bits.
This will map the probability between [0,2n−1], as shown in
Figure 4. Streams of random numbers are generated by an LFSR
(Linear Feedback Shift Register) circuit (Golomb et al., 1982).
Additionally, we propose an Inhomogeneous Poisson Neuron
(IPN), where the output spike rate is time-varying due to a change
in the membrane voltage by presynaptic spikes (Figure 5).

Coincidence Detector (CD) neuron
In the nervous system, a neuron can operate in two distinct
ways depending on its synaptic time constant. If the synaptic
time constant is longer than the mean inter-spike interval, the
neuron acts as a temporal integrator. In contrast, a neuron
acts as a coincidence detector if its synaptic time constant is
shorter than the inter-spike interval (König et al., 1996). Various
functions of the nervous system such as Hebbian learning,
binaural localization, and visual attention explain the importance
of coincidence detection (Jeffress, 1948; Attneave and Hebb,
1950; Singer and Gray, 1995). For the synchronous hardware
implementation of our BEASTmodel, we have chosen an abstract
model for the coincidence detector (CD) neuron and we have
implemented it using a simple AND logic gate.

Division and normalization neural circuit
Normalization (and division) has been suggested to be a
canonical neural computation in sensory systems (Carandini
and Heeger, 2012), and is thought to bring multiple functional
benefits to the neural computations. Evidence suggests that
in the olfactory system of invertebrates, GABA (Gamma
Aminobutyric Acid)-mediated inhibition is responsible for the
normalization operation (Olsen et al., 2010). In the retina,
normalization circuits adjust the gain of the neural responses

Frontiers in Neuroscience | www.frontiersin.org 5 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

FIGURE 3 | Probability estimation in a simplified Bayes network. (A) A predator uses visual cues (V) to find a mate (M), and both visual (V) and auditory (A) cues

to find food (F). C is the event of catching the food, F. Each table represents the probability of the event. Some of the events are conditional on other events, such as

event (F) depends on (V) and (A). The subscript 0 with the variable represents the probability of the absence of the event, while the subscript 1 represents the

probability of the event. For an instance, P(f1|v0, a1) = 0.3 means that the probability of finding the food given the auditory cue and absence of the visual cue is 0.3.

(B) Possible neural circuit corresponding to the Bayes network shown in (A). Each Poisson neuron represents a different random variable (Visual, Audition, Food,

Catch, and Mate), and each synaptic connection is associated with the emission probabilities of a spike [non-spiking probability is 1-(spike probability)] shown in

orange, and is related to the probability tables of (Figure 6). The probability of a variable can be inferred from the multivariate joint distribution by taking multiple

samples and considering only samples when spike occurs for that variable. By the law of large numbers, the estimation of the variable will be close to the true value.

For an instance, circuit to compute the probability of variable A given F and V is shown.

to efficiently use the available dynamic range (Carandini and
Heeger, 2012). Normalization circuits in the antennal lobe of
the fruit fly are thought to enable odorant recognition and
discrimination regardless of concentration (Olsen et al., 2010).

Also, normalization has been proposed to account for key
empirical principles of multisensory integration, where two
sensory inputs interact to modify neural responses (Ohshiro
et al., 2011).

Frontiers in Neuroscience | www.frontiersin.org 6 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

FIGURE 4 | Digital implementation of a Poisson neuron model. An n-bit

random number is generated for each sample clk and compared with the

spike rate defined by ρ. A spike will be generated whenever the random

number is lower than or equal to ρ.

A Division Neural Circuit (DNC) computes the division
of the firing rate of the input neurons in the spike domain.
Figure 5 shows a DNC, which generates spike trains with a rate
equal to the division of the two input firing rates. The DNC
is a combination of an IPN and a CD neuron. The DNC has
one excitatory input, Ei, and one inhibitory input, I1, coming
from a CD neuron. This CD neuron receives spike inputs
from the output of the DNC (recurrent connection) and from
the presynaptic neurons (forward connection). The membrane
voltage (ρ) of a DNC is integrated using a saturating counter
with 2n states, which increases by one unit upon receiving
an excitatory spike, and decreases by one unit upon receiving
an inhibitory spike. The DNC generates a spike based on its
instantaneous membrane voltage (ρ) at each time step. At each
time in the output sequence, an n-bit random number (r) is
generated, and if r ≤ ρ, then a spike is generated, otherwise
no spike is generated. We can write the equations for the DNC as
below:

E1 = P1; E2 = P2

where, E1 and E2 represent excitatory synaptic inputs to the
DNC, and P1 and P2 represent the firing rates of the presynaptic
neurons. The output spike from the DNC and the presynaptic
spike are independent of each other, thus the average firing rate
of the CD neuron would be the multiplication of the firing rate of
its inputs.

I1 = PDNC ∗ P2

where, I1 is the output of the CD neuron and represent inhibitory
connections to the DNC. PDNC is the output firing rate of the
DNC. The membrane voltage is represented as a counter, which
acts as an integrator for incoming excitatory and inhibitory
spikes. The output of the counter PDNC can be written as:

PDNC =

∫

P1− PDNC ∗ P2

ṖDNC = P1 − PDNC ∗ P2

At equilibrium, the change in output probability is zero, i.e.,
ṖDNC = 0, which means excitatory and the inhibitory inputs

FIGURE 5 | Division neural circuits for spike train inputs, P1 and P2. (A)

Division neural circuit for P1 ≤ P2 (B) Division neural circuit to represent the

division of P1 and P2 expressed as the ratio of the two output lines. It can be

used irrespective of whether P1 is less than, equal to or greater than P2.

from a neuron are equal. Thus,

E1 = I1

P1 = PDNC ∗ P2

PDNC =
P1

P2
(5)

The output of the DNC thus computes the division of the firing
rate of its inputs as demonstrated in Equation (5), as long as P1
and P2 vary more slowly than the time it takes for the DNC to
reach its equilibrium state. This circuit is only suitable for P1 < P2
and will saturate otherwise, since the stochastic building blocks
cannot represent numbers larger than 1. The feedback from the
output node to the CD neuron generating I1 ensures that, even
if P2 is larger than P1, the membrane potential cannot go below
0. Fortunately, in probabilistic computation, all the variables
are in the range of [0,1] and the circuit is thus appropriate for
probabilistic computation.

To deal with the case where P1 > P2, we need to represent
the output signal using two lines ∼ PDNC & PDNC. The existing
circuit can then be modified by connecting∼ PDNC and P1 using
an AND gate to create the excitatory input (Figure 5B). In this
case,

E1 = ∼ PDNC ∗ P1

ṖDNC = ∼ PDNC ∗ P1 − PDNC ∗ P2

At equilibrium, the change in the output probability is zero, i.e.,
ṖDNC = 0, which means that the excitatory and the inhibitory
inputs of the counter are equal. Thus,

∼ PDNC ∗ P1 = PDNC ∗ P2
PDNC

∼ PDNC
=

P1

P2

The DNC can be generalized for multiple excitatory and
inhibition connections. We have developed a normalization

Frontiers in Neuroscience | www.frontiersin.org 7 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

(norm) neural circuit by connecting an additional inhibition
input to a DNC. The norm neural circuit computes a
normalization of the firing rate of the input neurons in the
spike domain. Figure 6 shows two norm neural circuits, which
generate spike trains with a rate equal to their input firing rate
divided by the sum of the input firing rates. Each norm neural
circuit is a combination of an Inhomogeneous Poisson Neuron
(IPN) and two CD neurons. Each IPN has one excitatory input,
Ei, and two inhibitory inputs, Ii1 & Ii2 (here,i ∈ 1, 2), coming
from two CD neurons. These CD neurons receive spike inputs
from the output of the IPN neurons (recurrent connections)
and from the presynaptic neurons (forward connections). The
membrane voltage (ρ) of an IPN is integrated using a saturating
counter, which increases by one unit upon receiving an excitatory
spike, decreases by one unit if either of the inhibitory inputs
receives a spike, and decreases by two units if both the inhibitory
inputs receive spikes. The IPN generates a spike based on its
instantaneous membrane voltage (ρ) at each time step. Similar
to DNC circuit, we can write the equations for the norm neural
circuit as below:

E1 = P1;E2 = P2

where, E1 and E2 represent excitatory synaptic inputs to the
norm neural circuits, and P1 and P2 represent the firing rates
of the presynaptic neurons. The output spike from the norm
neural circuit and presynaptic spike are independent of each
other, thus the average firing rate of the CD neuron would be the
multiplication of the firing rate of its inputs.

I11 = P1_norm ∗ P1

I12 = P1_norm ∗ P2

I21 = P2_norm ∗ P1

I22 = P2_norm ∗ P2

where, I11, I12, I21, and I22 are outputs of the CD neurons and
represent inhibitory connections to the norm neural circuits.

FIGURE 6 | Normalization neuronal circuits. The schematic shows two

normalization circuits that normalize the spike train inputs, P1 and P2.

P1_norm and P2_norm are the output firing rates of the norm neural
circuits.

At equilibrium, the excitatory input and the inhibitory inputs
from a neuron are equal. Thus,

E1 = I11 + I12

P1 = P1_norm ∗ P1 + P1_norm ∗ P2

P1_norm =
P1

P1 + P2
(6)

Similarly,

P2_norm =
P2

P1 + P2
(7)

The output of the norm neural circuits thus computes the
normalized version of its input firing rate as demonstrated in
Equations (6) and (7), as long as P1 and P2 vary more slowly
than the time it takes for the norm neural circuits to reach their
equilibrium state.

Stochastic exponential moving average (SEMA)
An exponential moving average filter is used for smoothing time
series input data. It is a type of a recursive low pass filter, which
can be described by Equation (8).

Lt = σ ∗ Lt−1 + (1− σ) ∗ St (8)

where, σ is the smoothing parameter, and 0 < σ< 1, but σ is
generally close to 1, which will make the output Lt respond more
slowly to a change in the input samples, St . We have used σ

equal to 0.99 for all our simulations below. Lt represents the
current average of the series as estimated from the data up to
the present and St represents the current observation. The value
of L at any given time is calculated from its previous value.
We have implemented a stochastic version of the exponential
moving average, which we refer to as the SEMA (stochastic
exponential moving average). In the SEMA filter, all the variables
of Equation (8) are represented by spike trains. Implementation
of the SEMA filter is shown in Figure 7. We convert all variables,
of size n bits, into spike trains using a random number generator
circuit implemented using the commonly used LFSR (Linear
Feedback Shift Register) circuit (Golomb et al., 1982). The
smoothing constant, σ , is also represented with n bits precision
and normalized between [0,2n−1]. Thus, in Equation (8), (1−σ)

is replaced by (2n − σ). In our implementation, we define two
different time domains: HMM time steps and system clock time
steps. One HMM time step comprises of 210 system clock steps.
We explain the different time domains in further detail in Section
Hardware Implementation of the BEAST Framework.

Linear feedback shift register (LFSR)
An LFSR is a shift register whose input bit is a linear function
of its previous state. Some of the outputs of the shift registers
are combined using XOR gates to form the feedback mechanism.
Here, we have used the maximum length sequence in an LFSR,
which generates 2n−1 random numbers before it repeats itself,
where n is the number of bits in the shift register. The feedback

Frontiers in Neuroscience | www.frontiersin.org 8 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

FIGURE 7 | Schematic of the stochastic exponential moving average (SEMA) filter.

points in the shift register (called taps) are chosen based upon
a characteristic polynomial for that number of taps to ensure a
maximum length sequence. The list of taps for the maximum
length LFSR have been published previously (Alfke, 1996). An
LFSR is known to be a very simple, but not very good random
number generator. The output sequence of an LFSR is not
truly random and the output streams can be determined if
the initial seed and the position of the XOR gates is known.
Another concern is the periodicity of an LFSR, where the output
sequence repeats itself after achieving themaximum length. Short
repetition periods would affect the performance of the system
because it would result in high correlation among the bit streams.
This can be minimized by using a large n for the LFSR. In our
frameworks the key concern is to ensure minimal correlation
between the bit streams that are inputs to the stochastic elements
such as the AND gate. As all our internal variables are 8 bits in
size, a 10-bit LFSR of which we only select 8 bits for comparison,
will generate random numbers with a large enough period to
ensure there is no correlation among the bit streams of the
variables.

Hardware Implementation of the BEAST Framework
We consider M sensory neurons and their corresponding
M inference neuronal circuits, which include the likelihood,
posterior and prior blocks in our BEAST framework as shown
in Figure 2, and define an HMM time step corresponding to

each step of the fruit fly. In one HMM step, sensory neurons will
operate only once, while all the inference circuits will operate N
times. An HMM time step of size 1 divided into N time bins
defines the hardware system clock as 1/N. In this version, we
can estimate the posterior distribution from the spike counts.
Such a neural implementation requires few neurons, but needs
a long period of time (N) to compute the spike count. An
alternative implementation is also possible, where there are N

inference neuronal circuits corresponding to the receptive field
of each sensory neuron, and the inference circuit operates in the
same HMM time step. This alternate implementation would be
more biologically plausible, because the neurons do not need
to spike faster than the HMM time step. However, this would
need M*N inference neuronal circuits, which would require a
large area to implement in hardware. We define that the nervous
system of our virtual dragonfly operates at the time scale of
milliseconds, and we have used N equal to 1024 (2∧10). This
will constrain our system clock to be no slower than ∼1 MHz.
The typical clock frequency of an FPGA (Field Programmable
Gate Array, the hardware platform on which we implement our
BEAST framework), is hundreds of MHz and thus we can easily
meet the timing restrictions imposed by the dragonfly’s nervous
system. We have chosen the number of sensory neurons, M, as
17 for our implementation because we need to divide by (M–1)
during the learning of the distractor probability (see Appendix
2 in Supplementary Material). Division by 16 can be easily

Frontiers in Neuroscience | www.frontiersin.org 9 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

implemented in hardware using a shift operation. All pathways
are implemented in parallel on the FPGA hardware.

We will first show the hardware implementation of the
model to perform the Bayesian inference of the hidden state,
assuming all parameters are known. Next, we will show how
we can estimate the various parameters of the model such as
the transition probability, the observation probability and the
distractor (background noise) probability, and their hardware
implementation.

Inference
We present an algorithm similar to the SMC technique to
compute the posterior probabilities of the state space to estimate
the fruit fly position. SMC is a Monte Carlo technique useful
for sequential Bayesian inference (Gordon, 1993). In the BEAST
framework (Figure 2), spikes are used to represent a probability
distribution over some set of states, such that the expected sum
of the spikes in any state is proportional to the probability of
that state. For example, if the posterior of a state is represented
by a train of 256 spikes in one HMM time step (2∧10 clock
cycles), then the posterior probability of that state is 0.25. As
shown in Figure 2, the RS (resampling) neuron block has spatial
connections which encode the transition model, P(ft |ft−1),
to estimate the fruit fly position. The three basic building
blocks of the implementation are the likelihood generator block,
the posterior generator block, and the prior generator block.
These blocks are described in detail below. The pseudocode
for the model’s implementation is provided in Appendix 1 of
Supplementary Material.

The likelihood generator block (green boxes, Figure 2) has a
Poisson neuron (PN), which generates spike trains based on its
intrinsic firing rate (α, or αβ as indicated in brackets in Figure 2).
For each discrete fly location, i, there are two PNs for the two
likelihoods, L1i and L0i, because the dragon fly does not know if
a sensory spike is due to a fly or due to background activity. For
a sensory spike at location, i, PN(L1i) encodes for the potential
presence of fly and it fires with probability α, independent of what
is in its receptive field background, and spike trains are generated
to encode probability α. At the same time, PN(L0i) encodes the
potential presence of a distractor and if there is no fly in the
afferent’s receptive field, then there is a distractor in the receptive
field with probability β , and spike trains are generated by PN(L0i)
to encode the probability αβ . In the absence of a spike from the
ith afferent neuron, a PN(L1i) generates spike trains to encode the
probability P

(

Sk = 0|fk
)

= 1−α, and another PN(L0i) generates
spike trains to encode the probability P

(

Sk = 0|fk
)

= 1 − αβ .
These can be interpreted as the spontaneous rates of the PNs, i.e.,
in absence of any stimulus.

The posterior generator block, consisting of the coincidence
detector (CD) neurons and the normalization (norm) neural
circuit, is shown in orange in Figure 2. According to Bayes
rule, the posterior function is proportional to the product of
the likelihood function and the prior function. As the likelihood
spike train is independent of the prior spike train, the posterior
can be implemented using a simple AND logic gate as an abstract
model of the CD neuron. The output spike trains of the CD
neurons are un-normalized posterior probabilities of not having

a fly and having a fly in the receptive field, respectively, which are
passed to the norm neural circuit to generate normalized spike
trains.

The prior generator block is shown in magenta in Figure 2.
Recurrent connections in the BEAST framework are from
adjacent norm neural circuits and from the norm neural circuit
of the same pathway. The recurrent connection weights are
based on the transition probabilities. We have shown these
connections in Figure 2 using red, orange and purple arrows.
For the sake of simplicity in the BEAST framework, we have
considered pathways n and 1 to be adjacent to each other, but
in reality one could implement explicit border conditions for
the array. As shown in Figure 2, the RS (resampling) block for
the ith pathway samples spikes from the posterior distributions
of adjacent norm neural circuits, i–1, i and i+1, according to
their transition probabilities. In hardware implementation, the
prior probability of each state is calculated by sampling from the
adjacent pathway using an inverse transform samplingmethod in
a discrete distribution. This method works as follows:

1. Generate a randomnumber from a uniform distribution in the
interval [0,1].

2. Check where this random number falls in a cumulative
distribution. For example, if we have a transition probability of
(0.2, 0.1, 0.7) for (Left, Stay, Right) in the BEAST framework,
this gives a cumulative distribution of (0.2, 0.3, 1). We
resample from adjacent distributions (i–1, i and i+1) based
on which interval of the cumulative distribution function the
random number falls in.

3. Repeat steps 1 and 2 for N times.

The winner-take-all (WTA) circuit in Figure 2 computes the
maximum a posteriori (MAP) estimate of the probability
distribution across states. The output of the WTA circuit is the
most probable fruit fly position at time t.

Learning
In the previous section, we have assumed that the model
parameters—transition probabilities, observation probabilities
and distractor probabilities, are known. In this section, we
describe how these parameters can be estimated from noisy
observations and how these can be implemented using very
simple digital circuits. In the BEAST framework, the dragonfly
first learns the observation model parameters, α and αβ , under
static conditions assuming the fruit fly is not moving. We do not
calculate β as a separate parameter, because in our model we do
not use β explicitly, but it is always used as the αβ term. Then, we
relax the static constraints and the dragonfly learns the transition
probability of the moving fruit fly in a dynamic environment.

The observation model parameters, α and αβ , are estimated
by observing spikes of the sensory neurons and collecting
statistics of the spikes over many HMM time steps. During
learning of the observation model, we assume that there is only
one fly and it is not moving. Thus, in each HMM time step, a
sensory spike will be generated with probability α at the location
corresponding to the fly position, and with probability αβ at all
other locations. We initialize parameters α and αβ at the start of
the learning process, and update these at each HMM time step

Frontiers in Neuroscience | www.frontiersin.org 10 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

based on a spike (or no spike) for each location using stochastic
exponential moving average filters (Section Neuronal Building
Blocks). At each HMM time step, the maximum value of all
SEMA filters represents an estimated α and the remaining values
are averaged to represent αβ . For the next HMM time step, these
new values of the parameters are used. After collecting a sufficient
number of spikes, the output of each SEMA filter converges
toward the true value of the probability for each location. As the
fly is not moving, the location corresponding to the fly position in
the receptive field will converge to a probability α and the other
locations will converge to probability αβ . The pseudocode for
the estimation of this parameter is provided in Appendix 2 of
Supplementary Material.

The transition probabilities are calculated based on the
estimated location of the fly in the previous and the current
HMM time steps. In our model, the fruit fly can move only one
location in one HMM time step, which is effectively saying that
the neural system estimates positions faster than the fruit fly
can move. The transition probability (trans_prob vector in the
pseudocode in Appendix 3 of Supplementary Material) of each
direction is updated based on the direction the fruit fly moves in
each HMM step, and smoothed using the SEMA filter described
in Section Neuronal Building Blocks. At each HMM time
step, we calculate the difference between the current estimated
location and the previous estimated location (say, variable delta).
The possible values of delta are (−1,0,1), which represent the
movement in (Left, Stay, Right) directions, respectively. We
initialize the probability of fly movement in each direction
[L,S,R] to be equally likely, i.e., 1/3 in each direction, and these
probabilities are updated at each HMM time step based on the
value of delta using SEMAfilters (3 filters, one for each direction).
For instance, if delta is 1, at an HMM time step, then right
probability [R] will be increased and other two [L,S] will be
decayed from their previous value. For the next HMM time step,
these new values of the probabilities are used. After collecting
sufficient statistics of the fly movement, the output of each SEMA
filter converges toward the true value of the transition probability
in each direction. We do not update transition probability when
the absolute value of delta is more than one, because it indicates
that the estimated value of the fly location is not correct either
in the current or the previous time step. The pseudocode for
the estimation of this parameter is provided in Appendix 3 of
Supplementary Material.

Hardware Implementation of the BIND Framework
The BIND framework and its possible neural implementation are
described in Figure 3. Here, we show that a network of stochastic
spiking neurons can perform the probabilistic inference using
sampling. Each random variable (V, A, F, M, C) is implemented
as a PN, and the connection weights are determined by their
probability distribution, which are described in a tabular form
in Figure 3A. The coincidence detection of spikes from the
PNs can be modeled as CD neurons (König et al., 1996) or
as active dendrites (Softky, 1994; London and Häusser, 2005).
Here, we consider each random variable as binary, which can
be generalized to many possible values. In Figure 3B, these
various probabilities (shown in orange) can be treated as synaptic

connections among the neurons, and each synaptic connection
is associated with the emission probabilities of a spike, thus
the non-spiking probability would be one minus the spiking
probability.

In the neural circuit of Figure 3B, the probability of a
variable can be inferred from the multivariate joint distribution
by estimating the spike rate of the corresponding PN. The
steps describing how the neural sampling works are detailed
in Section Bayesian INference in DAG (BIND) Framework.
This can be achieved by taking multiple samples and only
considering those samples where a spike is generated in the
PN of the corresponding variable. This calculation also requires
the division operation (Section Bayesian INference in DAG
(BIND) Framework), which can be implemented using the DNC
(Figure 6). In Figure 3B, we have also shown a division neural
circuit to infer the probability of variable A given F and V.
Similarly, we can build all possible neural circuits to infer the
probability of any variable dependent on other variables.

RESULTS

BEAST Framework
We have implemented the BEAST framework both in software
(MATLAB), and in hardware on the FPGA. The hardware
implementation is exactly similar to its software version, except
for the random number generation logic. In hardware, we have
used an LFSR circuit, but in software the built-in random
number generation function is used to speed up simulation. This
difference has no noticeable effect on system performance and all
results presented here are thus from the software version, due to
the ease of simulating the various parameter ranges and collecting
the results. We have also implemented the Bayesian recursive
equations using floating point representations and compared the
tracking accuracy with that of our stochastic computation (SC)
framework. We have simulated the system for 50 HMM time
steps. We have created a flymov function, which emulates the
fly movement based on its transition probability and generates
the environmental noise with probability β . We initialize the fly
position from a random position in the receptive field of the
dragonfly. Based on the transition probability in each time step,
the fly moves either to the left, to the right or stays at the same
position compared to its previous position. A binary noise event
is added at each position of the receptive field with probability β .
The resulting vector is used as the input to the BEAST system.
At each time step, the dragonfly estimates the true position of the
fly based on the internal model of the fly, modeled as an HMM
framework. All the states in the receptive field of the dragonfly
are arranged in a parallel neural path. At each HMM time step,
the dragonfly receives noisy observations about the fly for each
path, which passes through the sensory neuron (Likelihood), CD
neuron (Posterior), and the norm circuit followed by the RS
circuit (Prior). At the end of each HMM step, the maximum
charge stored in the norm circuit (value of the counter) denotes
the MAP estimate of the fly position. The bit size of the counter,
which is used inside the norm circuit, has a bit width size of
8. We have used 210 clock cycles to simulate one HMM time
step. The observation and transition probabilities used during the

Frontiers in Neuroscience | www.frontiersin.org 11 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

inference and the learning process arementioned in the following
sections.

Inference in the BEAST Framework
Figure 8 shows the tracking results obtained using a fixed value
of parameters. In Figure 8, blue circles represent the movement
of the fruit fly, while the red curve represents the dragonfly’s
estimate of the fruit fly’s position. In this simulation we have
used 17 possible states in the receptive field of the dragonfly,
and at each time step, the fruit fly is likely to be in one of those
states. The probability of spikes when there is a fruit fly in a
given state, α, was chosen to be 0.9 and the noise (distraction)
probability, β , was chosen to be 0.2. The transition probabilities
corresponding to [Left, Stay, Right] were [0.2, 0.1, 0.7]. The
sensory afferent neurons of the dragonfly fired probabilistically
(α = 0.9) if there was a fruit-fly in the foreground or a false target
in the background of their receptive field, and the presence of a
spike at each sensory neuron in either case is represented by black
crosses “x.” In Figure 8, the simulation shows that the dragonfly
tracks the fruit fly in the presence of multiple distractors, with a
prediction accuracy of 80% (i.e., the dragonfly (red curve) tracks
the fruit fly (blue circle) 40 times out of a total of 50 time steps)
using the parameters α, β and the transition probabilities as 0.2,
0.9 and [0.2, 0.1, 0.7] respectively.

We measured the effects of varying the parameters, α and
β , on the accuracy of estimation of a fruit fly position using
BEAST. Figure 9 shows the estimation accuracy for six different
values of α and four different values of β , and compares the
SC implementation with the floating point version (dotted line).
For direct comparison, we have performed the simulations
with the same random seed for both implementations. The
tracking accuracy in the floating point implementation is slightly
better than using SC, due to the variance in the stochastic
representation. Each point in the figure is calculated by taking

the mean of 10 different simulations. It is evident that increasing
the noise (distraction) probability β negatively influences the
tracking capability of the dragonfly by degrading the estimation
accuracy. The estimation accuracy is also degraded as α

decreases, indicating that imperfect propagation of information
from the sensory neurons affects the tracking capability of the
dragonfly.

FIGURE 9 | Tracking accuracy of the BEAST framework as a function

of α and β. Each point is calculated by taking the mean of 10 different

simulations. The probability of background activity, i.e., the presence of

distractor is β and the probability of firing of the sensory neuron, either due to

a fruit fly or a distractor is α. The performance results are compared for both

types of implementations, using stochastic computation framework and using

floating point implementation (dotted line).

FIGURE 8 | Model tracking results. A fruit fly moves against a randomly flickering background (β = 0.2). The sensory afferent neurons of the dragonfly fire

probabilistically (α = 0.9) if there is a fruit-fly in the foreground or a false target in the background of their receptive field, and the presence of a spike at each sensory

neuron in either case is represented by “x.” Inference neurons compute the posterior probability for each possible state using a given transition probability—in the

example we use (0.2, 0.1, 0.7) for (Left, Stay, Right)—and a winner-take-all circuit determines the maximum a posteriori estimate of the fly’s position at each time,

shown by the red curve. “
⊗

” represents the fly position detected successfully by a sensory neuron, while “O” represents failure of the sensory neurons to detect the

fly. This simulation shows that the dragonfly tracks the fruit fly even in the presence of distractors, with a prediction accuracy of 80% using the above-mentioned

parameters.

Frontiers in Neuroscience | www.frontiersin.org 12 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

FIGURE 10 | Estimation of α, β and the transitional probability. (A)

Histogram of the estimated observation probability (α) is shown using pink

bars. True (0.8) and average estimated (0.79) observation probabilities are

shown using black and pink dotted lines, respectively. (B) Histogram of the

estimated parameter αβ is shown using pink bars. True (0.16) and estimated

(mean) parameter αβ (0.159) are shown using black and pink dotted lines,

respectively. (C) Histogram of the estimated transition probabilities [Left, Stay,

Right] of 100 different simulations are shown in [Green, Blue, Pink],

respectively. True transition probability [0.1, 0.3, 0.6] and estimated (mean)

transition probability [0.105, 0.302, 0.59] are shown using black and pink

dotted lines, respectively.

Learning in the BEAST Framework
In this section, we show the learning results of the various
parameters of the BEAST framework. These parameters are
learnt independently in the model. The implementation of
learning is described in Section Hardware Implementation of the
BEAST Framework.We have performed the simulation 100 times
and calculated the mean of the results of all the simulations.
Figure 10 shows the estimation of α, αβ and the transition
probabilities. In our simulation, the fruit fly was moving [Left,
Stay, Right] with actual transition probabilities of [0.1, 0.3, 0.6],
β was 0.2, and α was 0.8, i.e., αβ was 0.16. We initialized the
simulation with a transition probability estimate of [0.333, 0.333,
0.334], α of 0.6 and β of 0.1. The estimated values of the transition
probability, α and αβ at the end of the simulation converged to
[0.105, 0.302, 0.59], 0.79, 0.159.

Inference Results of the BIND Framework
Here, we have compared inference of a few variables conditioned
on other variables in the BIND framework, obtained through
our SSM for different numbers of samples (mean and standard
deviation of 30 results) to those calculated analytically (Table 1).
As the number of samples increases, the variance in the result
becomes smaller.We have represented random variables as n bits,
which will determine the number of samples as 2n. It can be seen
that the result using SSM is similar to the analytical solution,
however, the analytical calculation of a probability distribution
in a multi-dimensional space is computationally very expensive.
The SSM requires only the very simple building blocks presented
above to implement Bayesian networks on an IC, and is thus very
efficient in terms of silicon area.

DISCUSSION

We have presented Stochastic Computation building blocks for
Bayesian Inference which can be very simply implemented in
hardware. With these building blocks, we have implemented a
simplified fly tracking algorithm using the BEAST framework,
which approximates Bayesian filtering using spikes as Monte
Carlo samples of probability distributions. In our BEAST
framework, first we have assumed that the transition probabilities
and the observation models (α, β) are known and shown the
tracking performance of the dragonfly corresponding to these

TABLE 1 | Comparison of the probabilities of the BIND framework (Figure 3), calculated using the SSM for various samples and the analytical methods.

Probability Analytical Stochastic sampling method (SSM)

2∧13 Samples

(8192)

2∧12 Samples

(4096)

2∧10 Samples

(1024)

P(C) 0.368 0.367 ± 0.005 0.368 ± 0.007 0.3701 ± 0.015

P(C|V) 0.555 0.554 ± 0.009 0.556 ± 0.013 0.564 ± 0.025

P(A|F) 0.437 0.438 ± 0.009 0.436 ± 0.014 0.431 ± 0.029

P(A|F,V) 0.391 0.391 ± 0.010 0.389 ± 0.014 0.386 ± 0.029

P(V|F,M) 0.988 0.987 ± 0.003 0.987 ± 0.04 0.987 ± 0.009

Frontiers in Neuroscience | www.frontiersin.org 13 March 2016 | Volume 10 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

parameters. We have also shown how the model parameters can
be learnt and implemented using simple digital gates. Further, the
posterior distribution of all the possible fly states is encoded as a
sampled distribution represented by spikes across the inference
neural population. The BEAST framework is based on an HMM,
wherein sensory neurons of a dragonfly make noisy observations
of external fruit fly positions at discrete time steps to predict the
future location of a fruit fly, and update their belief each time a
new observation is made. Here, we have presented neural circuits,
and shown how these can be easily implemented using simple
digital logic gates. We have implemented the BEAST framework
on hardware and shown its capability to perform computations
in real time.

We have also used the building blocks to implement inference
in a probabilistic graph using SSM (the BIND framework).
Implementation of this kind of sampling method on hardware
is very area efficient and massively parallel systems can be
built to run in real time. Our work demonstrates that complex
probabilistic algorithms such as discrete HMM and DAG can be
implemented in hardware, and can perform the computation in
real time.

There is increasing evidence in neuroscience that estimation
and inference in the brain is similar to Bayesian Inference.
Thus, it would be helpful for neuroscience community if
large biological plausible Bayesian models can be built on
hardware to run in real time, which is difficult to simulate
otherwise on a computer. Probabilistic graphical models provide

a powerful framework to represent complex real world scenarios
by combining probabilities (Larrañaga and Moral, 2011), which
can be inferred approximately using SSM in real time. One of the
potential applications of these systems is in speech recognition,
where we need to build hierarchical HMM for syllables and
words. Since this requires parallel implementation, our approach
would be suitable to implement it in hardware to run in real time.

For the BIND framework, we are targeting to build a
compiler, which can convert any DAG network into Verilog
code that can be ported on an FPGA to infer random variables
based on the observed variables using the sampling method.
The implementation of these frameworks using simple logic
gates may pave the way for a new kind of circuit paradigm
called stochastic electronics (Hamilton et al., 2014), which will
use randomness for its computation and will be optimal for
probabilistic algorithms.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2016.00104

REFERENCES

Alfke, P. (1996). Efficient shift registers, LFSR counters, and long pseudo-random

sequence generators. TechNotes 1996, 1–6.

Angelaki, D. E., Gu, Y., and DeAngelis, G. C. (2009). Multisensory integration:

psychophysics, neurophysiology, and computation. Curr. Opin. Neurobiol. 19,

452–458. doi: 10.1016/j.conb.2009.06.008

Attneave, F. B. M., and Hebb, D. O. (1950). The organization of behavior; a

neuropsychological theory. Am. J. Psychol. 63, 633. doi: 10.2307/1418888

Bobrowski, O., Meir, R., and Eldar, Y. C. (2009). Bayesian filtering in spiking neural

networks: noise, adaptation, and multisensory integration. Neural Comput. 21,

1277–1320. doi: 10.1162/neco.2008.01-08-692

Breese, J. S., Horvitz, E. J., Peot, M. A., Gay, R., and Quentin, G. H.

(1992). “Automated decision-analytic diagnosis of thermal performance in gas

turbines,” in ASME 1992 International Gas Turbine and Aeroengine Congress

and Exposition (Cologne).

Carandini, M., and Heeger, D. J. (2012). Normalization as a canonical neural

computation. Nat. Rev. Neurosci. 13, 51–62. doi: 10.1038/nrn3136

Chakrapani, L. N., Korkmaz, P., Akgul, B. E. S., and Palem, K. V. (2007).

Probabilistic system-on-a-chip architectures. ACM Trans. Design Autom.

Electron. Syst. 12, 29. doi: 10.1145/1255456.1255466

Chen, Z. (2003). Bayesian filtering: from Kalman filters to particle filters, and

beyond. Statistics 182, 1–69. doi: 10.1080/02331880309257

Chitchian, M., Simonetto, A., Van Amesfoort, A. S., and Keviczky, T. (2013).

Distributed computation particle filters on GPU architectures for real-time

control applications. IEEE Trans. Control Syst. Technol. 21, 2224–2238. doi:

10.1109/TCST.2012.2234749

Falcou, J., and Chateau, T. (2006). “Real time parallel implementation of a

particle filter based visual tracking,” inCIMCV 2006-Workshop on Computation

Intensive Methods for Computer Vision at ECCV (Graz), 33–40.

Fischer, B. J., and Peña, J. L. (2011). Owl’s behavior and neural representation

predicted by Bayesian inference. Nat. Neurosci. 14, 1061–1066. doi:

10.1038/nn.2872

Gaines, B. R. (1969). “Stochastic computing systems,” in Advances in Information

Systems Science, Vol. 2 (New York, NY: Springer US), 37–172. doi: 10.1007/978-

1-4899-5841-9_2

Golomb, S. W., Welch, L. R., Goldstein, R. M., and Hales, A. W. (1982). Shift

Register Sequences. Laguna Hills, CA: Aegean Park Press.

Gordon, N. J. (1993). Noval approach to nonlinear/non-Gaussian Bayesian state

estimation. IEE Proc. Radar Signal Process. 140, 107–113. doi: 10.1049/ip-f-

2.1993.0015

Hamilton, T. J., Afshar, S., van Schaik, A., and Tapson, J. (2014). Stochastic

electronics: a neuro-inspired design paradigm for integrated circuits. Proc. IEEE

102, 843–859. doi: 10.1109/JPROC.2014.2310713

Heeger, D. (2000). Poisson model of spike generation. Handout 1–13. Available

online at: http://www.cns.nyu.edu/~david/handouts/poisson.pdf

Huang, Y., and Rao, R. P. N. (2014). “Neurons as Monte Carlo samplers: Bayesian

inference and learning in spiking networks,” in Advances in Neural Information

Processing Systems 27, eds Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger (Newry: Curran Associates, Inc.), 1943–1951.

Available online at: http://papers.nips.cc/paper/5273-neurons-as-monte-

carlo-samplers-bayesian-inference-and-learning-in-spiking-networks.pdf

Jeffress, L. A. (1948). A place theory of sound localization. J. Comp. Physiol. Psychol.

41, 35–39. doi: 10.1037/h0061495

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

J. Basic Eng. 82, 35. doi: 10.1115/1.3662552

Koller, D., and Friedman, N. (2009). Probabilistic Graphical Models: Principles and

Techniques, 1st Edn. Cambridge, MA; London: MIT Press.

König, P., Engel, A. K., and Singer, W. (1996). Integrator or coincidence detector?

The role of the cortical neuron revisited. Trends Neurosci. 19, 130–137. doi:

10.1016/S0166-2236(96)80019-1

Larrañaga, P., and Moral, S. (2011). Probabilistic graphical models in artificial

intelligence. Appl. Soft Comput. 11, 1511–1528. doi: 10.1016/j.asoc.2008.

01.003

Lochmann, T., and Deneve, S. (2011). Neural processing as causal inference. Curr.

Opin. Neurobiol. 21, 774–781. doi: 10.1016/j.conb.2011.05.018

Frontiers in Neuroscience | www.frontiersin.org 14 March 2016 | Volume 10 | Article 104

http://journal.frontiersin.org/article/10.3389/fnins.2016.00104
http://www.cns.nyu.edu/~david/handouts/poisson.pdf
http://papers.nips.cc/paper/5273-neurons-as-monte-carlo-samplers-bayesian-inference-and-learning-in-spiking-networks.pdf
http://papers.nips.cc/paper/5273-neurons-as-monte-carlo-samplers-bayesian-inference-and-learning-in-spiking-networks.pdf
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Thakur et al. Bayesian Estimation Using Stochastic Electronics

London, M., and Häusser, M. (2005). Dendritic computation. Annu. Rev. Neurosci.

28, 503–532. doi: 10.1146/annurev.neuro.28.061604.135703

Maass, W. (2015). To spike or not to spike: that is the question. Proc. IEEE 103,

2219–2224. doi: 10.1109/JPROC.2015.2496679

MacNeilage, P. R., Ganesan, N., and Angelaki, D. E. (2008). Computational

approaches to spatial orientation: from transfer functions to dynamic

Bayesian inference. J. Neurophysiol. 100, 2981–2996. doi: 10.1152/jn.906

77.2008

Mansinghka, V., Jonas, E., and Tenenbaum, J. (2008). “Stochastic digital circuits

for probabilistic inference,” in Massachussets Institute of Technology, Technical

Report MITCSAIL-TR-2008–R-2069.

Murray, A. F. (1989). Pulse arithmetic in VLSI neural networks. IEEE Micro 9,

64–74. doi: 10.1109/40.42988

O’Reilly, J. X., Jbabdi, S., and Behrens, T. E. J. (2012). How can a Bayesian approach

inform neuroscience? Eur. J. Neurosci. 35, 1169–1179. doi: 10.1111/j.1460-

9568.2012.08010.x

Ohshiro, T., Angelaki, D. E., and DeAngelis, G. C. (2011). A normalization model

of multisensory integration. Nat. Neurosci. 14, 775–782. doi: 10.1038/nn.2815

Olsen, S. R., Bhandawat, V., and Wilson, R. I. (2010). Divisive

normalization in olfactory population codes. Neuron 66, 287–299. doi:

10.1016/j.neuron.2010.04.009

Paulin, M. G. (2014). “Bayesian tracking of a moving target in a cluttered

environment using spiking neurons,” in NeuroEng-2014. Available online at:

http://neuroeng.org.au/wordpress/wp-content/uploads/2012/07/NeuroEng-

2014-Abstracts.pdf

Paulin, M. G. (2015). The origin of inference. arXiv Preprint

arXiv:1504.02927v021. doi: 10.1017/S0009840X00995799

Paulin, M. G., and Hoffman, L. F. (2011). “Bayesian head state prediction:

computing the dynamic prior with spiking neurons,” in Proceedings - 2011

7th International Conference on Natural Computation, ICNC 2011, Vol. 1

(Shanghai), 445–449.

Paulin, M. G., and van Schaik, A. (2014). Bayesian inference with spiking neurons.

Neural Comput. arXiv:1406.5115. Available online at: http://arxiv.org/abs/1406.

5115

Pecevski, D., Buesing, L., and Maass, W. (2011). Probabilistic inference in

general graphical models through sampling in stochastic networks of

spiking neurons. PLoS Comput. Biol. 7:e1002294. doi: 10.1371/journal.pcbi.

1002294

Pernkopf, F., Peharz, R., and Tschiatschek, S. (2014). Introduction to probabilistic

graphical models. Acad. Press Library Signal Process. 1, 989–1064. doi:

10.1016/B978-0-12-396502-8.00018-8

Pradhan, M., Provan, G. M., Middleton, B., and Henrion, M. (1994). “Knowledge

engineering for large belief networks,” in Proceedings of the Tenth Conference

on Uncertainty in Artificial Intelligence (UAI1994), 484–490. Available online

at: http://arxiv.org/abs/1302.6839

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected

applications in speech recognition. Proc. IEEE 77, 257–286. doi:

10.1109/5.18626

Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press.

Shanbhag, N. R., Abdallah, R. A., Kumar, R., and Jones, D. L. (2010). “Stochastic

computation,” in Design Automation Conference (DAC), 2010 47th ACM/IEEE

(Anaheim, CA), 859–864.

Singer, W., and Gray, C. M. (1995). Visual feature integration and the

temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586. doi:

10.1146/annurev.ne.18.030195.003011

Softky, W. (1994). Sub-millisecond coincidence detection in active dendritic trees.

Neuroscience 58, 13–41. doi: 10.1016/0306-4522(94)90154-6

Vigoda, B. (2003). Analog Logic?: Continuous-Time Analog Circuits for Statistical

Signal Processing by Benjamin Vigoda. Doctoral dissertation, Massachusetts

Institute of Technology.

Yu, H., Fan, X., and Nicolaidis, M. (2008). “Design trends and challenges of

logic soft errors in future nanotechnologies circuits reliability,” in International

Conference on Solid-State and Integrated Circuits Technology Proceedings,

ICSICT (Beijing), 651–654.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Thakur, Afshar, Wang, Hamilton, Tapson and van Schaik. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 March 2016 | Volume 10 | Article 104

http://neuroeng.org.au/wordpress/wp-content/uploads/2012/07/NeuroEng-2014-Abstracts.pdf
http://neuroeng.org.au/wordpress/wp-content/uploads/2012/07/NeuroEng-2014-Abstracts.pdf
http://arxiv.org/abs/1406.5115
http://arxiv.org/abs/1406.5115
http://arxiv.org/abs/1302.6839
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Bayesian Estimation and Inference Using Stochastic Electronics
	Introduction
	Materials and Methods
	Theory
	Bayesian Inference in Hidden Markov Models
	Bayesian Estimation and Stochastic Tracker (BEAST) Framework
	Bayesian INference in DAG (BIND) Framework

	Implementation
	Neuronal Building Blocks
	Poisson neuron
	Coincidence Detector (CD) neuron
	Division and normalization neural circuit
	Stochastic exponential moving average (SEMA)
	Linear feedback shift register (LFSR)

	Hardware Implementation of the BEAST Framework
	Inference
	Learning

	Hardware Implementation of the BIND Framework

	Results
	BEAST Framework
	Inference in the BEAST Framework
	Learning in the BEAST Framework

	Inference Results of the BIND Framework

	Discussion
	Author Contributions
	Supplementary Material
	References

