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Many complex brain disorders, such as autism spectrum disorders, exhibit a wide range

of symptoms and disability. To understand how brain communication is impaired in such

conditions, functional connectivity studies seek to understand individual differences in

brain network structure in terms of covariates that measure symptom severity. In practice,

however, functional connectivity is not observed but estimated from complex and noisy

neural activity measurements. Imperfect subject network estimates can compromise

subsequent efforts to detect covariate effects on network structure. We address this

problem in the case of Gaussian graphical models of functional connectivity, by proposing

novel two-level models that treat both subject level networks and population level

covariate effects as unknown parameters. To account for imperfectly estimated subject

level networks when fitting these models, we propose two related approaches—R2

based on resampling and random effects test statistics, and R3 that additionally employs

random adaptive penalization. Simulation studies using realistic graph structures reveal

that R2 and R3 have superior statistical power to detect covariate effects compared

to existing approaches, particularly when the number of within subject observations is

comparable to the size of subject networks. Using our novel models and methods to

study parts of the ABIDE dataset, we find evidence of hypoconnectivity associated with

symptom severity in autism spectrum disorders, in frontoparietal and limbic systems as

well as in anterior and posterior cingulate cortices.

Keywords: functional connectivity, Gaussian graphical models, Markov networks, covariates, mixed effects

models, resampling methods, lasso, network statistics

1. INTRODUCTION

One of the goals of neuroimaging studies of intrinsic or “resting state” brain activity, is to
discover specific and stable imaging based biomarkers or phenotypes of neuropsychiatric and
neurological disorders. Typically, resting state studies seek to infer functional connectivity or
functional relationships between distinct brain regions from observed neurophysiological activity.
Advances in resting state studies using fMRI (Menon, 2011; Bullmore, 2012; Craddock et al., 2013;
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Smith et al., 2013) suggest that functional connectivity could
yield neuroimaging biomarkers for diagnosis and personalized
treatment for a wide range of disorders.

For instance, many studies have found differences either
in individual functional connections or in overall patterns of
connectivity in autism spectrum disorders (Di Martino et al.,
2014a; Uddin, 2014), Alzheimer’s (Buckner et al., 2009; Tam
et al., 2014), Depression (Tao et al., 2013; Lui et al., 2014; Kaiser
et al., 2015) and others (Meda et al., 2012; van den Heuvel
et al., 2013; Palaniyappan et al., 2013). However, simple group
level differences between two distinct samples are challenging
to interpret in many disorders. Autism, for example, is a
diagnostic label that masks many diverse clinical symptoms
(Lenroot and Yeung, 2013; Insel, 2014). Thus, the biological
relevance of group level differences in network structure between
Autism and healthy populations is unclear for individual
subjects. One solution to find more meaningful differences in
network structure is to study whether behavioral and affective
symptoms measured by cognitive scores are associated with
variations in individual functional networks. This paper offers
a novel and rigorous statistical framework to find and test
such covariate effects on functional connectivity metrics, when
functional connectivity is defined using Gaussian graphical
models.

Functional connectivity refers to latent relationships that
cannot be directly observed via any modality of functional
neuroimaging. Instead, it must be estimated from observations
of neurophysiological activity. In fMRI studies, we first observe
changes in the BOLD response over time either across thousands
of voxels or over hundreds of brain regions, defined anatomically
or functionally. Then depending on the specific statistical
definition for functional connectivity, we estimate a functional
connectivity network per subject using within-subject BOLD
observations. For example, in a pairwise correlation model of
functional connectivity, if the mean time-series of two brain
regions are correlated then they are functionally connected.
Thus, one popular approach to estimate functional connectivity
is to compute sample correlations between every pair of brain
regions. An increasingly popular alternative is to use Gaussian
graphical models (GGMs) based on partial correlations to
define functional connectivity. Here, if two brain regions are
partially correlated, that is if the mean time-series of two brain
regions remain correlated after regressing out the time-series
of other brain regions, then they are functionally connected.
For multivariate normal data, a zero partial correlation between
two brain regions is equivalent to independence between the
activity of two brain regions conditional on the activity of all
other intermediate brain regions. Thus, GGMs eliminate indirect
connections between regions provided by pairwise correlations
and are increasingly popular in neuroimaging (Marrelec et al.,
2006; Smith et al., 2011; Varoquaux et al., 2012; Craddock
et al., 2013). Consequently, employing GGMs for functional
connectivity enables us to discover network differences that
implicate nodes and edges directly involved in producing clinical
symptoms and provide stronger insights into network structures
truly involved in the disease mechanism. For the rest of this
paper, we define functional connectivity in terms of GGMs and

discuss approaches to conducting inference on network metrics
for such network models.

The functional connectivity of a single experimental unit
or subject is rarely the final object of interest. Rather, most
neuroimaging studies (Bullmore, 2012; Bullmore and Sporns,
2012; Zuo et al., 2012) are interested in identifying network
biomarkers, or broader patterns of functional connectivity shared
across individuals who belong to some distinct population
or display some clinical phenotype. A popular approach
(Bullmore and Sporns, 2009) to find such network biomarkers
is through topological properties of network structure. Common
properties or metrics either measure specialization of network
components into functionally homogenous modules, or measure
how influential brain regions integrate information across
distinct network components. However, recall that functional
connectivity in individual subjects is unknown and unobserved.
Consequently, many multi-subject fcMRI studies first estimate
functional connectivity for every subject and then assuming
these subject networks are fixed and known, compute topological
metrics of these networks using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010). Finally, they compare and contrast
these estimated networks or estimated network metrics to
infer group level network characteristics. Typical neuroimaging
studies that seek to detect covariate effects on network structure
(Warren et al., 2014; Hahamy et al., 2015) conduct a single level
regression with network metrics as the response and cognitive
scores as the covariate, and subsequently use standard F-tests
for covariate testing. New methods to conduct such network
inference either emphasize novel topological metrics (van den
Heuvel and Sporns, 2011; Alexander-Bloch et al., 2012) or novel
approaches to study covariate effects for known networks for
complex experimental designs with longitudinal observations
or multiple experimental conditions (Simpson et al., 2013;
Ginestet et al., 2014; Kim et al., 2014). However, these existing
approaches assume estimated functional networks are perfectly
known quantities. In contrast, we seek to explicitly investigate
the consequences of using estimated, and often imperfectly
estimated, functional networks and their corresponding network
metrics on subsequent inference for covariate effects.

Before considering the consequences of using estimated
networks, one might ask why individual network estimates
might be unreliable to begin with. Statistical theory informs
us that estimated networks can be unreliable in two possible
ways. First, high dimensional networks with a large number of
nodes estimated from a limited number of fMRI observations
in a session possess substantial sampling variability (Bickel and
Levina, 2008; Rothman et al., 2008; Ravikumar et al., 2011;
Narayan et al., 2015). Second, when assuming sparsity in the
network structure in the form of thresholded or penalized
network estimates to overcome high dimensionality, we often
obtain biased network estimates in the form of false positive
or false negative edges (Ravikumar et al., 2011). Such errors
in estimating networks are particularly exacerbated (Narayan
et al., 2015) when networks are well connected with modest
degrees, as is the case in neuroimaging. Additionally, empirical
evidence from neuroimaging studies also suggest that sample
correlation based estimates of individual resting state networks
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are unreliable. For instance test re-test studies (Shehzad et al.,
2009; Van Dijk et al., 2010; Braun et al., 2012) that measure
inter-session agreement of estimated functional networks within
the same subject find that sample intra-class correlations vary
between 0.3 and 0.7, indicating non-negligible within subject
variability. While we expect many sources of variation contribute
to such inter-session variability within a subject including natural
variations due to differences in internal cognitive states, recent
work by Birn et al. (2013); Hacker et al. (2013); Laumann
et al. (2015) suggests that sampling variability due to limited
fMRI measurements play a significant role. These studies find
that increasing the length of typical fMRI sessions from 5–10
min to 25 min substantially improves inter-session agreement
of functional networks. Given the accumulating theoretical
and empirical evidence of these methodological limitations, we
assume that obtaining perfect estimates of individual networks is
unlikely in typical fMRI studies. Instead, we seek to highlight the
importance of accounting for imperfect estimates of functional
networks in subsequent inferential analyses.

Failure to account for errors in estimating statistical networks
reduces both generalizability and reproducibility of functional
connectivity studies. Statistical tests that compare functional
networks but do not account for potentially unreliable network
estimates lack either statistical power or type I error control
or both. For instance, Narayan and Allen (2013); Narayan
et al. (2015) investigate the impact of using estimated networks
when testing for two-sample differences in edge presence or
absence between groups. When individual subject graphical
models cannot be estimated perfectly, Narayan et al. (2015)
show that standard two-sample test statistics are both biased
and overoptimistic, resulting in poor statistical power and
type I error control. Though this paper is similar in spirit
to previous work (Narayan et al., 2015) in emphasizing the
adverse effects of using estimated networks to study differences
in functional connectivity, the unique contribution of this work
are as follows: (1) Whereas previous work considered simple
two-sample tests, we consider general covariate effects (that
include both binary and continuous covariates) to link symptom
severity to individual variations in functional connectivity. (2)
We propose methods relevant to network metrics beyond the
edge level. Finally, we provide empirical results such as statistical
power analyses that offer greater practical guidance on choosing
sample size and planning data analysis for future studies.

The paper is organized as follows. In Section 2 we
provide new statistical models that explicitly link subject level
neurophysiological data to population level covariate effects for
networkmetrics of interest and provide new statistical algorithms
and test statistics using resampling and random penalization
for testing covariate effects. While the models and methods
we propose can detect covariate effects on many well behaved
network metrics (Balachandran et al., 2013) at the edge level
(Tomson et al., 2013), node level (Buckner et al., 2009; Zuo
et al., 2012) and community level (Alexander-Bloch et al., 2012;
Tomson et al., 2013), we investigate the benefits of our methods
to discover covariate effects on connection density. Using realistic
simulations of graph structure for GGMs in Section 3, we
demonstrate our proposed resampling framework substantially

improves statistical power over existing approaches, particularly
for typical sample size regimes in fMRI studies. Finally, in
Section 4 we demonstrate that our proposed methods can detect
biologically relevant signals in a resting state fMRI dataset for
autism spectrum disorders.

2. MODELS AND METHODS

We seek new methods to detect covariate effects when
populations of functional networks are unknown. To achieve
this, we first need statistical models that describe how each
measurement of brain activity denoted by y

(i)
j arises from

unknown functional brain network with p nodes in the ith subject
and how individual variations in a population of brain networks
are related to some population level mean. Thus, for any network
model and any network metric under investigation, we propose
the following general two-level models to investigate covariate
effects in functional connectivity. In subsequent sections, we
provide specific instances of these models investigated in this
paper.

Subject Level: y
(i)
j

iid
∼ Np(0,6

(i)) and

Population Level: u(Network(i))
iid
∼ Pµ(i), ν2 (1)

where 6(i) is the covariance, Networki is an adjacency matrix
derived from either the covariance, the inverse covariance 2 =

(6(i))−1 or their correlational counterparts and u(·) denotes
some network metric over the brain network. In this paper,
we assume the individual measurements of brain activity at the
subject level follow a multivariate normal distribution. At the
population level, we assume that the effect of covariates on the
network metrics follows a generalized linear model (Searle et al.,
2009) where the mean and variance of the relevant continuous
or discrete probability distribution, P, for the network metric of
interest is given by µ(i) and ν2.

Suppose that we denote any network metric in the ith subject
as u(i) and the vector of network metrics as u = (u(1), . . . , u(n)),
then the population mean is given by µ = E(u) and population
variance is given by Var(u(i)) = ν2. Then the generalized linear
model for the population mean is given by

g(µ) = Xβ + Zγ (2)

Here g(µ) is a link function either reduces to g(µ) = µ in
linear models, or takes other forms such as the logit function for
non-linear models; X is the n × (q + 1) matrix of the intercept
and q covariates of interest with corresponding coefficients β =

(β0, β1, . . . βq) while Z is the n× r matrix of nuisance covariates
and corresponding regression coefficients γ . Xi and Zi denote the
q dimensional explanatory covariate and r dimensional nuisance
covariate for the ith subject, respectively.

In this paper, we seek to test the hypothesis that explanatory
covariates have a statistically significant covariate effect
on network metrics. Here β\0 denotes the coefficients for
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explanatory covariates. Thus, the null H0 and alternative
hypothesisH1 are

H0 : β\0 = 0, H1 : β\0 6= 0 (3)

This section is organized as follows—In Section 2.1, we
specifically employ Gaussian graphical model of functional
connectivity at the subject level and investigate covariate effects
using linear models for density based network metrics for the
population level. Standard statistical analyses in neuroimaging
studies estimate each level of these two level models separately.
Thus, such approaches first estimate functional connectivity
networks by fitting subject level models. However, they assume
individual subject networks and their metrics are known when
they fit the population level model and conduct inference on
covariate effects. In Section 2.2 we discuss how such statistical
procedures that assume functional connectivity networks are
known lose statistical power to detect covariate effects. To address
this problem, we introduce two related methods that utilize
resampling, random adaptive penalization, and random effects
that we call, R2 and R3 in Section 2.3. These methods ameliorate
potential biases and sampling variability in estimated network
metrics, thus improving statistical power to detect covariate
effects.

2.1. Two Level Models for Covariate Effects
We begin by studying the earlier subject level network model
in Equation (1) specifically for networks given by Gaussian

graphical models. Recall that the p-variate random vector y
(i)
j

denotes BOLD observations or average BOLD observations
within p regions of interest, at the jth time point for the ith subject.

We assume y
(i)
j has a multivariate normal distribution,

y
(i)
j

iid
∼ Np(0, (2

(i))−1), (4)

where the network model of interest is derived from the inverse
covariance or precision matrix 2(i), j = 1, . . . t, and i =

1, . . . n. In subsequent sections, we denote the t × p data

matrix of observations by Yi = (y
(i)
1 , . . . , y

(i)
t ) and the random

variable associated with each brain region as Yk. Although fMRI
observations are autocorrelated across time and thus dependent
(Woolrich et al., 2001; Worsley et al., 2002), we assume that
these observations can be made approximately independent via
appropriate whitening procedures discussed in our case study in
Section 4.

Let G(V, E) denote a Gaussian graphical model that consists
of vertices V = {1, 2, . . . , p} and edges E ⊂ V × V . Here,
the presence of an edge (k, l) ∈ E implies that the random
variables Yk and Yl at nodes/vertices k and l are statistically
dependent conditional on all the other vertices V \ {k, l}. For
multivariate normal distributions, a non-zero value in the (k, l)
entry of the inverse covariance matrix 2(i) is equivalent to the
conditional independence relationships, Yk ⊥ Yl|YV\{k,l}. Thus,
we define functional connectivity networks where edges indicate
direct relationships between two brain regions using the non-zero

entries of 2(i). For a more thorough introduction to graphical
models, we refer the reader to Lauritzen (1996).

Following the neuroimaging literature (Bullmore and Sporns,
2009), we consider network metrics to be functions of a binary
adjacencymatrix. The adjacencymatrix of each individual subject
network in our model (Equation 4) is given by the support of
the inverse covariance matrix I{2(i) 6= 0}. Network metrics that
measure topological structure of networks are widely used in
neuroimaging (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010). While any of these network metrics can be incorporated
into our two level models, we have found that many metrics
originally proposed when studying a determinstic network are
not suitable for covariate testing in the presence of individual
variations in a population of networks. Recently, Balachandran
et al. (2013) suggests that several discontinuous network metrics
which include betweenness centrality, clustering coefficients
defined at the node level and potentially many others are not
suitable for inference. Thus, this paper focuses on well behaved
topological metrics, namely density based metrics. Formally, the
density or number of connections in any binary adjacency matrix
A is given by

∑p

k= 1

∑p

l= 1
Akl. However, rather than defining

density over the whole graph, the density can be restricted to a
subnetwork (subnetwork density) or over a single node (node
density or degree) or simply at the edge level (edge presence).
At the node level, density is a simple measure of influence
or centrality of a single brain region of interest (Rubinov and
Sporns, 2010; Power et al., 2013). At the subnetwork level, density
is popularly used (Honey et al., 2007; Bullmore and Sporns,
2009) to measure an excess or deficit of long range connections
either within or between groups of brain regions with a distinct
functional purpose. While we investigate node and subnetwork
density in this paper, alternative network metrics amenable to
inference include binary metrics such as edge presence (Meda
et al., 2012; Narayan et al., 2015) or co-modularity relationships
between nodes (Bassett et al., 2013; Tomson et al., 2013).

2.1.1. Population Model for Network Metrics
As described earlier, given the subject level model and a
network metric of interest, we use a generalized linear model in
Equation (2) to describe the deterministic relationship between
the population mean for the network metrics and various
covariates of interest. Depending on whether a network metric
is continuous or binary valued, this general linear model takes
the form of linear or logistic-linear models.

However, we also require a probability model to describe how
a random sample of individual network metrics deviate from the
population mean. When the network metric u(i) is continuous
valued, the link function in Equation (2) reduces to the identity
g(µ) = µ. For network metrics u(i) such as global, subnetwork
or node density, we use the following linear model with normal
errors,

u(i)
iid
∼ N (Xiβ + Ziγ , ν2) (5)

For metrics such as edge presence and co-modularity that
take discrete binary values {0, 1}, a widely used link function
(Williams, 1982; Agresti, 2002) for the generalized linear model
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(Equation 2) is the logit function. The resulting logistic-linear
model takes the following form

E(u(i)) = [1+ exp(Xiβ + Ziγ )]
−1 (6)

For the remainder of this paper, we consider normal models for
node and subnetwork density.

2.2. Motivation for New Test Statistics
To understand why new statistical methods are necessary to fit
our two-level models, consider the our covariate testing problem
(Equation 3) for node and subnetwork density. Suppose the
subject level networks in Equation (4) and corresponding metrics
are known precisely for each subject. In this case, we employ
standard least squares estimation with corresponding F-tests for
linear regression to test our null hypothesis for covariate effects
(Equation 3).

In practice however, not only is the covariate effect β

unknown, the underlying graphical model 2(i) and the network
metric u(i) is also unknown and are all estimated from data. In
Figure 1 we contrast the ideal scenario where the population of
networks and corresponding network metrics are exactly known
with the practical scenario where these network metrics are
estimated from data. (See Section 3.1 for details on how we
simulate data.) Applying a standard linear regression to known
network metrics reveals an oracle estimate of the covariate effect
(blue line). In contrast, when the standard approach described is
applied to estimated network metrics (orange line), the size of the
covariate effect is substantially reduced. However, by employing
theR3 approach (green line) that we introduce in the next section,
we account for errors in estimating networks, thereby improving
statistical power.

Two issues arise when we estimate network metrics from
data. First, instead of true network metrics, u(i), our estimated
network metrics, ũ(i), are a function of observations Y(i). Thus,
each estimate, ũ(i), possesses additional sampling variability.
However, since we only acquire one network estimate per
subject, standard least squares estimation cannot account for
this additional variability. Additionally graph selection errors in
network estimation potentially bias network metric estimates.
Previously, Meinshausen and Bühlmann (2006); Ravikumar et al.
(2011); Narayan et al. (2015) show that in finite sample settings
where the number of independent observations t within a
subject is comparable to the number of nodes p, we expect
false positive and false negative edges in network estimates.
Such graph selection errors increase with the complexity of
the network structure, governed by factors such as the level
of sparsity, maximum node degree as well as the location of
edges in the network. Since functional connectivity networks are
moderately dense and well connected with small world structure
(Achard et al., 2006), edges in these networks might be selected
incorrectly. Observe that in Figure 1, we obtain larger estimates
of node and subnetwork density for individual networks where
true node or subnetwork densities are small and the reverse for
truly large node or subnetwork densities. As a result, individual
variation in estimated metrics no longer reflects the true effect
of the covariate, resulting in loss of statistical power. For a
detailed overview of how selection errors in estimating network
structure propagate to group level inferences, we refer the reader
to Section 2 of Narayan et al. (2015).

To overcome these obstacles, we use resampling to empirically
obtain the sampling variability of estimated network metrics,
ũ(i), and propagate this uncertainty using mixed effects test

statistics for the covariate effect β̂ . Moreover, by aggregating

FIGURE 1 | Motivation for new statistical framework R3. Here, we simulate covariate effects on the metric of interest, namely the degree centrality or node

density (left) and subnetwork density (right) with (p = 50, n = 20, t = 200). We illustrate covariate effects in the ideal scenario where network metrics are known

perfectly in blue. Unfortunately, in functional connectivity networks, statistical errors in estimating graphical models are inevitable and these propagate to estimates of

network metrics. As a result, when we estimate node and subnetwork density for each subject and conduct tests for covariate effects using standard F-tests, we fail

to see a clear relationship between metrics and covariate of interest (orange) using linear regression. This loss of statistical power occurs when standard test statistics

assume that estimates of density are correct. In contrast, when we account for errors in graph estimation and selection using R3 test statistics (green), we have

greater statistical power to detect covariate effects on density metrics. Algorithmic details of the R3 approaches can be found in Section 2.
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network statistics across resamples and optionally incorporating
adaptive penalization techniques, we sufficiently improve
network estimates and corresponding network metrics to obtain
more accurate estimates of the covariate effects.

2.3. Procedure for Testing Covariate
Effects
In order to improve statistical power, we propose a resampling
framework that integrates network estimation with inference
for fixed covariate effects at the population level. We provide
two related procedures to test covariate effects—R2 that employs
resampling (RS) and random effects test statistics (RE), and R3

that employs resampling (RS), random adaptive penalization
(RAP) and random effect test statistics (RE). Intuitively, our
algorithm consists of first obtaining initial estimates of the
sparsity levels in individual subject networks. Then, to estimate
the sampling variability of each subject network empirically,
we resample within subject observations and re-estimate the
networks of each subject. Additionally, in the case of R3

we simultaneously apply random adaptive penalties when re-
estimating the networks. Network metrics are computed on
each of the resampled networks, giving us multiple pseudo-
replicates of network metrics per subject. Finally, we model
these resampled network statistics using simple mixed effects
models to derive test statistics for population level covariate
effects. After performing our procedure, one can use well known
parametric or non-parametric approaches to obtain p-values and
correct for multiplicity of test statistics when necessary. Thus,
our resampling framework consists of three components, graph
estimation and selection, resampling and optionally RAP, and
covariate testing via mixed effects models. We discuss each of
these ingredients separately before putting them together in
Algorithm 1.

2.3.1. Graphical Model Estimation
Many approaches such as sparse regularized regression
(Meinshausen and Bühlmann, 2006), sparse penalized maximum
likelihood (ML) or the graphical lasso (Yuan and Lin, 2007;
Friedman et al., 2008) and others (Cai et al., 2011; Zhou et al.,
2011) can be used to estimate 2(i) in our subject level model
(Equation 4). We use the QuIC solver (Hsieh et al., 2011, 2013)
to fit a weighted graphical lasso to obtain estimates of 2(i).

2̂
(i)

3(i) (Y(i)) = argmin
2≻0

Tr(6̂
(i)

2)− log det(2)+ ‖3(i) ◦ 2‖1,off

(7)

where 6̂
(i)

is the empirical sample covariance, 6̂
(i)

=
1
t (Y

(i)⊤Y(i)), and ◦ denotes the Hadamard dot product. The term
‖2‖1,off =

∑
k<l |θk,l| is the ℓ1 penalty on the off-diagonals

entries. Since the sample correlation rather than covariance is
commonly used in neuroimaging, we employ sample correlation

matrix, 6̃
(i)
. The two are equivalent when Y(i) has been centered

and scaled. Given any estimate of the inverse covariance matrix

2̂
(i)
, the estimated adjacency matrix for each subject is thus

given by I(2̂
(i)

6= 0) and network statistics can be computed

accordingly. For our R3 procedure, we employ a symmetric
weight matrix of penalties 3(i) obtained by randomly perturbing
an initial penalty parameter λ(i). For our R2 this weight matrix
3(i) reduces to a scalar value λ(i) for all off-diagonal entries,
giving us the standard graphical lasso. In order to estimate these
initial penalty parameters λ(i), we employ StARS (Liu et al., 2010),
a model selection criterion that is asymptotically guaranteed to
contain the true network, and works well with neuroimaging
data. The beta parameter of StARS is set to 0.1 in our work.

2.3.2. Resampling and Random Adaptive Penalization
Since network estimates depend on the underlying observations
Y(i), we employ resampling techniques to estimate the sampling
variability of ũ(i). Recall that estimates of a network metric,

ũ(i), are a function of estimated networks I{2̂
(i)
(Y(i)) 6= 0}.

Unfortunately, closed form finite sample distributions for sparse

penalized estimates of 2̂
(i)

(Berk et al., 2013) as well as sampling
distributions of network metrics (Balachandran et al., 2013)
are still an emerging area of research. Thus, our problem
differs from standard univariate GLM analyses employed in
both voxel-wise activation studies and seed-based correlational
analysis (Penny et al., 2003; Fox et al., 2006) where closed form
asymptotic formulas for sample variance at the subject level are
incorporated into the group level analyses. To tackle the issue of
unknown sampling variability we build an empirical distribution
of network statistics, where we perturb the data by sampling m
out of t observations with replacement (bootstrap) (Efron and
Tibshirani, 1993) or without replacement (subsampling) (Politis
et al., 1999) and re-estimate the network metrics per resample.
By aggregating network statistics across resamples within each
subject (Breiman, 1996a), we gain the additional benefit of
variance reduction (Bühlmann and Yu, 2002) for individual
subject metrics. Many variations of resampling techniques
exist to handle dependencies (Lahiri, 2013) in spatio-temporal
data. Since we assume approximately independent observations,
from here on our resampling consists of sampling t out of t
observations with replacement.

Recall that our method R2 is a variant of R3, that only involves
resampling without random adaptive penalties. Here we obtain

a bootstrapped network estimate 2̂
∗(i,b)

, and a corresponding
network metric ũ∗(i,b) in Step 1 of our Algorithm 1 for each of
B = 100 resamples. For our alternative procedure, R3, however,
we not only use resampling, but simultaneously perturb the initial
regularization parameters λ(i) for every resample. This amounts
to solving a weighted graphical lasso to re-estimate the network,
where the weights are given by random adaptive penalties. Our
motivation to use R3 is based on previous work in the context of
two-sample tests for edge differences. Narayan et al. (2015) show
that random penalization significantly improved power over pure
resampling to detect differential edges when the networks were
moderately dense. Given this result, we sought to investigate
the benefits of random penalization for more general network
metrics. Intuitively, we anticipate that density based metrics
beyond the edge level are immune to some graph selection
errors. For instance, when false negatives are compensated
by an equal number of false positive edges within the same
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node or subnetwork, node or subnetwork density values remain
unchanged. However, graph selection errors that do not cancel
each other out result in a net increase or decrease in density, thus
contributing to loss of power. In these scenarios, we expect R3 to
offer additional statistical power to test covariate effects.

Whereas general network metrics, require global properties
of the network structure be preserved, the standard randomized
graphical lasso (Meinshausen and Buhlmann, 2010) penalizes
every edge randomly such that topological properties of the
network could be easily destroyed within each resample. Thus,
we seek to randomly perturb selected models in a manner less
destructive to network structure. To achieve this, we adaptively
penalize (Zhou et al., 2011) entries of2(i). Strongly present edges
are more likely to be true edges and should thus be penalized
less, whereas weak edges are more likely to be false and should
be penalized more. As long as we have a good initial estimate
of where the true edges in the network are, we can improve
network estimates by adaptively re-estimating the network, while
simultaneously using random penalties to account for potential
biases in the initial estimates. In order to obtain a reliable initial
estimate of network structure, we take advantage of the notion
of stability as a measure of confidence popularized by Breiman
(1996b); Meinshausen and Buhlmann (2010). Here the stability
of an edge within a network across many resamples measures
how strongly an is edge present in the network. When an edge
belongs to the true network with high stability we randomly
decrease the associated penalty by a constant κ . Conversely,
we randomly increase the penalty by κ for an edge with low
stability. Similar to Narayan et al. (2015), we fix the constant

κ to 0.25λ
(i)
max. Here λ

(i)
max is the regularization parameter that

results in the all zero graph for a subject. We call this approach
random adaptive penalization (RAP) as it builds on the previous
random penalization approach of Narayan et al. (2015) but
adaptively perturbs the regularization parameters using initial
stability scores along the lines of the random lasso (Wang et al.,
2011).

Since, random adaptive penalization depends on an initial
estimate of the stability of every edge in the network, we take
advantage of the basic resampling step in Algorithm 1 to
obtain a stability score matrix 5̂(i) for each subject. The entries
of this matrix provide a proportion that takes values in the
interval (0, 1). Once we have the stability scores, we consider an
additional set of B = 100 resamples to implement RAP. Thus, in
step 2 of Algorithm 1, we form an matrix of random penalties

3
(i,b)
RAP per resample b. For each edge (k, l) the corresponding

adaptive penalty is determined by perturbing initial λ̂(i) by an
amount κ using a Bernoulli random variable. The probability of
success of each Bernoulli r.v is determined by the corresponding
stability score for that edge.

3
(i,b)
RAP =

{
λ̂(i) + κ Ber(1− 5

(i)
kl
)

λ̂(i) − κ Ber(5
(i)
kl
)

(8)

Putting these components together, R3 consists of first running
Step 1 ofAlgorithm 1 to obtain stability scores and then using an
additional B resamples based on random adaptive penalization,

summarized in Step 2 of Algorithm 1 to obtain nB resampled
network metrics ũ(i,b). Note that in subsequent steps we omit the

superscripts in 3
(i,b)
RAP for notational convenience.

Algorithm 1 : R2 and R3 Procedures for Testing Covariates
Effects on Network Metrics

Step 0: Initial Parameters

Input: Y(i),Output: λ̂(i)

Estimate λ̂(i) using graphical model estimation and
selection (StARS) for each subject i.

Step 1: Subject Level Resampling

Input: (Y(i), λ̂(i),B = 100),Output: Either ũ∗(i,b) or 5̂(i)

(a) FOR b = 1, . . . ,B in the ith subject

(i) Bootstrap the data Y(i) to get Y∗(i,b) and sample

correlation matrix 6̃
∗(i,b)

(ii) Perform a standard graphical lasso 2̂
∗(i,b)

λ̂(i)
(6̃

∗(i,b)
) in

Equation (7)
(iii) If R

2: Compute network statistic ũ∗(i,b) defined in
Section 2.1

END
(b) If R

3: Estimate stability scores 5̂(i) =
1
B

∑B
b I(2̂

(i)

λ̂(i)
(6̃

∗(i,b)
) 6= 0)

Step 2: Subject Level Resampling & Random Adaptive

Penalization (R3 only)

Input: (Y(i), 5̂(i), λ̂(i),B = 100),Output: ũ∗(i,b)

(a) FOR b = 1, . . . ,B in the ith subject

(i) Bootstrap the data Y(i) to get Y∗(i,b) and sample

correlation matrix 6̃
∗(i,b)

(ii) Using stability scores from Step 1(b), compute random

adaptive penalties 3
(i,b)
RAP in Equation (8)

(iii) Using a weighted graphical lasso, estimate

2̂3RAP (6̃
∗(i,b)

) in Equation (7)
(iv) Compute network statistic ũ∗(i,b) defined in Section 2.1

END

Step 3: Population Level Inference for β̂ using Random

Effects

Input: {{ũ∗(i,b)}B
b=1

}ni=1,Output: β̂ and p-values

(a) Estimate fixed covariate effects β̂ using mixed effects
models. (Section B.1)

(b) Compute mixed effects test statistic and p-values in
Equation (B.1)

2.3.3. Test Statistics for Network Metrics
Both R2 and R3 yield a total of nB resampled network statistics
that possess two levels of variability. If we applied single level
regression techniques to test the covariate effect in Equation
(3), we would in effect assume that all the nB resampled
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statistics were independent. Test statistics that assume nB
independent observations, despite the availability of only n
independent clusters of size B are known to be overoptimistic
(Laird and Ware, 1982; Liang and Zeger, 1993). To address this
overoptimism, a more reasonable assumption is that resampled
statistics between any two subjects are independent, whereas
within subject resampling statistics are positively correlated. Just
as we commonly employ mixed effects models to account for two
levels of variation in repeated measures data, we employ similar
two-level models to derive test statistics for resampled network
metrics.

Let U∗
i denote the vector B × 1 vector of resampled statistics

per subject {ũ∗(i,b)} In the case of real valued density metrics, we
use a linear mixed effects (LME) model for repeated measures
(Laird andWare, 1982) to account for the two levels of variability
in resampled statistics.

U∗
i = β0 + Xiβ\0 + Ziγ︸ ︷︷ ︸

Between Subject

+ Riai︸︷︷︸
Within Subject

+ e∗i (9)

Var(U∗
i ) = Vi = φ⋆2 + Riν

2R⊤i (10)

Here ai are i.i.d subject level random intercepts with variance
Var(ai) = ν2, Ri = 1B×1 is the random effect design matrix,
and e∗i is independent of ai and captures within subject sampling
variability with variance Var(ei) = φ⋆2IB where I denotes
the identity. From hereon, we ignore the intercept β0, and
assume that β denotes the (q × 1) vector of explanatory fixed
effects.

Estimation and inference for linear mixed effect models
are well covered in the neuroimaging literature in the
context of functional activation studies and longitudinal designs
(Beckmann et al., 2003; Bernal-Rusiel et al., 2013). We employ
standard estimators and test statistics for linear mixed effects
models including generalized least squares estimators for β̂

and corresponding restricted maximum likelihood (ReML)
estimators of variance to obtain F-test statistics to test the null
hypothesis regarding β , the covariate effects. A thorough review
of mixed effects models can be found in Agresti (2015) and
we also spell these out in more detail for our methods in
Supplementary Materials.

3. SIMULATION STUDY

In this section, we seek to evaluate our framework for testing
covariate effects by conducting a rigorous power analysis using
realistic fMRI network structures. We obtain realistic network
structures for fMRI functional connectivity by using networks
estimated from real data as the basis of our simulated networks.
First, we synthetically create multivariate data according to our
two-level models using realistic graph structures in Section 3.1.
Since we know the true structure of graphical models and their
network metrics we empirically measure statistical power and
type-I error for all methods. Then, in Section 3.2 we offer two key
results. First, by employing simulations using two-level models of
variability in Equation (4) that reflect how functional networks
are analyzed in practice, we provide a more realistic assessment

of when we lose statistical power due to sample sizes (t, n)
and covariate signal-to-noise (SNR) controlled by population
variance ν2. Second, we show that both R2 and R3 mitigate
the challenges discussed in Section 2.2 and improve statistical
power over standard test statistics under various sample sizes and
covariate SNR regimes.

3.1. Simulation Setup for Node and
Subnetwork Density
We simulate multivariate data according to our two level
models in Section 2.1. We know from previous work that
the graph structure or location of non-zeros in the inverse
covariance (Narayan et al., 2015) influences the difficulty of
estimating individual subject networks accurately. Using a group
level empirical inverse correlation matrix obtained from 90
healthy subjects in the Michigan sample of the ABIDE dataset,
preprocessed in Section 4, we threshold entries smaller than
τ = |.25| to create a baseline network A0 that contributes to
the intercept term β0 of our model (Equation 4). Illustrations
of this baseline network can be found in Figure A.0 in the
Supplementary Materials. Then we create individual adjacency
matrices and network metrics u(i) according to the linear
model (Equation 5). We create inverse correlation matrices 2(i)

using the graph structure provided by A0 and ensure 2(i) is
positive definite.

Our main focus in the simulation study is to conduct a
rigorous power analysis to detect covariate effects on node
density and subnetwork density under a range of sample sizes
and population variability and demonstrate the benefits of using
R3 and R2 over standard approaches. Recall from Section 2.1 that
node density is the degree of a node, while the subnetwork density
is the number of connections between sets of nodes that make
up a submatrix or subnetwork of the inverse covariance matrix.
We obtain empirical estimates of statistical power by measuring

the proportion of times we successfully reject β̂\0 = 0 at level
α = .05, in the presence of a true covariate effect β\0 6= 0,
across 150 monte-carlo trials for a simulation scenario. Similarly,
we obtain an empirical estimate of type I error by measuring the

proportion of times we reject β̂\0 = 0 at level α = .05 in the
presence of a null covariate effect of β\0 = 0.

Although one could choose to vary a large number of
parameters for these simulations, we focus on the parameters
most important for a power analysis, sample sizes and population
variance, (t, n, ν2), while fixing other parameters such as number
of covariates to q = 1, r = 0 and number of nodes to p = 50.
We present a 3 × 3 panel of 9 power analyses of node density
in Figure 2 where we vary t = {p, 2p, 4p} along the y-axis
and ν2 = {0.1, 0.25, 0.5} along the x-axis. Then within each
sub-panel, we evaluate statistical power at subject sample sizes
of n = {5, 10, . . . 95}. For the entire 3 × 3 panel we hold
the intercept and covariate effect fixed at β0 = 2,β1 = 1.
Thus, each sub-panel illustrates statistical power as a function
of subject sample size n for a fixed value of (t, ν2). Similarly,
in Figure 3 we present power analyses for subnetwork density
where we hold the intercept and covariate fixed at β0 = 5, β1 =

2 and use subnetworks of size 0.1p = 10 nodes. We use
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FIGURE 2 | Statistical power analysis for node density. When node density varies with an explanatory covariate (q = 1), statistical power to detect this covariate

effect improves with subject sample size n but crucially depends on the number of independent fMRI samples t from a single session and relative size of the covariate

effect, β1 = 1, to population variance ν2 (covariate SNR). When t ≈ p, estimates of node density are both highly variable and potentially biased. By accounting for

these issues, R3 and R2 improve estimates of network metrics, thus exceeding 80% power, whereas the standard F-test is substantially less powerful. Note that R3

and R2 are more powerful at smaller sample sizes compared to the standard approach. However, when fMRI samples become sufficiently large at t ≈ 4p, all methods

become similarly powerful for detecting covariate effects of node density. Empirical statistical power is defined as
# of times reject H0
# of Monte Carlo Trials

when the alternative is true in

Equation (3).

larger values for covariate effects to ensure that the number of
edges in a subnetwork are realistically large for a subnetwork
with 10 nodes. While the sample sizes (t, n) are identical to
those in node density, we increase ν2 = {0.4, 1, 2} to match

β . This ensures that covariate signal to noise ratio
‖Xβ1‖

2
2

ν2
is

similar for both metrics. Note that that the intercept values β0

in both power analyses were based on the average node degree
in A0 or average subnetwork density for subnetworks of size
10 in A0. For each power analysis, we have a corresponding
simulation of type-I error, obtained by setting β1 = 0 while
keeping all other parameters equivalent. The full set of type-I
error control results are presented in Supplementary Materials,
and one representative simulation for each metric is presented in
Figure 4.

3.2. Simulation Results
In these simulations, our methods, R3 and R2, empirically

outperform standard methods in terms of statistical power,

particularly when within subject observations are comparable

to the dimension of the network, and subject networks are
harder to estimate correctly. Recall from Section 2.2 that we

expect to lose statistical power when individual subject networks

are difficult to estimate correctly, due to additional sampling
variability and bias in network metrics. As expected, power

analyses for both metrics in Figures 2, 3 reveal that statistical

power deteriorates as observations t available for subject network

estimation reduces.Moreover, this loss of statistical power cannot
always be compensated by larger subject sample sizes n. For
example, the best achievable statistical power at large subject
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FIGURE 3 | Statistical power for subnetwork density. When subnetwork density varies with an explanatory covariate (q = 1), statistical power to detect this effect

improves with subject sample size n but crucially depends on the number of independent fMRI samples t from a single session and the relative size of the covariate

effect, β1 = 2, to the population variance ν2 (covariate SNR). For many values of (t,p) estimates of subnetwork density are both highly variable and potentially biased.

By accounting for these issues, both R3 and R2 test statistics substantially improve statistical power across all regimes at smaller subject sample sizes, whereas the

standard F-test is substantially less powerful. We note that covariate effects on subnetwork metrics are particularly hard to detect when t ≈ p, with statistical power

often below 60%. Empirical statistical power is defined as
# of times reject H0
# of Monte Carlo Trials

when the alternative is true in Equation (3).

samples of n ≈ 100 begins to deteriorate when t = p. While,
the best achievable statistical power often exceeds 90% for node
density when t > p, it drops as low as 80% for R3 and R2. The
standard approach in contrast drops below 60% node density.
In the case of subnetwork density, statistical power for R3 and
R2 exceed 80% when t = 4p, this drops as low as 60% at more
modest sample sizes of t = 2p and further down to 40% at t = p.
The standard approach falls to below 40%more quickly at t = 2p
and below 20% when t = p.

Just as with subject sample size, when individual network
estimation is easy in our simulations with larger within subject
observations of t = 4p, the covariate signal to noise ratio or SNR
has an almost negligible impact on statistical power. However, as t
decreases, network estimation becomes harder and consequently,
all methods becomemuchmore sensitive to SNR. For example, in

regimes where t = 2p, network estimation is moderately hard but
detecting covariate effects is achievable at high SNR. However, we
observe that all methods lose power as covariate SNR decreases.
We also observe that loss of statistical power due to SNR is more
pronounced at smaller subject sample sizes of n < 60. Such a
result is expected since sampling variability of covariate effect
β1 is proportional to population variance ν2 and decreases with
larger subject sample sizes n.

We noted earlier in Section 2.3 that we expect the benefits
of R3 over R2 to be the greatest for finest scale metrics at the
edge level which are most sensitive to graph selection errors
and decrease as metrics measure density at more global levels.
Whereas, random penalization improves statistical power
relative to R2 for two-sample differences at the edge level
Narayan et al. (2015), they share similar statistical power for
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FIGURE 4 | Statistical type I error is controlled for both node and

subnetwork density. These simulations evaluate the level of our tests; we

report the estimated type-I error as a function of subject sample size n. The

gray line represents the 5% level of the test. Here, we provide a representative

simulation for node and subnetwork density in the moderate SNR regime with

(p = 50, t = 100) and ν2 = 0.25 for node density and ν2 = 1 for subnetwork

density. All methods approximately control type I error across all scenarios

studied for both metrics. The full panel of simulations that complement the

power analyses in Figures 2, 3 are included in supplementary materials.

node and subnetwork density in most simulations presented
here, with some marginal benefits for node density. R3 offers
greater benefits over R2 at small sample sizes t for networks
that are more sparse and where the stability of true edges over
false edges can be improved via random penalties. All methods,
including R3 and R2 are unable to detect covariate effects when
estimation of individual networks becomes unreliable under high
density regimes. We provide additional simulations that vary the
sparsity of baseline networks in Figure A.3 in the Supplementary
Materials.

Finally, in Figure 4, we provide evidence that type-I error is
controlled by all methods for both node and subnetwork density.
The full panel of simulations that complement Figures 2, 3 are
included in Supplementary Materials.

From these simulations we conclude that resampling based
approaches are more efficient, i.e., they have higher statistical
power for both node and subnetwork density at smaller subject
sample sizes n, particularly for smaller t and lower covariate
SNR. Another insight from these simulations is that given a
fixed budget of fMRI session time, it is preferable to increase the
number of within session observations t per subject for fewer
number of subjects n in order to maximize statistical power.
For studies where each fMRI session consists of observations
comparable to the size of networks (t, p ∈ [100, 200]), as well
as for studies that cannot recruit a large number of subjects,
our methods, R3 and R2, make better use of available data and
improve statistical power compared to standard approaches to
network analysis.

4. CASE STUDY

A number of recent studies on autism spectrum disorders
(ASD) have found differences in functional connectivity that
were correlated with symptom severity as measured by Autism
Diagnostic Interview (ADI) or Autism Diagnostic Observation
Schedule (ADOS). However, the majority of these studies that

link symptom severity to functional connectivity derive networks
using pairwise correlations (Supekar et al., 2013; Uddin et al.,
2013b). An important shortcoming of studying differences in
pairwise correlation networks is that edges in a true correlational
network might be present due to the effect of “common causes"
elsewhere in the brain and do not necessarily represent a
direct flow of information. Thus, while correlational networks
can provide network biomarkers for autism (Supekar et al.,
2013), it is more problematic to infer network mechanisms
of behavioral deficits in ASD exclusively using correlational
networks. However, by studying previously implicated regions
and subnetworks using Gaussian graphical models (GGMs), we
strengthen the interpretation of variations in network structure
linked to autism severity. Thus, by employing our two level
models (Equation 1) based on GGMs to detect covariate effects,
we enable scientists to infer that any network differences linked
with behavioral deficits implicate nodes and edges directly
involved in the disease mechanism. Guided by the successes
of our simulation study, we employ R3 to investigate the
relationship between cognitive scores on node and subnetwork
densities in autism spectrum disorders. In particular, we conduct
tests for covariate effects on two density metrics, the node
density and subnetwork density. Node density counts the
number of connections between a single region of interest to all
other regions where as subnetwork density counts the number
of connections between sets of regions or subnetworks. We
investigate nodes and subnetworks hypothesized in the literature
(Uddin, 2014) to be involved in regulating attention to salient
events and explanatory for behavioral deficits in ASD.

4.1. ABIDE Data Collection and
Preprocessing
We use resting state fMRI data collected from the Autism Brain
Imaging Data Exchange (ABIDE) project (Di Martino et al.,
2014b) and preprocessed by the Preprocessed Connectomes
Project (PCP) (Craddock and Bellec, 2015) using the
configurable-pipeline for analysis of connectomes or (C-PAC)
toolbox (Craddock, 2014; Giavasis, 2015). In order to properly
account for site effects, we choose to focus on twomajor sites with
relatively large samples, UCLA andMichigan, resulting in 98 and
140 subjects per site. While both ADOS and ADI-R cognitive
scores are available for these sites, we focus on ADOS scores
obtained using the Gotham algorithm (Gotham et al., 2009),
which is known to be comparable across different age groups.

The ABIDE data was acquired (Di Martino et al., 2014b) using
T2weighted functionalMRI images with scan parameters TR= 2
at the Michigan site and TR = 3 at the UCLA site. Subsequently,
this data was minimally preprocessed using the C-PAC utility
(Craddock and Bellec, 2015; Giavasis, 2015), including slice
timing correction, motion realignment and motion correction
using 24 motion parameters, and normalization of images to
Montreal Neurological Institute (MNI) 152 stereotactic space
at 3 × 3 × 3 mm3 isotropic resolution. The pipeline was
also conFigured to regress out nuisance signals from the fMRI
time-series. The nuisance variables included were physiological
confounds such as heart beat and respiration, tissue signals
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and low frequency drifts in the time-series. We did not regress
out the global signal as this operation is known to introduce
artifacts in the spatial covariance structure (Murphy et al., 2009).
Additionally, we did not apply band pass filtering as this would
interfere with subsequent temporal whitening that we describe
later in thisSection. Preprocessed data without bandpass filtering
and global signal regression is available using the noglobalnofilt
option in the PCP project. Finally, the spatial time-series was
parcellated into times-series × regions of interest using the
Harvard-Oxford atlas distributed with FSL (http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/). Here we included p = 110 regions of interest
including 96 cortical regions and 14 subcortical regions. Regions
corresponding to white matter, brain stem and cerebellum were
excluded. The resulting time-series × regions data matrix for
each individual subject is (t = 116, p = 110) for UCLA subjects
and (t = 300, p = 110) for Michigan subjects. This preprocessed
dataset has been archived in a public repository (http://dx.doi.
org/10.6084/m9.figshare.1533313).

4.2. Previously Implicated Subnetworks
and Regions
Distinct lines of evidence suggest the involvement of limbic,
fronto-parietal, default mode and ventral attention regions
in ASD. Uddin (2014) summarize the evidence in favor of
a salience-network model to explain behavioral dysfunction
in responding to external stimuli. According to this model,
the salience network regions that span traditional limbic and
ventral attention systems play a vital role in coordinating
information between the default mode regions involved in
attending to internal stimuli and the fronto-parietal regions
involved in regulating attention to external stimuli. Together,
these interactions enable appropriate behavioral responses to
“salient" or important events in the external environment. Uddin
et al. (2013a) conducted a network-based prediction study and
found that connectivity features of the anterior cingulate cortex,
and the anterior insula, predict an increase ADOS repetitive
behavior scores. Similarly, another study by Di Martino et al.
(2009) also implicates connectivity of anterior insula and anterior
cingulate cortex to deficits in social responsiveness in Autism.
Cherkassky et al. (2006); Monk et al. (2009) implicate posterior
cingulate connectivity within the default mode network in ASD.
Alaerts et al. (2013) show that deficits in emotion recognition
were correlated with network features in the right posterior
superior temporal sulcus, a result also supported in the wider
literature (Uddin et al., 2013b).

Additionally, we also major findings from previous analyses of
the ABIDE dataset that include the UCLA or Michigan subject
samples. Whole brain voxelwise analysis by Di Martino et al.
(2014b) revealed covariate effects associated with the mid insula,
posterior insula, posterior cingulate cortex and thalamus. Group
level two-sample tests of functional segregation and integration
in seed based functional connectivity (Rudie et al., 2012a,b) reveal
differences in the amygdyla, IFG right pars opercularis.

Based on our review of existing literature, we seek to detect
covariate effects with respect to 23 hypotheses regarding the
density of connections. Of these 23 hypotheses, 13 correspond

to density of connections of nodes or brain regions with respect
to the whole brain, and 10 correspond to the density within
and between 4 large scale functional subnetworks. These regions
are defined using the Harvard-Oxford atlas with large scale
subnetworks provided by Yeo et al. (2011). Figure 5 illustrates
the volumes associated with the 13 regions of interest. Figure 6
illustrates the four large scale functional brain networks we
consider, namely, the default mode, the frontoparietal, the limbic
and the ventral attention networks as defined by Yeo et al. (2011).
By explicitly testing the density of long-range connections in
brain regions and networks previously linked with ASD, we aim
to identify network structures at the node and subnetwork level
that are directly involved in behavioral deficits.

4.2.1. Testing for Covariate Effects via R3

We employ the linear model from Equation (5) for node and
subnetwork density to test the null hypothesis that ADOS
covariates have no effect on density. For this analysis, we jointly
consider two related explanatory covariates, the ADOS Social
Affect (SA) and the ADOS Restricted, Repetitive Behavior (RRB)
scores (q = 2), while accounting for differences in clinical
evaluation across sites, by incorporating site as a nuisance
covariate (r = 1). We eliminate subjects without ADOS cognitive
scores, leaving us with n = 100 autism subjects. Thus, the final
data tensor for covariate tests contains either t = 116 (UCLA)
or t = 300 (Michigan) time-points for p = 110 brain regions in
n = 100 subjects.

Before applying the R3 procedure from Section 2.3 to
the preprocessed ABIDE dataset, we need to ensure fMRI
observations are approximately independent. By whitening
temporal observations, we ensure that estimating individual
subject networks is more efficient. We achieve this by first
estimating the temporal precision matrix �̂ =

∑n
i=1 Y

(i)(Y(i))⊤

using the banded regularization procedure of Bickel and Levina
(2008) for autoregressive data and whitening the fMRI time-
series of each subject Ỹ(i) = �̂1/2Yi. To choose the number
of lags, we conduct model selection via cross-validation (Bickel
and Levina, 2008). Given these whitened observations, we
apply the R3 procedure outlined in Algorithm 1. We initialize
regularization parameters using StARS and subsequently perturb
these parameters according to RAP as described in Section 2.3.
Since we have a total of 23 node density and subnetwork
density hypotheses, we control the false discovery rate at the 5%
level using the Benjamini-Yekutieli procedure (Benjamini and
Yekutieli, 2001).

4.3. ABIDE Data Analysis: Results
Tables 1, 2 show statistically significant covariate effects for
3 subnetwork hypotheses and 5 regions of interest. Notable
findings amongst subnetwork hypotheses in Table 1 are that
an increase in behavioral deficits indicated by restricted
and repetitive behavior scores (RRB) and social affect (SA)
is associated with a decrease in connection densities in
frontoparietal-based subnetworks. The 3 prominent findings
involve connection densities between the frontoparietal to
limbic subnetworks, between the frontoparietal to ventral
attention subnetworks and between the default mode and limbic
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FIGURE 5 | Regions of interest for covariate tests of node density. This figure illustrates the regions of interest based on the Harvard Oxford Atlas that we have

chosen to test for covariate effects in Table 2. Several studies link the severity of autism spectrum disorders, measured by ADI or ADOS cognitive scores, with 9

cortical (A) and 4 sub-cortical (B) regions of interest, all within the default mode, limbic, frontoparietal, and ventral attention networks. The full literature review is

available in Section 4.2.

FIGURE 6 | Functional subnetworks of interest for covariate tests of network density. This figure illustrates the subnetworks we have chosen to test for

covariate effects in Table 1. Using previous studies discussed in Section 4.2, we seek to test whether symptom severity is associated with individual differences in the

density or number of connections within and between these sub-networks. Panels (A–D) illustrate subnetwork components of the full group level network in panel (E).

The network structure in Panel (A) shows links within the limbic subnetwork as well as between the limbic regions and all other brain regions. Similarly, each of the

other panels emphasize connectivity of fronto-parietal (B), ventral attention (C), and default mode (D) regions, respectively, to the whole brain. For the purposes of

illustration, this group level network is obtained using individually estimated graphical models from the procedure in Section 2.3.1. Nodes correspond to anatomical

regions in the Harvard Oxford Atlas (Fischl et al., 2004). The subnetworks correspond to resting state networks provided by Yeo et al. (2011). We first threshold weak

edges with stability scores less than 0.8 in individual subject networks and then obtain a group level network by aggregating edge presence across all subjects. Note

that we use this group network exclusively for illustrative purposes and not for statistical inference. The color gradient for edges in group network in panel (E)

corresponds to proportion of stable edges found across all subjects.
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TABLE 1 | Joint ADOS covariate effects on subnetwork density.

Subnetwork 1 Subnetwork 2 pval (RRB + SA) RRB CI (L) CI (U) SA CI (L) CI (U) SITE CI (L) CI (U)

Default Default 0.061200 −2.66 −7.10 1.78 −0.66 −2.92 1.59 0.22 −5.85 6.30

Default Frontoparietal 0.010000 −2.34 −4.97 0.29 −0.18 −1.52 1.15 −0.52 −4.12 3.08

Default Limbic 0.004530∗ −1.51 −3.06 0.04 −0.10 −0.89 0.69 −0.30 −2.42 1.82

Default Ventral attention 0.038000 −0.83 −1.76 0.10 0.08 −0.40 0.55 0.37 −0.91 1.64

Frontoparietal Frontoparietal 0.007030 −1.36 −3.23 0.52 −0.51 −1.47 0.44 −0.47 −3.04 2.10

Frontoparietal Limbic 0.000088∗ −1.15 −1.98 −0.31 0.00 −0.43 0.43 0.23 −0.92 1.38

Frontoparietal Ventral attention 0.003793∗ −0.61 −1.16 −0.06 0.03 −0.25 0.31 0.75 0.00 1.50

Limbic Limbic 0.530000 −0.19 −1.70 1.32 −0.35 −1.11 0.42 −0.77 −2.83 1.29

Limbic Ventral attention 0.955000 0.01 −0.45 0.46 −0.05 −0.28 0.18 −0.69 −1.31 −0.06

Ventral attention Ventral attention 0.196000 −0.05 −0.50 0.40 −0.21 −0.44 0.02 −0.24 −0.86 0.37

We jointly test the effects of two ADOS covariates on subnetwork density while accounting for site effects as a nuisance covariate. Here, the most prominent findings suggest that a

decrease in the number of direct connections between frontoparietal to limbic, between frontoparietal to ventral attention subnetworks and between default to limbic subnetworks is

linked with increased ADOS symptom severity. This result is consistent with the hypothesis that abnormalities within the salience network, comprising anterior cingulate cortex (a region

within our frontoparietal network) and insula (a region within our ventral attention network), results in a failure to regulate between attention to external stimuli vs. attention to internal

thoughts. A total of three subnetworks, denoted by ∗, survive corrections for multiplicity, using false discovery control over all 23 hypotheses tested at the 5% level using Benjamini-

Yekutieli. Although estimates of site effects were non-zero, individual confidence intervals for most site effects are close to or include zero and were thus not statistically significant after

corrections for multiplicity. Results are discussed further in Section 4.3

TABLE 2 | Joint ADOS covariate effects on node density.

Subnetwork Region pval (RRB + SA) RRB CI (L) CI (U) SA CI (L) CI (U) SITE CI (L) CI (U)

Default L. Cingulate post. 0.004600∗ −0.68 −1.35 −0.02 −0.01 −0.34 0.33 −0.05 −0.96 0.86

Default R. Cingulate post. 0.009000 −0.49 −0.96 −0.01 0.03 −0.21 0.27 0.39 −0.26 1.03

Default R. pSTG 0.010900 −0.41 −0.85 0.04 −0.02 −0.24 0.21 0.08 −0.53 0.69

Frontoparietal R. Cingulate ant. 0.002100∗ −0.30 −0.65 0.04 −0.08 −0.26 0.10 0.62 0.14 1.09

Frontoparietal R. IFG pars oper 0.004100∗ −0.69 −1.30 −0.09 0.06 −0.25 0.36 0.05 −0.78 0.88

Frontoparietal L. Cingulate ant. 0.005400∗ −0.55 −1.14 0.05 −0.06 −0.36 0.24 −0.05 −0.86 0.76

Frontoparietal L. IFG pars oper 0.058000 −0.29 −0.70 0.11 −0.01 −0.22 0.19 0.07 −0.48 0.62

Limbic R. Thalamus 0.004200∗ −0.46 −1.02 0.10 −0.12 −0.41 0.16 −0.65 −1.41 0.12

Limbic L. Thalamus 0.037700 −0.49 −1.20 0.21 −0.08 −0.43 0.28 −0.57 −1.53 0.39

Limbic R. Amygdyla 0.092500 −0.29 −0.23 0.21 −0.01 −0.72 0.14 −0.26 −0.85 0.33

Limbic L. Amygdyla 0.175100 −0.14 −0.49 0.21 −0.07 −0.25 0.11 0.30 −0.19 0.78

Ventral attention L. Insula 0.223300 −0.11 −0.46 0.24 −0.08 −0.26 0.09 −0.24 −0.72 0.23

Ventral attention R. Insula 0.306800 −0.13 −0.60 0.34 −0.10 −0.34 0.14 −0.76 −1.40 −0.12

We jointly test the effects of two ADOS covariates on node density while accounting for site effects as a nuisance covariate. Notably, we find that a decrease in the number of direct

connections between left posterior cingulate cortex (PCC) and anterior cingulate cortex (ACC) with all other regions is linked with an increase in ADOS symptom severity. This result

corroborates previous findings that ACC (a component of the salience network) and PCC connectivity might be directly involved behavioral deficits ASD. A total of five regions, denoted

by ∗, survive corrections for multiplicity, using false discovery control over all 23 hypotheses tested at the 5% level using Benjamini-Yekutieli. Although estimates of site effects were

non-zero, individual confidence intervals for most site effects are close to or include zero and were thus not statistically significant after corrections for multiplicity. Results are discussed

further in Section 4.3.

subnetworks. Individual regression coefficients and confidence
intervals for RRB and SA suggest that of the two covariates,
RRB scores particularly dominate the decrease in subnetwork
density for two of these results, particularly the frontoparietal-
limbic subnetwork. The most prominent results amongst region
of interest hypotheses in Table 2 suggest that ADOS symptom
severity is again associated with hypoconnectivity or a decrease
in the number of connections between each of the following
regions with the rest of the network—bilateral pairs of anterior
cingulate cortex (ACC); left posterior cingulate cortex(PCC); the
right inferior frontal gyrus (IFG); and the thalamus. Note that
we use a conservative Benjamini-Yekutieli procedure (Benjamini

and Yekutieli, 2001) to control for FDR at the 5% level under
arbitrary dependence amongst the 23 hypotheses tested. Under
a less conservative procedure, Benjamini-Hochberg (Benjamini
and Hochberg, 1995), four additional hypotheses including
the within-frontoparietal subnetwork and the right PCC are
statistically significant at 5% FDR control. While the regression
coefficients for site effects are non-zero in both analyses, most
confidence intervals either contain zero or are very close to zero
and not statistically significant. The one exception amongst our
prominent findings, the right ACC, shows statistically significant
site effects. We also find site effects for two hypotheses where
we did not detect ADOS effects, namely, the limbic to ventral
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attention subnetwork and right insula. However, these site effects
are not statistically significant after correcting for multiplicity.

Our analysis strongly implicates the frontoparietal-limbic
subnetwork, and frontoparietal-ventral attention subnetworks,
as well as posterior/anterior cingulate cortical connections with
the rest of the brain, in behavioral deficits of ASD. Since we
identify these regions and subnetworks using partial correlation
measures of functional connectivity, our results provide strong
evidence that these network components are directly involved
in ASD. In particular, since the salience network (Buckner et al.,
2013; Uddin et al., 2013a) is thought to comprise the ACC, which
falls within our frontoparietal network, and insular regions that
overlap limbic and ventral attention networks in our analysis,
our subnetwork findings are consistent with the salience network
explanation for behavioral deficits in autism. Additionally, our
findings strongly implicate frontoparietal-limbic relationships.
While our region of interest analysis found abnormalities in
thalamar connectivity, a component of the limbic network, other
limbic regions could also be directly involved in ASD and thus
warrant further study.

We contrast our findings on the 23 a-priori hypotheses
in Section 4.2 with previous analyses that were obtained
by conducting network analyses on correlational networks,
including previous analyses of the same ABIDE dataset. Our
analysis detects only a subset of previous covariate effects on
ASD network structure when using GGM based networks via
R3. Correlational network analysis using the UCLA and UM
samples of ABIDE (Rudie et al., 2012b; Di Martino et al., 2014b)
as well as those form alternative sites (Uddin et al., 2013b) link
insular, amygdylar connectivity with autism symptoms, whereas
we do not detect strong effects for these regions for density
metrics. The absence of strong covariate effects using GGMs
suggests that the insular and amygdylar connections might be
associated with behavioral deficits in autism only due to indirect
correlations with other regions of interest. Similarly, although we
find abnormalities in the PCC, a region within the default mode
network, and between the default-mode and the limbic regions,
we failed to find abnormalities linking the default mode with
frontoparietal or ventral attention networks. This suggests that
previous findings involving the default mode network could have
been the result of indirect pairwise correlations, possibly driven
by PCC and limbic regions. Although we use novel functional
connectivity models and methods to analyze the ABIDE dataset,
some of our choices of a-priori hypotheses for this analysis,
notably, the inclusion of IFG pars opercularis and the amygdyla
for node density, were guided by alternative analyses of the
ABIDE dataset (Rudie et al., 2012b; Di Martino et al., 2014b).
Thus, we need further validation of the purported effects of
ADOS on IFG pars opercularis density.

5. DISCUSSION

This paper investigates an understudied issue in neuroimaging—
the impact of (often imperfectly) estimated functional networks
on subsequent population level inference to find differences
across functional networks. Using an important class of network

models for functional connectivity, Gaussian graphical models,
we demonstrate that neglecting errors in estimated functional
networks reduces statistical power to detect covariate effects for
network metrics. While lack of statistical power due to small
subject sizes is well documented in neuroimaging (Button et al.,
2013), recent test re-test studies (Birn et al., 2013; Laumann
et al., 2015) suggest that typical fMRI studies of 5–10 min
are highly susceptible to lack of statistical power. This paper
provides additional evidence that within subject sample size, t,
is important for well powered studies. For typical studies where
t is comparable to the number of nodes p, errors in estimating
functional networks can be substantial and not accounted for by
standard test statistics. We show that our methods to mitigate
this problem, R2 and R3, are always at least as powerful if
not substantially more powerful than standard test statistics
under a variety of sample sizes and covariate signal-to-noise
regimes. Additionally, regardless of the methods employed, our
power analyses suggest that in many scenarios, particularly when
subject level networks are large, a more efficient use of a fixed
experimental budget would be to collect more within subject
measurements and fewer subject samples in order to maximize
statistical power to detect covariate effects.While we demonstrate
this result on the joint importance of within and between subject
sample sizes using density based network metrics, we expect
such results to hold more generally whenever population level
functional connectivity analyses are conducted in a two-step
manner where subject level networks are estimated initially and
population level metrics then explicitly depend on the quality
of subject level network estimates. In practice, we additionally
need to incorporate other considerations beyond statistical power
in choosing within subject scan length such as increase in
movement or the discomfort to participants particularly in
patient populations. These issues related to statistical power
warrant further investigation in future work.

This paper also highlights the scientific merits of employing
explicit density based metrics in graphical models of functional
connectivity to gain insights into disease mechanisms at a
macroscopic level using the ABIDE dataset (Di Martino et al.,
2014b). In Section 4, we sought to detect covariate effects on the
density of direct, long range functional connections in Austism
Spectrum Disorders (ASD). Notably, our results in Section 4.3, at
both the subnetwork and node level favor the hypoconnectivity
hypothesis for behavioral deficits in ASD. Specifically, we find
that a reduction in directly involved long-range functional
connections between parcellated regions of interest increases
ADOS symptom severity. Assuming that the salience network
model of autism dysfunction is correct (Uddin, 2014), our results
suggest that reduced interactions between the executive control
network and the salience network, as well as default mode to the
salience network might be responsible for ASD symptoms. Since
we employ GGM based models, a plausible interpretation of such
hypoconnectivity is that regions in ventral attention and limbic
systems fail to adequately communicate with frontoparietal
regions that participate in executive control and default mode
regions that participate in internal attention. A previous study
found evidence of hyperconnectivity when counting the number
of local voxelwise connections in Keown et al. (2013). Our results
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do not contradict this finding since a network architecture of
ASD could involve both reduced long range connections as well
as increased density of local connections (Rudie and Dapretto,
2013). Other results on hyperconnectivity (Supekar et al., 2013;
Uddin et al., 2013a) do not explicitly employ degree or density of
connections to measure hyper or hypo-conectivity but measure
the strength of the mean pairwise correlation within and between
regions and subnetworks.While the effect in Supekar et al. (2013)
appears to be a large and robust finding, the correlational model
of connectivity employed in their analysis could be misleading
since it includes both direct and indirect functional connections
and does not explicitly measure the density of connections.
While further studies are needed to resolve the questions raised
by Rudie and Dapretto (2013) on this matter, we emphasize
that since graphical models of functional connectivity capture
direct functional connections, such models enable stronger
scientific conclusions regarding functional network mechanisms
compared to purely correlational models where edges do not
necessarily reflect direct communication between regions.

As we discuss in the simulation results in Section 3.2, our
ability to detect covariate effects in populations of graphical
models deteriorates in highly dense regimes of network structure
where the density or number of edges in the network increases
substantially while the number of within subject observations
remains limited, or when the individual networks contain a
large number of hub-like structures (Ravikumar et al., 2011;
Zhou et al., 2011). Since our resampling based methods are
a framework that employ existing graph estimation algorithms
(Section 2.3), they inherit the strengths and limitations of the
specific graph estimation algorithm in such high density regimes.
By incorporating new and improved estimators (Yang et al., 2014)
for graphical models at the level of individual subjects, we expect
corresponding variants of our resampling framework to detect
covariate effects under a wider range of network density regimes.

While this paper specifically considers network models
(Equation 1) where neuroimaging data is distributed according to
a multivariate normal, alternative distributions can be employed
for the subject level model in Equation (1), including matrix
variate distributions (Allen and Tibshirani, 2012; Zhou et al.,
2014) that can account for the serial correlation in temporal
observations, and non-parametric graphical models (Lafferty
et al., 2012) that relax assumptions of normality. Furthermore,
while we focus on resting state functional connectivity in fMRI
in this work, our concern regarding errors in estimating large
functional networks is applicable to other imaging modalities
including EEG/MEG studies. In fact, our two level models
(Equation 1) and R3 framework can be easily extended to
functional network analyses based on partial coherence (Sato

et al., 2009) networks or vector autoregressive models (Koenig
et al., 2005; Schelter et al., 2006) that are popular in EEG/MEG
studies. Additionally, our results are highly relevant to dynamic
functional connectivity (Chang and Glover, 2010) analyses where
studies estimate separate time-varying functional networks per
subject using short sliding-windows of 30–60 s rather than 5–
10 min. In such a high dimensional setting where t << p,
our power analyses in Figures 2, 3 suggest that such dynamic
network analyses will be highly underpowered and could benefit

from our methods. Thus, extensions of the R3 framework for
dynamic connectivity analyses as well as other multivariate
network models is a promising avenue of research. Other
areas of investigation include inference for partial correlation
strength and corresponding weighted network analysis, as well
as including high dimensional covariates in our general linear
model (Equation 2). Overall, this work reveals that accounting for
imperfectly estimated functional networks dramatically improves
statistical power to detect population level covariate effects, thus
highlighting an important new direction for future research.

6. DATA SHARING

The preprocessed ABIDE dataset used in this paper is available
at http://dx.doi.org/10.6084/m9.figshare.1533313. Software for
reproducing our analysis is be provided at https://bitbucket.org/
gastats/monet/downloads.
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