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Network of neurons in the brain apply—unlike processors in our current generation of

computer hardware—an event-based processing strategy, where short pulses (spikes)

are emitted sparsely by neurons to signal the occurrence of an event at a particular point

in time. Such spike-based computations promise to be substantially more power-efficient

than traditional clocked processing schemes. However, it turns out to be surprisingly

difficult to design networks of spiking neurons that can solve difficult computational

problems on the level of single spikes, rather than rates of spikes. We present here a new

method for designing networks of spiking neurons via an energy function. Furthermore,

we show how the energy function of a network of stochastically firing neurons can be

shaped in a transparent manner by composing the networks of simple stereotypical

network motifs. We show that this design approach enables networks of spiking neurons

to produce approximate solutions to difficult (NP-hard) constraint satisfaction problems

from the domains of planning/optimization and verification/logical inference. The resulting

networks employ noise as a computational resource. Nevertheless, the timing of spikes

plays an essential role in their computations. Furthermore, networks of spiking neurons

carry out for the Traveling Salesman Problem a more efficient stochastic search for good

solutions compared with stochastic artificial neural networks (Boltzmann machines) and

Gibbs sampling.

Keywords: spiking neural networks, noise as a resource, benchmark tasks, NP-complete problems, neural

sampling, neuromorphic hardware, advantage of spike-based computing, Boltzmann machine

1. INTRODUCTION

The number of neurons in the brain lies in the same range as the number of transistors in a
supercomputer. But whereas the brain consumes less than 30 Watts, a supercomputer consumes
as much energy as a major part of a city. Power consumption has not only become a bottleneck for
supercomputers, but also for many applications of computing hardware, including the design of
intelligent mobile devices. One strategy for designing substantially more power-efficient computing
hardware is to port aspects of computations in networks of neurons in the brain into dedicated
hardware.

The organization of computations in neural networks of the brain is apparently quite different
from the organization of computations in current digital computing hardware. We propose
that they are event-driven, rather than clocked, and that this feature is likely to contribute to
their superior energy efficiency. The underlying events are spikes that are emitted by biological
neurons at irregular intervals (Maass, 2015). One prominent open question is how the relative
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timing of these spikes (events) could be used for computational
purposes. This question becomes especially non-trivial if
one assumes that there is noise in the system that hinders
straightforward deterministic approaches for simulating
arbitrary Turing machines via delay-coding by spiking neurons
(Maass, 1996). We present in this article a method for exploiting
relative timing of spikes for computational purposes that is
compatible with noise, and in fact requires noise. Rather than
attempting to design networks of spiking neurons on the basis
of specific neural codes and computational operations on such
neural codes, we propose to focus instead on the probability
distribution and dynamics of network states in a high noise
regime. These network states record which neurons fire within
some small time window, like in Berkes et al. (2011) and
Habenschuss et al. (2013).

There exist numerous sources of noise in biological neurons
and synapses (Faisal et al., 2008; Branco and Staras, 2009).
A hardware emulation of stochastically firing neurons has to
employ efficient methods for generating random numbers in
hardware. We refer to Tetzlaff et al. (2012),Yang et al. (2014)
and Al-Shedivat et al. (2015) and the emergent field of stochastic
electronics (Hamilton et al., 2014) for the current state of the
art in the design of efficient generators of random numbers in
hardware.

We introduce new principles for the design of networks of
spiking neurons for solving constraint satisfaction problems.
We will illustrate these principles in applications to two
well known NP-hard benchmark tasks from the domains of
planning/optimization and verification/logical inference: the
Traveling Salesman Problem (TSP), and satisfiability of Boolean
formulas (3-SAT). The extensive literature on these two problems
is reviewed in the Section 3. To the best of our knowledge
there exists just one publication (Malaka and Buck, 2000) where
a deterministic network of spiking neurons was applied to an
instance of TSP with 8 cities. We are not aware of previous
applications of networks of stochastic spiking neurons to TSP, or
of any application of networks of spiking neurons to satisfiability
problem.

Applications of non-spiking neural networks to solving
constraint satisfaction problems had been pioneered by Hopfield
and Tank (1986). Aarts and Korst (1989) give a review
of applications of stochastic non-spiking neural networks
(Boltzmannmachines) to solving constraint satisfaction problem.
These methods were based on the use of energy functions. We
show how similar methods can also be used for solving constraint
satisfaction problems with spiking neurons. It had already been
shown in Buesing et al. (2011) that networks of stochastic spiking
neurons with symmetric weights are closely related to Boltzmann
machines. This relation to Boltzmann machines provides the
basis for the methods that we will discuss. But we will also show
in Section 2.4 that there exists an unexpected structural difference
between stochastic search by Boltzmann machines and networks
of spiking neurons, even if both types of networks have the same
energy function. Furthermore, we will also show in Section 2.6
how networks of spiking neurons with asymmetric weights can
be used for solving constraint satisfaction problems. The strategy
that we propose is to retain a core network of “principal neurons”

that are interconnected by symmetric weights. It turns out that
with the help of a Modularity Principle (Theorem 1 in Section
2.2) one can control the marginal of the energy function for these
principal neurons even if the network also employs auxiliary
spiking neurons whose synaptic connections have asymmetric
weights. The need for such auxiliary spiking neurons arises
for example when one wants to implement the OR of 3-SAT
instances with stochastic spiking neurons (Sections 2.6 and 4.2).

The four principles that we are proposing for the design of
networks of spiking neurons that can efficiently solve constraint
satisfaction problems are formulated at the beginning of Results,
and illustrated in Figure 1. Sections 2.1–2.7 discuss applications
of these design principles to the TSP and 3-SAT. Further details
and references to these applications can be found in the Section 4
and 5.

We would like to clarify that this article does not aim at
modeling spike-based computations in biological organisms. We
also would like to emphasize, that there are many other well-
known methods for efficiently solving the computational tasks
considered in this article, see the Section 3. The methods that we
are introducing are only of interest under the premise that one
wants to employ spike-based hardware for computations, e.g.,
because of its power-efficiency (Mead, 1990; Merolla et al., 2014).

2. RESULTS

When the membrane potential of a biological neuron crosses
a threshold, the neuron emits a spike, i.e., a sudden voltage
increase that lasts for 1–2 ms. Spikes occur in the brain
asynchronously in continuous time and are communicated to
numerous other neurons via synaptic connections with different
strengths (“weights”). The effect of a spike from a pre-synaptic
neuron l on a post-synaptic neuron k, the so-called post-synaptic
potential (PSP), can be approximated as an additive contribution
to its membrane potential. It is usually modeled as being short-
lived (10–20 ms) and either inhibitory or excitatory, depending
on the sign of the synaptic weight wkl.

We model the stochastic behavior of a spiking neuron k at
time t via an instantaneous firing probability (i.e., probability of
emitting a spike),

1

τ
exp(uk(t)) , (1)

that depends on the current membrane potential uk(t) of the
neuron. It is defined as the weighted sum of the neuron’s inputs,

uk(t) = bk +
∑

l

wkl xl(t) . (2)

The additional bias term bk represents the intrinsic excitability
of neuron k. wklxl(t) models the PSP at time t that resulted from
a firing of the pre-synaptic neuron l. This is a standard model
for capturing stochastic firing of biological neurons (Jolivet et al.,
2006). We assume here for mathematical tractability rectangular
PSP shapes xl(t) of length τ . The precise value of τ is not
important for our results, and we set τ = 10ms. Thus, we have
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FIGURE 1 | Illustration of four principles for solving constraint satisfaction problems by spike-based neural networks with noise. (A) Focus on the

probability p(x) or energy E(x) of network states x, where each spike of a neuron switches a corresponding component of x to 1 for a time window of length τ that

corresponds to the duration of a PSP (black/red arrows=excitatory/inhibitory connections). The network state x(t) can be read out at any time t from the network

activity (3 sample time points t are marked by blue dashed lines in the middle plot). The energy E(x) of a state and its relation to the probability p(x) of x under the

stationary distribution p of the network is illustrated in the bottom plot. This simple network has been chosen for illustration purposes. Its neuron numbers are not

related to numbers in subsequent plots. (B) Modularity principle for the energy function E(x). The energy landscape of a subnetwork of principal neurons (white circles)

can be shaped by adding circuit motifs (such as WTA, OR) with auxiliary neurons (dashed circles) that provide approximately linear contributions to E(x). In addition,

Winner-Take-All (WTA) circuits allow evaluation of arbitrary multi-nomial problem variables, see WTA1 (for a variable ranging over {1,2,3,4}) and WTA2 (for a variable

ranging over {a,b, c,d}) in the bottom plot. Black or red lines without arrowheads denote symmetric connections. Excitatory corrections are indicated by black lines.

An inhibitory connection (red arc) makes the probability of the combination of value 1 in WTA1 with value c in WTA2 particularly unlikely. This network state 1, c

corresponds to the highest point in the corresponding energy landscape on the right. In the bottom panel two further network motifs (drawn in yellow and blue) have

been added, each causing further contributions (drawn in the same colors) to the energy landscape of the simpler network in the plot above. The yellow lines of the

OR motif in the bottom panel each denote 4 directed connections as indicated in the top panel (see Section 4.2.2 for details). (C) Spike-based dynamics supports

bypassing of high-energy barriers. This example illustrates bypassing of energy barriers between low energy states 4, c (red) and 1, a (yellow/black) in the energy

landscape from the bottom panel of (B) by moving through intermediate network states that represent undefined values of these problem variables (marked with #

symbol). Note that these intermediate network states have actually high energy (not shown) because fewer terms are subtracted in the energy term (3), but

nevertheless they are frequently visited as shown in Section 2.4. (D) Internal spike-based temperature control can drastically change the contrast of the energy

landscape from (C) on the basis of internal information about the satisfaction of salient constraints, and thereby the progress of stochastic search. For example, an

internal temperature controller T can drastically increase the contrast of the energy landscape from (C) (see illustration on the right) if all or almost all constraints are

satisfied, thereby inducing the stochastic dynamics to lock into found solutions that satisfy all or most constraints.

xl(t) = 1 if a spike was emitted by neuron l within (t − τ, t],
and xl(t) = 0 otherwise (Figure 1A). We say then that neuron
l is in the active state (or “on” state) during this time interval
of length τ (which coincides with its refractory period). For
simplicity we assume that the refractory period during which a
neuron cannot spike equals τ , the length of a PSP. While the
choice of the value for τ has no influence on the computational
properties of the network, the choice of a different shape of

PSPs causes divergences between the network dynamics and the
underlying theory. More precisely, one loses precise knowledge
of the stationary distribution of the network. Empirical analyses
of the effects of choosing other shapes for PSPs for a somewhat
different computational context can be found in Pecevski et al.
(2011).

The design strategy that we are proposing for solving
constraint satisfaction problems by stochastically firing neurons
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can be summarized by 4 principles, whose application to concrete
tasks will be demonstrated in the subsequent sections. The
stochastic dynamics of recurrently connected networks of spiking
neurons with noise can be interpreted as search for low energy
network states (principle 1, Figure 1A). This energy landscape
can be shaped for concrete computational tasks in a modular
fashion by composing the network from simple stereotypical
network motifs (principle 2, Figure 1B). Barriers in the energy
landscape can be overcomemore easily if the network is forced to
also assume states where none or several neurons in aWTAmotif
fire, corresponding to an intermittently undefined value of the
corresponding multinomial variable (marked by #). This effect
turns out to occur particularly often in spike-based stochastic
networks (see Section 2.4) (principle 3, Figure 1C). Finally,
networks of spiking neurons can internally rescale their energy
landscape in order to lock into desirable solutions (principle 4,
Figure 1D).

2.1. Network States, Stationary
Distributions, and Energy Functions
We propose to focus on the temporal evolution and statistics of
spike-based network states (principle 1), rather than on spikes of
individual neurons, or rates, or population averages. The network
state of a network of N neurons at time t is defined here as x(t) =
(x1(t), x2(t), . . . , xN(t)) (Figure 1A, middle), where xk(t) = 1
indicates that neuron k has fired (i.e., emitted a spike) during the
time interval (t−τ, t] corresponding to the duration of a PSP. Else
xk(t) = 0. If there is a sufficient amount of noise in the network,
caused for example by the stochastic firing of neurons according
to Equation (1), the distribution of these network states converges
exponentially fast from any initial state to a unique stationary
(equilibrium) distribution p(x) of network states (Habenschuss
et al., 2013). This stationary distribution p(x) can be viewed as a
concise representation of the statistical fine-structure of network
activity at equilibrium. In line with the related non-spiking neural
network approach of Hopfield and Tank (1986) we will use in
the following an alternative representation of p(x), namely the
energy function E(x) = − log p(x) + C, where C denotes an
arbitrary constant (Figure 1A bottom), so that low energy states
occur with high probability at equilibrium. If exactly one neuron
of a WTA circuit with K competing neurons fires (see Figure 1B
for the case K = 4), one can interpret the current state of
this WTA circuit as the current value of a multinomial variable
with K values. But one should keep in mind that the resulting
notion of network state x with multinomial rather than binary
components only provides a heuristic description of the true
network state, which is always a binary vector (as defined above).
The difference becomes apparent when for a moment none or
more than 1 neuron of a WTA circuit is in the on-state. In this
case the binary network state is still well-defined, but not the
heuristic version in terms of multinomial variables. This case
is considered in Figure 1C, and turns out to be important for
Section 2.4.

The neural sampling theory (Buesing et al., 2011) implies that
the stationary distribution of a network with neuron model given
by Equation (1) and (2), and symmetric weights wkl = wlk is a

Boltzmann distribution with energy function

EN (x) = −

N
∑

k= 1

bkxk −
1

2

N
∑

k= 1

N
∑

l= 1

xkxlwkl . (3)

This energy function has at most second-order terms. This
suffices for solving the TSP. But many other constraint
satisfaction problems (such as 3-SAT, see below) require
the modeling of higher-order dependencies among problem
variables. To introduce higher-order dependencies among a
given set of principal neurons x, one needs to introduce
additional auxiliary neurons ξ to emulate the desired higher-
order terms. Two basic approaches can be considered. In the
first approach one assumes that synaptic connections between the
principal neurons x and the auxiliary neurons ξ , as well as the
connections within each group are symmetric, i.e., bidirectional,
with equal weights in both directions. In such case, the energy
function EN (x, ξ ) of the joint distribution over principal neurons
and auxiliary neurons can be described with at most second order
terms. But the marginal energy function for just the principal
neurons,

EN (x) = log
∑

ξ

exp(EN (x, ξ )) , (4)

with auxiliary neurons marginalized out, will then contain in
general also higher-order terms. By clever use of symmetrically
connected auxiliary neurons one can thereby introduce arbitrary
higher-order dependencies among principal neurons. In
practice, however, this “symmetric” approach has been found
to substantially slow down convergence to the stationary
distribution (Pecevski et al., 2011), due to large energy barriers
introduced in the energy landscape when one introduces
auxiliary variables through deterministic definitions.

The alternative approach, which is pursued in the following
for 3-SAT, is tomaintain symmetric connections among principal
network neurons, but to abandon the constraint that connections
between principal and auxiliary neurons, as well as connections
among auxiliary neurons, have to be symmetric. Furthermore,
auxiliary variables or neurons are related by stochastic (rather
than deterministic) relationships to principal neurons, thereby
supporting fast convergence to the stationary distribution. The
theoretical basis for constructing appropriate auxiliary network
motifs is provided by the neural computability condition (NCC)
of Buesing et al. (2011). The NCC states that it suffices for a
neural emulation of an arbitrary probability distribution p(x)
over binary vectors x that there exists for each binary component
xk of x some neuron k with membrane potential

uk(t) = log
p(xk = 1|x\k(t))

p(xk = 0|x\k(t))
, (5)

where x\k(t) denotes the state of all neurons except neuron k.
For a second-order Boltzmann distribution, evaluating the right-
hand side gives the simple linearmembrane potential in Equation
(2). For more complex distributions, additional higher-order
terms appear.
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2.2. Modularity of the Energy Function
The shaping of the energy function of a network of spiking
neurons with asymmetric connections or weights can be
simplified through a modularity principle (see Figure 1B,
principle 2). It allows us to understand the energy function
E(x) of a large class of networks of spiking neurons in terms of
underlying generic network motifs.

As introduced above, we distinguish between principal
neurons and auxiliary neurons: Principal neurons constitute
the interface between network and computational task. For
example, principal neurons can directly represent the variables
of a computational problem, such as the truth values in a logical
inference problem (Figure 4). The state x(t) of the principal
network (i.e., the principal neurons) reflects at any moment
t an assignment of values to the problem variables. Auxiliary
neurons, on the other hand, appear in specialized network
motifs that modulate the energy function of the principal
network. More specifically, the purpose of auxiliary neurons is to
implement higher-order dependencies among problem variables.
The starting point for constructing appropriate auxiliary circuits
is the NCC from Equation (5) rewritten in terms of energies from
Equation (3),

uk(t) = E
(

xk = 0, x\k(t)
)

− E
(

xk = 1, x\k(t)
)

. (6)

This sufficient condition supports the following strategy for
engaging auxiliary neurons that are not subject to the constraint
given by Equation (6), in order to shape the energy function E(x)
of the principal network in desirable ways: Suppose that a set
of auxiliary circuits I is added (and connected with symmetric
or asymmetric connections) to a principal network with energy
function given by Equation (3). Due to linearity of membrane
integration according to Equation (2) the membrane potential
of a principal neuron k in the presence of such auxiliary circuits
can be written as,

uk(t) = bk +

N
∑

l= 1

wkl xl(t)+
∑

i∈I

uk,i(t) , (7)

where the instantaneous impact of auxiliary circuit Ci on the
membrane potential of principal neuron k is denoted by uk,i(t).
In the presence of such auxiliary circuits there is no known way
to predict the resulting stationary distribution p(x) over principal
network states (or equivalently E(x)) in general. However, the
following Theorem implies that under some conditions each
auxiliary motif makes a transparent linear contribution to the
energy function E(x) of the principal network (see blue and
yellow circuit motifs in Figure 1B bottom).

Theorem 1 (Modularity Principle). Let N be a network of
stochastic neurons k = 1, . . . ,N according to Equation (1) and
(2), symmetric connections wkl = wlk (but no self-connections,
i.e., wkk = 0) and biases bk. In the absence of auxiliary
circuits this principal network has an energy function EN (x)
with first- and second-order terms as defined in Equation (3).
Let C = {C1, . . . ,CL} be a set of L additional auxiliary circuits
which can be reciprocally connected to the principal network N

to modulate the behavior of its neurons. Suppose that for each

auxiliary circuit Ci there exists a function Ui(x) such that at any
time t the following relation holds for the impact uk,i(t) of circuit
Ci on the membrane potential uk(t) of any neuron k inN :

uk,i(t) = Ui

(

xk = 0, x\k(t)
)

− Ui

(

xk = 1, x\k(t)
)

, (8)

The relation in Equation (8) is assumed to hold for each auxiliary
circuit Ci regardless of the presence or absence of other auxiliary
circuits.

Then the modulated energy function EN ,I(x) of the network in
the presence of some arbitrary subset I ⊆ {1, . . . , L} of auxiliary
circuits can be written as a linear combination:

EN ,I(x) = EN (x)+
∑

i∈I

Ui(x) . (9)

Examples for network motifs that impose computationally useful
higher order constraints in such modular fashion are the WTA
and OR motif (Figure 1B). The WTA motif (see Supplementary
Material Section 3.2) is closely related to ubiquitous motifs of
cortical microcircuits (Douglas and Martin, 2004). It increases
the energy of all network states where not exactly one of the K
principal neurons to which it is applied is active (this can be
realized through an auxiliary neuron mediating lateral inhibition
among principal neurons). It may be used, for example, to
enforce that these K principal neurons represent a discrete
problem variable with K possible values. The OR-motif, which
can be applied to any set of principal neurons, enforces that most
of the time at least one of these principal cells is active. It can be
implemented through two auxiliary neurons I and II which are
reciprocally connected to these principal neurons (as illustrated
in Figure 1B for two principal neurons). Neuron I exciteps them,
and neuron II curtails this effect through subsequent inhibition as
soon as one of them fires, see SupplementaryMaterial Section 3.3.

2.3. Application to the Traveling Salesman
Problem
We first demonstrate the computational capabilities that spiking
networks gain through these principles in an application to
the TSP, a well-known difficult (in fact NP-hard) benchmark
optimization problem (see Methods for previous results and
references). TSP is a planning problem where given analog
parameters cij represent the cost to move directly from a node
(“city”) i in a graph to node j. The goal is to find a tour that visits
all N nodes in the graph exactly once, with minimal total cost.

A network of spiking neurons that produces approximate
solutions for the TSP can be constructed as follows: One dedicates
one WTA circuit or module Xs to each time step s of the tour.
This WTA module consists of N neurons, one for each of the
N cities that could possibly be visited at step s. Interconnections
with strong negative weights between the N neurons in each
WTA module ensure that usually at most one of its N neuron
fires at any moment in time. The index i of the neuron in WTA
module Xs that has most recently fired can be interpreted as a
current proposition to visit city i at step s of the tour (using the
same translation from spikes to bits as in Figure 1A. Thus, by
recording for each WTA module which neuron has fired most
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recently, one can decode at any time t the firing activity of the
whole network as a proposed TSP solution.

The black links between adjacent WTA modules in Figure 2A

(that select cities for adjacent steps of the tour) denote excitatory
synaptic connections, whose strengths (weights) encode the cost
matrix for the N cities. These weights are larger for synaptic
connections between neurons that encode cities i and j for which
a transition has lower cost, see Equation 15 for the precise
definition. A larger weight increases the probability that if one of
these two neuron fires, the other one also fires, thereby suggesting
to go from city i directly to city j (or vice versa). Note that the
costs of the two directions are encoded by two different synaptic
weights that can be chosen independently. Strongly negative
weights on synaptic connections (red arcs in Figure 2A) between
neurons with the same index i in different WTA modules reduce

the probability that a tour is proposed where city i is visited
repeatedly. Figures 2B–D show that the network finds some
reasonable solution quite fast, and keeps finding better solutions
when it has more time to search.

A few (Nresting) extra steps (i.e., WTA circuits) are introduced
to create an energy landscape with additional paths to low energy
states. Cases where the costs are symmetric (cij = cji), or even
represent Euclidean distances between nodes in 2D space, are
easier to visualize (Figure 2B, top) but also computationally
easier. Nevertheless, also general TSP problems with asymmetric
costs can be solved approximately by spike-based circuits with
synaptic weights (Figure 2D). This is possible because of the
described coding method where different synaptic connections
encode the cost of moving from city i to city j and the cost of
moving from city j to city i.

FIGURE 2 | Application to the TSP. (A) Network design, with one WTA circuit Xn for each of the N′ = N+ Nresting steps of a tour through N cities (see main text).

The synaptic weights between two steps are chosen to reflect movement costs between each pair of cities. The constraint that each city must be visited exactly once

is enforced by inhibitory connections among neurons coding for the same city at different time steps. (B) Example application to a planar TSP instance with N = 38.

Top: 38-city problem on the left, tours generated by the network in the middle, and the optimal solution on the right. Bottom: spike trains of neurons in selected WTA

circuits during the first few seconds of a typical run. Middle: network performance over time (dark blue: single trial, cyan: average over 100 trials). The network quickly

generates good approximate solutions to the TSP problem. (C) Mean and minimum path length (cost) of solutions generated within a given number of state changes

(average over 100 runs; a state change happens whenever a neuron spikes or its PSP ends τ time units later), for the planar 38-city problem of (B). (D) Performance

for an asymmetric TSP problem (N = 39). Also here the network produces relatively fast good approximations (note that path costs in (C,D) are not comparable).

Panels A and B are reprinted from Maass (2015) with kind permission from IEEE.
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2.4. Advantage of Spike-Based Stochastic
Search
While the design of network motifs benefits already from the
freedom to make synaptic connections asymmetric (consider
e.g., in- and out-going connections of the auxiliary WTA
neuron that implements lateral inhibition), our third principle
proposes to exploit an additional generic asymmetry of spike-
based computation. This concerns an asymmetry in the dynamics
of spiking neurons, and has no relationship to asymmetry in
synaptic weights. A spike which changes the state of a neuron
k to its active state, occurs randomly in time according to
Equation (1). But its transition back to the inactive state occurs
deterministically τ time units later. As a result, it may occur for
brief moments that all K principal neurons of a WTA motif are
inactive, rendering an associated K-valued problem variable to
be intermittently undefined. Most of the time this has no lasting
effect because the previous state is quickly restored. But when
the transition to an undefined variable state occurs in several
WTA circuits at approximately the same time, the network state
can bypass high-energy barriers and explore radically different
state configurations (Figure 1C). Our theoretical analysis implies
that this effect enhances exploration in spike-based networks,
compared with Boltzmann machines (Gibbs sampling). The TSP
is a suitable study case for such comparison, because we can
compare the dynamics of a spiking network for the TSP with that
of a Boltzmann machine which has exactly the same stationary
distribution (i.e., energy function).

2.4.1. Specific Properties of Spike-Based Stochastic

Dynamics
Consider a Boltzmann machine or Gibbs sampler (Brooks
et al., 2010) (operating in continuous time to allow for a fair
comparison; for details see Supplementary Material Section 4.4)
that samples from the same distribution p(x) as a given spiking
network. Such non-spiking Gibbs sampler has a symmetric
transition dynamics: it activates units proportional to the sigmoid
function σ (u) = (1 + exp(−u))−1, while off-transitions occur
at a rate proportional to σ (−u). Neural sampling in a stochastic
spiking network, on the other hand, triggers on-transitions
proportional to exp(u), while off-transitions occur at a constant
“rate.” In neural sampling, the mean transition times mon from
the last on→off to the next off→on transition and its dual moff

in a neuron with membrane potential u are given by:

mon(u) = τ · exp(−u) , (10)

moff(u) = τ . (11)

On average, an off-and-on (or on-and-off) transition sequence
takes mon(u) + moff (u) time units. Thus, the average event rate
R(u) at which a spiking neuron with membrane potential u
changes its state is given by (Figure 3A),

R(u) =
2

mon(u)+moff (u)
=

2

τ
σ (u) . (12)

FIGURE 3 | Advantage of spike-based stochastic search (third principle). (A) The event rate (counting both on and off events) of a spiking neuron is low for

small membrane potentials u, and saturates for high u. (B) In contrast, the event rate of a Boltzmann unit is sharply peaked around u = 0. (C) Histogram of energy

jumps during the stochastic dynamics of a spiking network (SN) at the top and a Boltzmann machine (BN) with the same energy function at the bottom. Energy jumps

are due to state changes, caused by neural on- or off-transitions in the network. (D) Comparison between SN and BM regarding the frequency of state transitions that

leave one or several problem variables undefined. Shown is the ratio SN/BM for the symmetric TSP problem considered in Figure 2. Transitions into states with 5 or

more undefined variables occur with higher frequency in the SN. (E) Comparison of average computation times for 100 runs with standard deviations (in terms of the

number of state changes of the network) until a tour with a given cost is found for the problem instance from Figure 2B, for spike-based networks and corresponding

Boltzmann machines. (F) Same for the 39 city problem with asymmetric costs considered in Figure 2D. These results indicate specific advantages of spike-based

stochastic search for these two problem instances. Panels C and E are reprinted from Maass (2015) with kind permission from IEEE.
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In contrast, the average event rate Rsym(u) in a Gibbs sampler at
membrane potential u is given by (Figure 3B),

Rsym(u) =
2ρ0

2+ exp(u)+ exp(−u)
, (13)

where ρ0 is a positive constant which controls the overall speed of
sampling in the continuous-time Gibbs sampler, with the default
choice being ρ0 = 1. Clearly, although asymmetric spiked-
based and symmetric Gibbs sampling both sample from the same
distribution p(x) of states of the principal network, the frequency
of state transitions at different levels of the membrane potential
u differs quite drastically between the two samplers. Concretely,
the following u-dependent factor F(u) relates the two systems:

F(u) =
R(u)

Rsym(u)
=

1

τρ0
︸︷︷︸

const.

·
(

1+ exp(u)
)

. (14)

Similar to τ in the spike-based system, ρ0 can be understood
as a global time scale parameter which has no bearing on the
fine-scale dynamics of the system. The remaining factor reveals
a specific u-dependence of transition times which greatly affects
the temporal dynamics of sampling. Note that F(u) is strictly
positive and increases monotonically with increasing membrane
potential u. Hence, the asymmetric dynamics of spiking neurons
increases specifically the on- and off -transition rates of neurons
with high membrane potentials u (i.e., neurons with strong input
and/or high biases). According to Equation (6), however, high
membrane potentials u reflect large energy barriers in the energy
landscape. Therefore, the increase of transition rates for large
u in the spike-based system (due to the asymmetry introduced
by deterministic on→off transitions) means that large energy
barriers are expected to be crossed more frequently than in the
symmetric system (see Figure 1C and Supplementary Material
Section 4 for further details).

2.4.2. Spikes Support Bypassing of High Energy

Barriers
A specific computational consequence of spike-based stochastic
dynamics is demonstrated in Figure 3 for the TSP problems of
Figure 2: Transitions that bridge large energy differences occur
significantly more frequently in the spiking network, compared
to a corresponding non-spiking Boltzmann machine or Gibbs
sampling (Figure 3C). In particular, transitions with energy
differences beyond ±15 are virtually absent in Gibbs sampling.
This is because groups of neurons that provide strong input
to each other (such that all neurons have a high membrane
potential u > 15) are very unlikely to switch off once they
have settled into a locally consistent configuration (due to low
event rates at high u, see Figure 3B). In the spiking network,
however, such transitions occur quite frequently, since neurons
are “forced” to switch off after τ time units even if they
receive strong input u, as predicted by Figure 3A. To restore a
low-energy state, the neuron (or another neuron in the same
WTA circuit with similarly strong input u) will likely fire
very soon afterwards. This gives rise to the observed highly

positive and negative energy jumps in the spiking network, see
Supplementary Material for explanations of further details of
Figure 3C. As a consequence of increased state transitions with
large energy differences, intermittent transitions into states that
leave many problem variables undefined are also more likely
to occur in the spiking network (Figures 1C, D). Note that the
concrete shape of the curves in Figures 3C,D results from the
interaction of the theoretical principles of Section 2.4.1 with the
specific stochastic dynamics of the networks for the chosen TSP
instances.

In order to avoid misunderstandings, we would like to
emphasize that such states with undefined problem variables
have nothing to do with neurons being in their refractory state,
because the state of a neuron that is in its refractory state is
well-defined (with value 1) during that period.

Consistent with the idea that state transitions with large
energy differences facilitate exploration, the spiking network
needs for the chosen TSP instances significantly fewer network
state changes to arrive at tours with a given desired cost than the
corresponding Boltzmann machine (Figures 3E,F). Significance
was evaluated through a two-sample Kolmogorov-Smirnov test,
see Section 4.1.2 for details. This indicates for these problem
instances an advantage of spike-based computation for stochastic
search. For the case of Boltzmann machines in discrete time,
which is the commonly considered version, the performance
difference to spiking neural networks might be even larger.

Finally, we would like to mention that there exist other
stochastic search methods (e.g., the Metropolis-Hastings
algorithm) that are in general substantially more efficient than
Gibbs sampling. Hence the preceding results are only of interest
if one wants to execute stochastic search by a distributed network
in asynchronous continuous time with little or no overhead.

2.5. Spike-Based Internal Temperature
Control
Mostmethods that have been proposed for efficient search for low
energy states in stochastic systems rely on an additional external
mechanism that controls a scaling factor T (“temperature”)
for the energy contrast between states, ET(x) = E(x)/T
(with appropriate renormalization of the stationary distribution).
Typically these external controllers lower the temperature T
according to some fixed temporal schedule, assuming that after
initial exploration the state of the system is sufficiently close to a
global (or good local) energy minimum. We propose (principle
4) to exploit instead that a spiking network has in many cases
internal information available about the progress of the stochastic
search, e.g., an estimate of the energy of the current state.
Since we have the freedom to use asymmetric synaptic weights,
dedicated circuit motifs can internally collect this information
and activate additional circuitry that emulates an appropriate
network temperature change (Figure 1D).

More concretely, in order to realize an internal temperature
control mechanism for emulating temperature changes of the
network energy function according to ET(x) = E(x)/T in
an autonomous fashion, at least three functional components
are required: (a) Internally generated feedback signals from
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circuit motifs reporting on the quality and performance of
the current tentative network solution. (b) A temperature
control unit which integrates feedback signals and decides on
an appropriate temperature T. (c) An implementation of the
requested temperature change in each circuit motif.

Both circuits motifs, WTA and OR, can be equipped quite
easily with the ability to generate internal feedback signals. The
WTA constraint in a WTA circuit is met if exactly one principal
neuron is active in the circuit. Hence, the summed activity of
WTA neurons indicates whether the constraint is currently met.
Similarly, the status of an OR constraint can be read out through
an additional status neuron which is spontaneously active but
deactivated whenever one of the OR neurons fires. The activity
of the additional status neuron then indicates whether the OR
constraint is currently violated.

Regarding the temperature control unit, one can think of
various smart strategies to integrate feedback signals in order to
decide on a new temperature. In the simplest case, a temperature
control unit has two temperatures to choose from: one for
exploration (high temperature), and one for stabilization of
good solutions (low temperature). A straightforward way of
selecting a temperature is to remain at a moderate to high
temperature (exploration) by default, but switch temporarily to
low temperature (stabilization) whenever the number of positive
feedback signals exceeds some threshold, indicating that almost
all (or all) constraints in the circuit are currently fulfilled.

Concretely, such an internal temperature control unit can be
implemented via a temperature control neuron with a low bias
and connection strengths from feedback neurons in each circuit
in such amanner that the neuron’s firing probability reaches non-
negligible values only when all (or almost all) feedback signals are
active. When circuits send either positive or negative feedback
signals, the connection strengths from negative feedback neurons
should be negative and can be chosen in such a manner that non-
negligible firing rates are achieved only if all positive feedback
but none of the negative feedback signals are active. When the
temperature control neuron fires it indicates that the circuit
should be switched to the low temperature (stabilization) regime.
We show in Figures 4C,D how this mechanisms improves the
performance of a spiking network for 3-SAT: by locking into a
satisfying solution for a given Boolean formula once it has been
found. For details see Supplementary Material Section 5.

2.6. Application to the Satisfiability
Problem (3-SAT)
We demonstrate internal temperature control in an application
to 3-SAT, another well-studied benchmark task (Figure 4A).
3-SAT is the problem to decide whether a Boolean formula
F involving N Boolean variables Xi, . . . ,XN is satisfiable (or
equivalently, whether its negation is not provable), for the special
case where F is a conjunction (AND) of clauses (OR’s) over 3

FIGURE 4 | Application to 3-SAT. (A) Network design for a problem instance with 50 Boolean variables and 218 clauses. (B) Spiking activity of some of the neurons

in the network (bottom) and quality of problem solution (% of clauses satisfied) corresponding to each network state. (C) Same with internal temperature control circuit

motifs added. The network locks after a while into a perfect solution. (D) Comparison of quality of solutions represented by networks states x(t) in networks with and

without internal temperature control (average over 100 runs). (E) Distribution of solve times, i.e., the time needed until a satisfying solution is found for the first time, for

the Boolean formula from (A) (with internal temperature control). (F) Test of scalability of spike-based design principles to instances of 3-SAT with different numbers of

variables, but a fixed clause/variable ratio of 4.3. The solve time grows quickly with the size of the problem, as expected for NP-hard problems. Nevertheless,

spike-based networks are typically able to solve fairly large hard 3-SAT instances within a few seconds.
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literals, i.e., over Boolean variables Xn or their negations X̄n. 3-
SAT is NP-complete, i.e., there are no known methods that can
efficiently solve general 3-SAT problems. We refer to the Section
3 for a sketch of the state-of-the-art and references. We are not
aware of spiking neural network implementations for solving
satisfiability problems.

Despite exponential worst-case complexity, many 3-SAT
instances arising in practice can be solved quite efficiently by
clever heuristic algorithms (Gomes et al., 2008). A class of
particularly hard 3-SAT instances can be found in a subset of
random 3-SAT problems. In a uniformly random 3-SAT problem
with N Boolean variables and M clauses, the literals of each
clause are chosen at random from a uniform distribution (over
all possible 2N literals). The typical hardness of a random 3-
SAT problem is determined to a large extent by the ratio M/N
of clauses to variables. For small ratios almost all random 3-
SAT problems are satisfiable. For large ratios almost all problems
are unsatisfiable. For large problems N ≫ 1 one observes a
sharp phase transition from all-satisfiable to all-unsatisfiable
at a crossover point of M/N ≈ 4.26. For smaller N the
transition is smoother and occurs at slightly higher ratios.
Problems near the crossover point appear to be particularly hard
in practice (Crawford and Auton, 1996).

For hard random instances of 3-SAT, like those considered in
Figure 4 with a clauses-to-variables ratio 4.3 near the crossover
point, typically only a handful of solutions in a search space
of 2N possible assignments of truth values to the Boolean
variables exist. A spike-based stochastic circuit that searches
for satisfying value assignments of a 3-SAT instance F can be
constructed from WTA- and OR-modules in a straightforward
manner (Figure 4A). Each Boolean variable Xn is represented
by two neurons νn0 and νn1, so that a spike of neuron νni sets
the value of Xn to i for a time interval of length τ . A WTA
circuit ensures that for most time points t this holds for exactly
one of these two neurons. Otherwise Xn is undefined at time
t. An OR-module for each clause of F increases the energy
function of the network according to the number of clauses that
are currently unsatisfied. An internal spike-based temperature
controller can easily be added via additional modules, for details
see Supplementary Material Section 5. It considerably improves
the performance of the network (Figures 4C,D), while keeping
the total number of neurons linear in the size of the problem
instance F.

2.7. Role of Precise Timing of Spikes
In spite of the stochasticity of the spiking network, the timing
of spikes and subsequent PSPs plays an important role for their
computational function. Like in a Boltzmann machine with
asynchronous updates of units in continuous time, errors arise
when an update of a neuron does not take into account recent
updates of other neurons. In particular, in spike-based WTA
circuits only 1 out of N neurons should be active in order to
transmit correct information to other neurons. Transmission
delays increase the probability that multiple neurons in a WTA
circuit become simultaneously active. This may cause ambiguous
messages to other parts of the network.

The simulation results described above were obtained in the
absence of transmission delays. Figures 5A–C summarize the
impact on performance when uniform delays are introduced into
the network architecture of Figure 4A. For a small delay of 0.1µs,
only a mild performance degradation is observed: compare
Figures 5A–C with Figures 4D–F. Computations times remain
in the same order of magnitude as with the zero-delay case
for delays up to 1µs (Figure 5C). Larger delays were observed
to lead to substantial performance reduction. This arises from
differences in firing times of different neurons that are smaller
than the chosen delay.

In order to test whether uniformity of delays is essential
for the computational performance we also investigated the
impact of non-uniform delays, where delays were randomly
and independently drawn from a normal distribution with
µ = 0.05µs and σ = 0.01 truncated at 0 and 0.1µs
(Figures 5D,E). Our results suggest that a variability of delays
does not give rise to an additional degradation of performance,
only the maximal delay appears to matter. Altogether we have
shown that transmission delays of more than 0.1µs impair
the computational performance. But spike transmission within
0.1µs can easily be achieved in electronic hardware.

Spike transmission in biological networks of neurons takes at
least a few ms. Hence if brains make use of stochastic sampling,
they would have to slow down the sampling speed. They could
sample for example from network states that are defined by the
set or sequence of neurons that fire during one cycle of some
background oscillation (as in Jezek et al., 2011). In this way longer
transmission delays can be tolerated because it approximately
suffices if the spike of a neuron reaches other neurons to
which it is synaptically connected within the same cycle. Similar
ideas have recently been explored for neuromorphic hardware
(Mostafa et al., 2015b)

3. DISCUSSION

We have presented a theoretical basis and four rules, illustrated
in Figure 1, for designing networks of spiking neurons which
can solve complex constraint satisfaction problems in an efficient
manner. One new feature of our approach is to design networks
of spiking neurons not on the basis of desirable signal cascades
and computational operations on the level of neurons and neural
codes. Rather, we propose to focus immediately on the network
level, where the probability distribution of spike-based states of
the whole network (or in alternative terminology: the energy
landscape of spike-based network states) defines an alternative
conceptual and mathematical level on which the network can be
programmed, or taught, if one considers a learning approach.
We have demonstrated that properties of the energy function of
the network can easily be programmed through modular design,
making use of network motifs that each contribute particular
identifiable features to the global energy function. A principled
understanding of the interaction between local network motifs
and global properties of the energy function of the network
is provided by a Modularity Principle (Theorem 1). The local
network motifs that we consider can be seen as analogs to the
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FIGURE 5 | Influence of transmission delays between neurons on network performance for 3-SAT. (A) Performance with and without internal temperature

control (average over 100 runs), with uniform delay 0.1µs. (B) Distribution of solve times with uniform delay 0.1µs. (C) Comparison of median solve times for different

problem sizes, using delays 0/0.1/1µs. (D) Network performance with non-uniform delays, where the transmission delay of each connection is drawn from a

Gaussian distribution N (µ = 0.05µs, σ = 0.01). This plot suggests that primarily the maximum delay time matters, whereas non-uniform delay times cause no

additional problem. (E) Distribution of solve times with these randomly drawn delays is similar to that with uniform delays in panel B.

classical computing primitives of deterministic digital circuits
(Boolean gates) for stochastic spike-based computations.

The resulting spike-based networks differ from previously
considered ones in that they use noise as computational resource.
Without noise, there is no stationary distribution of network
states and no energy function. A surprising feature of the
resulting stochastic networks is that they benefit in spite of the
noise from the possibility to use the timing of spikes as a vehicle
for encoding information during a computation. The temporal
order of spikes does not directly become computationally
relevant, rather coincidences and almost-coincidences of spikes
from specific sets of neurons within a short time window. This
holds in spite of the fact that they operate in continuous time. It
arises from the fact that we define network states (see Figure 1A)
by recording which neuron fires within a short time window.

Finally, we have addressed the question whether there
are cases where spike-based computation is faster than a
corresponding non-spiking computation. We have shown in
Figure 3 that this is the case for the two TSP instances that we
have considered. The TSP is a particularly suitable task for such
comparison, since it can be solved also by a Boltzmann machine
with exactly the same architecture. In fact, we have considered for
comparison a Boltzmann machine that has in addition the same
energy function (or equivalently: the same stationary distribution
of network states) as the spiking network. We have shown that
the sampling dynamics of the spiking network is fundamentally

different, since it has an inherent mechanism for bypassing high
energy barriers in the search for a state with low energy.

The Traveling Salesman Problem is among the most well-
known combinatorial optimization problems (Cook et al.,
1998) and has been studied intensely for both theoretical
and practical reasons: TSP belongs to the class of NP-hard
problems, and hence no polynomial-time algorithm is known
for solving TSP instances in general. Nevertheless, TSPs arise
in many applications, e.g., in logistics, genome sequencing, or
the efficient planning of laser positioning in drilling problems
(Applegate et al., 2011). Substantial efforts have been invested
in the development of efficient approximation algorithms and
heuristics for solving TSP instances in practice. In the Euclidean
(planar) case, for example, where movement costs cij correspond
to Euclidean distances between cities in a two-dimensional plane,
a polynomial-time approximation scheme (PTAS) exists which is
guaranteed to produce approximate solutions within a factor of
(1 + ǫ) of the optimal tour in polynomial time (Arora, 1998).
Various other heuristic algorithms for producing approximate
or exact solutions (with typically weaker theoretical support)
are often successfully used in practice (Applegate et al., 2011).
An implementation for solving TSPs with artificial non-spiking
neurons was first provided in the seminal paper by Hopfield and
Tank (1986). Malaka and Buck (2000) ported their approach to
deterministic networks of spiking neurons and reported that such
networks found an optimal solution for a planar TSP instance
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with 8 cities. We are not aware of previous work on solving TSP
instances with stochastic spiking neurons.

Substantial efforts have been invested in the development
of efficient approximation algorithms and heuristics for solving
TSP instances in practice. In the Euclidean (planar) case,
for example, a polynomial-time approximation scheme (PTAS)
exists which is guaranteed to produce approximate solutions
within a factor of (1 + ǫ) of the optimal tour in polynomial
time (Arora, 1998). Various other heuristic algorithms with
weak theoretical support for producing approximate or exact
solutions are often successfully used in practice. One of the
most efficient heuristic solvers producing exact solutions for
practical TSP problems is CONCORDE (Applegate et al., 2011).
An implementation for solving TSPs with artificial neurons was
first provided in the seminal paper of Hopfield and Tank (1986).
The neurons in this model were deterministic and analog. Due
to deterministic dynamics it was observed that the network
often got stuck in infeasible or suboptimal solutions. Various
incremental improvements have been suggested to remedy the
observed shortcomings (Van den Bout and Miller III, 1989; Chen
and Aihara, 1995).

We have shown that the same design principles can also
be applied to solve 3-SAT with spiking neurons. 3-SAT is
the problem of determining if a given Boolean formula in
conjunctive normal form (i.e., conjunctions of disjunctive
clauses) with clauses of length 3 is satisfiable. 3-SAT is NP-
complete, i.e., there are no known methods that can efficiently
solve general 3-SAT problems. The NP-completeness of 3-
SAT (and general SATISFIABILITY) was used by Karp to
prove NP-completeness of many other combinatorial and graph
theoretical problems (Karp’s 21 problems, Karp, 1972). Large
satisfiability problems appear in many practical applications
such as automatic theorem proving, planning, scheduling and
automated circuit design (Biere, 2009).

Despite exponential worst-case complexity, many problems
arising in practice can be solved quite efficiently by clever
(heuristic) algorithms. A variety of algorithms have been
proposed (Gomes et al., 2008). Modern SAT solvers are generally
classified in complete and incomplete methods. Complete solvers
are able to both find a satisfiable assignment if one exists or prove
unsatisfiability otherwise. Incomplete solvers rely on stochastic
local search and thus only terminate with an answer when
they have identified a satisfiable assignment but cannot prove
unsatisfiability in finite time. The website of the annual SAT-
competition, http://www.satcompetition.org/, provides an up-to-
date platform for quantitative comparison of current algorithms
on different subclasses of satisfiability problems.

A very interesting method for solving SATISFIABILITY on
neuromorphic chips, but with oscillators instead of spiking
neurons, has very recently been proposed by Mostafa et al.
(2015a). They replace standard pseudo random number
generators by using non-repeating phase relations among
incommensurable analog oscillators to force the network to
continuously explore the solution space. In order to motivate
their alternative to statistical mechanics approaches, they point
out that “while noise is an inextricable part of any physical
system, controlling its power to balance ‘exploratory’ vs.

‘greedy’ search ... puts an additional overhead on the physical
implementation.” It is clear that noise control would be needed
for simulated annealing approaches. But the methods discussed
in this article do no require an external control of the power
of noise. In addition our approach can be based on a rigorous
mathematical theory.

We have not addressed the question of learning. There is a rich
literature on learning for Boltzmann machines and for networks
of stochastic spiking neurons. In particular, a model for learning
arbitrary discrete probability distributions from examples is
proposed in forthcoming work (Pecevski and Maass, in press).
But we are not aware of compelling ideas for the learning
of constraints in either type of network. One could engage
supervised learning or use reinforcement learning methods for
learning salient constraints from trial and error. But this is not
likely to be the only way how constraints get encoded by networks
of neurons in the brain. Some work in cognitive science suggests
that some fundamental constraints that are relevant for motor
planning, perception, and other constraint satisfaction tasks that
a human brain has to solve are innate, or were previously
learned for a related task and transferred to a new task setting
(Tenenbaum et al., 2011). Hence the challenge to provide a
model for learning of constraint satisfaction problems in neural
networks appears to be of high interest, but not straightforward.

Altogether we have shown that there is a rich world of
design methods and algorithmic approaches for networks of
spiking neurons with noise that remains to be explored.
We have discussed in this article only applications to two
NP-hard constraint satisfaction problems that represent well
known benchmark tasks. But obviously there are many other
constraint satisfaction problems that arise in the interpretation
of ambiguous signals, multi-sensory processing, planning,
optimization, and problem solving. Some of these problems are
also NP-hard, but there are also many practically important
constraint satisfaction problems that are not NP-hard. We
conjecture that a large number of these problems can be
solved efficiently, in particular with low energy consumption if
implemented in neuromorphic hardware, by networks of spiking
neurons.

4. METHODS

4.1. Details to the TSP Application
(Figure 2)
For a general TSP problem described by a set of N nodes and
N · (N− 1) edges with associated costs cij to move from one node
to another, the goal is to find a tour with minimum cost which
visits each node exactly once. When the cost cij to move from
node i to node j equals the cost cji from j to i for all pairs of nodes
then the problem is called symmetric. If movement costs cij are
Euclidean distances between cities in a two-dimensional plane,
the TSP problem is called Euclidean or planar.

4.1.1. Network Architecture for Solving TSP
In Figure 2 we demonstrate an application of our theoretical
framework for stochastic spike-based computation to the TSP.
To encode the node (city) visited at a given step of a tour in a
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TSP problem consisting of N nodes, a discrete problem variable
with N possible values is needed. To encode a tour with N
steps, N such problem variables are required. More precisely,
for efficiency reasons we consider in our approach a relaxed
definition of a tour: a tour for an N-node problem consists of
N′ = N + Nresting steps (and problem variables). A tour is valid
if each node is visited at least once. Since there are more steps
than nodes, some nodes have to be visited twice. We require that
this can only occur in consecutive steps, i.e., a the salesman may
remain for at most one step in a city before he must move on.
We observed that using such relaxed definition of a tour with
Nresting additional “resting” steps may considerably improve the
efficiency of the stochastic search process.

To solve a TSP problem one then needs to consider three types
of constraints:

(a) Each of theN′ problem variables should have at any moment
a uniquely defined value assigned to it.

(b) Each value from the problem variable domain {1, . . . ,N}

must appear at least once in the set of all problem variables
(each node has to be visited at least once). At the same time
only neighboring problem variables, i.e., those coding for
consecutive steps, may have the identical values (allowing for
“resting” steps).

(c) The penalty that two consecutive problem variables appear in
a given configuration, i.e., a particular transition from node i
to some other node j, must reflect the traveling cost between
the pair of nodes.

In the spiking network implementation, each step (problem
variable) n ∈ {1, . . .N′} is represented by a set of N principal
neurons, νn1, . . . , νnN , i.e., each principal neuron represents one
of the N nodes (cities). A proper representation of problem
variables (and implementation of constraints (a)) is ensured by
forming a WTA circuit from these N principal neurons which
ensures that most of the time only one of these principal neurons
is active, as described in Supplementary Material Section 3.2: The
WTA circuit shapes the energy function of the network such that
it decreases the energy (increases probability) of states where
exactly one of the principal neurons in theWTA is active, relative
to all other states. If the WTA circuits are setup appropriately,
most of the time exactly one principal neuron in each WTA will
be active. The identity of this active neuron then naturally codes
for the value of the associated problem variable. Hence, one can
simply read out the current assignment of values to the problem
variables from the network principal state based on the activity of
principal neurons within the last τ time units.

The parameters of the WTA circuits must be chosen
appropriately to ensure that problem variables have a properly
defined value most of the time. To achieve this, the inhibitory
auxiliary neuron is equipped with a very low bias binh, such that
the inhibition and therefore the WTA mechanism is triggered
only when one of the principal neurons spikes. The inhibitory
neuron is connected to all principal neurons associated with the
considered problem variable through bidirectional connections
wWTA and wexc (from and to the inhibitory neuron, respectively).
The inhibition strength wWTA should be chosen strong enough
to prevent all principal neurons in the WTA circuit from spiking

(to overcome their biases) and wexc should be set strong enough
so that it activates inhibition almost immediately before other
principal neurons can spike. At the same time the biases of
the principal neurons bWTA should be high enough to ensure
sufficient activation of principal neurons within the WTA circuit
so that the corresponding problem variable is defined most of
the time. To enforce that a specific problem variable assumes a
particular value one can modulate the biases of the associated
principal neurons and thereby decrease the energy of the desired
problem variable value. We used this to set the value of the first
problem variable n = 1 to point to the first node (city). In
particular, the bias of the principal neuron ν11 is set to bP (should
be set high enough to ensure exclusive activity of that neuron)
and biases of all other principal neurons in the first WTA circuit
are set to bN (should be set low enough to prevent neurons from
being active).

The implementation of constraints (b) requires that
all problem variables have different values except if they
are neighboring variables. This is realized by connecting
bidirectionally all principal neurons which code for the same
value/node in different WTA circuits with strong negative
connection wunique, except if WTA circuits (or corresponding
problem variables) are neighboring, i.e., represent adjacent steps
of a tour. This simply increases the energy and decreases the
probability of network states where the principal neurons coding
for the same city in different WTAs are co-active, except if they
are in neighboring WTAs.

Finally, constraints (c) are implemented by adding synaptic
connections between all pairs of principal neurons located in
neighboring problem variables, except between principal neurons
coding for the same value. A positive connection between
two principal neurons increases the probability that these two
neurons become co-active (the energy of corresponding network
states is decreased), and vice versa. Hence, when movement costs
between two nodes (cities) i and j at steps n and n+1, respectively,
are low, the corresponding neurons should be linked with a
positive synaptic connection in order to increase the probability
of them becoming active together. We chose to encode weights
such that they reflect the relative distances between cities. To
calculate the weights we normalize all costs of the TSP problem
with respect to the maximum cost, yielding normalized costs
c̃ij ∈ [0, 1]. Then we rescale and set the synaptic connections
between neuron νni and ν(n+1)j according to

wni,(n+1)j = w(n+1)j,ni = woffset + (1− c̃ij) ∗ wscale (15)

for n ∈ {1, . . .N′−1}. The connections between stepN′ and step
1 are set in an analogous fashion. As a result of this encoding,
the energy landscape of the resulting network assigns particularly
low energies to network states representing low-cost tours.

The proposed neural network architecture for solving TSP
results in a ring structure (as the last and the first problem
variable are also connected). The architecture requires (N +

1)(N + Nresting) neurons (including inhibitory neurons in WTA
circuits) and N(N + Nresting)(2N + Nresting − 2) number of
synapses.
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4.1.2. Further Parameters and Details for the TSP

Application
The planar TSP in is taken from http://www.math.uwaterloo.
ca/tsp/world/countries.html. The 38 nodes in the problem
correspond to cities in Djibouti, and movement costs are
Euclidean distances between cities. To solve the problem we used
the following setup: PSP length τ = 10e − 3 and refractory
period of 10ms for all neurons, bWTA = −0.45, bP = 100,
bN = −100, binh = −10, wWTA = −100, wexc = 100,
wunique = −14.7, wscale = 19.4, woffset = −5 and Nresting =

7, resulting in the neural network consisting of 1755 neurons.
The value of the first variable (the first step) was fixed to the
first city. For the asymmetric TSP problem, in order to facilitate
comparison we chose a similarly sized problem consisting
of 39 cities from TSPLIB, http://comopt.ifi.uni-heidelberg.de/
software/TSPLIB95/, file ftv38.atsp.gz. To solve this asymmetric
TSP problem we used the same architecture as above, with
slightly different parameters: bWTA = 1.3, wunique = −14.1,
woffset = −7.9, wscale = 20.8, Nresting = 8, resulting in a neural
network consisting of 1880 neurons.

Reading out the current value assignment of each problem
variable is done based on the activity of the principal neurons
which take part in the associated WTA circuit. The performance
of the network is calculated at any moment as the ratio of the
optimal tour length and the current tour length represented by
the network. In order for the currently represented tour to be
valid all variables have to be properly defined and each value
(city) has to appear at least once. Although this is not always the
case, exceptions occur rarely and last for very short periods (in
the order of ms) and therefore are not visible in the performance
plots.

The significance of the empirically found differences in the
performance of spiking networks and Boltzmann machines for
the two TSP instances, shown in Figures 3E,F, was evaluated
with a two-sample KolmogorovSmirnov test, which checks if two
sample sets are drawn from the same distribution. All p-values
were < 1%. The precise values were for the symmetric problem
at cost = 10,000: p-value = 1.4 × 10−31 (#samples BM =

98 NS = 100), for the symmetric problem at cost = 8500: p-
value = 7.5 × 10−9 (#samples BM = 63 NS = 100), for the
asymmetric problem at cost = 2200: p-value = 3.0 × 10−16

(#samples BM = 100 NS = 100), for the asymmetric problem at
cost = 1800: p-value = 3.5 × 10−10 (#samples BM = 77 NS
= 100). Differences in the number of samples (#samples) arose
because the Boltzmann machines did not find the solution to the
problem in every run during the simulation time (100,000 state
changes).

4.2. Details to the 3-SAT Application
(Figure 4)
4.2.1. Network Architecture for Solving 3-SAT
For the demonstration in Figure 4 we consider satisfiable
instances of random 3-SAT problems with a clause to variable
ratio of 4.3 near the crossover point. Based on our theoretical
framework a network of stochastic spiking neurons can be
constructed which automatically generates valid assignments to

3-SAT problems by stochastic search (thereby implementing
an incomplete SAT solver). The construction based on WTA
and OR circuits is quite straightforward: each Boolean problem
variable of the problem is represented by a WTA circuit with two
principal neurons (one for each truth value). Analogous to the
TSP application, the WTA circuits ensure that most of the time
only one of the two principal neurons in each WTA is active.
As a result, most of the time a valid assignment of the associated
problem variables can be read out.

Once problem variables are properly represented, clauses can
be implemented by additional OR circuits. First, recall that, in
order to solve a 3-SAT problem, all clauses need to be satisfied.
A clause is satisfied if at least one of its three literals is true. In
terms of network activity this means that at least one of the three
principal neurons, which code for the involved literals in a clause,
needs to be active. In order to encourage network states in which
this condition is met, one may use an OR circuit motif which
specifically increases the energy of network states where none of
the three involved principal neurons are active (corresponding to
assignments where all three literals are false). Such application of
an OR circuit will result in an increased probability for the clause
to be satisfied. If one adds such anOR circuit for each clause of the
problem one obtains an energy landscape in which the energy of
a network state (with valid assignments to all problem variables)
is proportional to the number of violated clauses. Hence, stacking
OR circuits implicitly implements the conjunction of clauses.

The described network stochastically explores possible
solutions to the problem. However, in contrast to a conventional
computer algorithm with a stopping criterion, the network will
generally continue the stochastic search even after it has found
a valid solution to the problem (i.e., it will jump out of the
solution again). To prevent this, based on feedback signals from
WTA and OR circuits it is straightforward to implement an
internal temperature control which puts the network in a low
temperature regime once a solution has been found (based on
feedback signals). This mechanism basically locks the network
into the current state (or a small neighboring region of the
current state), making it very unlikely to escape. The mechanism
is based on a internal temperature control neuron which receives
feedback signals from WTA and OR circuits (signaling that all
the constraints of the problem were met) and which activates
additional circuits (copies of OR circuits) that effectively put the
network in the low temperature regime.

4.2.2. Parameters and Further Details for the 3-SAT

Application
Each OR circuit consists of two auxiliary neurons, I and II, with
biases of 0.5B and−3.5B, respectively, where B is some constant.
Both auxiliary neurons connect to those principal neurons which
code for a proper value of the literals in the clause (in total
to 3 neurons), using synaptic connections with weights wOR

and −B (from and to the auxiliary neuron I, respectively), and
−wOR and B (from and to the auxiliary neuron II, respectively).
Additionally, the auxiliary neuron I connects to the auxiliary
neuron II with the strength 3B. Here the strength of incoming
connections from principal neurons and the bias of auxiliary
neuron I are set such that its activity is suppressed whenever at
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least one of three principal neurons is active, while parameters for
auxiliary neuron II are set such that it can be activated only when
auxiliary neuron I and at least one of three principal neurons are
active together (see OR circuit motif for more details).

The internal temperature control mechanism is implemented
as follows. The regime of low temperature is constructed by
duplicating all OR circuits—so by adding for each clause two
additional auxiliary neurons III and IV which are connected in
the same way as the auxiliary neurons I and II (they target the
same neurons and are also connected between themselves in the
same manner) but with different weights: wOR2 and −B (from
and to auxiliary neuron), and−wOR2 and B (from and to auxiliary
neuron), for the auxiliary neurons III and IV, respectively.
The use of the same OR motif ensures the same functionality,
which is activated when needed in order to enter the regime of
low temperature and deactivated to enter again regime of high
temperature. The difference in connections strength between
wOR1 and wOR2 determines the temperature difference between
high and low temperature regimes. In addition the biases of
additional auxiliary neurons are set to −0.5B and −6.5B (III and
IV aux. neuron), so that they are activated (i.e., functional) only
when a certain state (the solution) was detected. This is signaled
by the global temperature control neuron with bias bglob that
is connected to both additional auxiliary neurons of all clauses
with connection strengths B and 3B to the III and IV auxiliary
neuron, respectively, so that once the global temperature control
neuron is active the additional auxiliary neurons behave exactly
as auxiliary neurons I and II. Additionally, the global temperature
control neuron is connected to every other principal neuron
with connection strength wglob, which mimics the change in
temperature regime in WTA circuits. The global neuron is active
by default, which is ensured by setting the bias bglob sufficiently
high, but is deactivated whenever one of the status neurons,
which check if a certain clause is not satisfied, is active (not OK
signals). There is one status neuron for each clause, with bias set
to−2.5B, where each one of them receives excitatory connections
of strength B from all neurons not associated with that particular
clause. Therefore, if all problem variables that participate in the
clause are set to the wrong values, this triggers the status neuron
which reports that the clause is not satisfied. This automatically
silences the global neuron signaling that the current network
state is not a valid solution. Note that implementation of such
internal temperature control mechanism results with inherently
non-symmetric weights in the network.

For described architecture of a spiking neural network the
total number of neurons needed is 3N + 2M (2 + 1 per WTA
circuit, and 2 per OR circuit), while the number of connections
is 4N + 13M. Notably, both the number of neurons and the
number of synapses depend linearly on the number of variables
N (the number of clauses linearly depends on the number of
variables if problems with some fixed clauses-to-variables ratio
are considered). To implement in addition described internal
temperature control mechanism one needs additional 3M + 1
neurons and 2N + 20M synapses.

The architecture described above was used in simulations
with the following parameters: τ = 10e − 3 and refractory

period of 10ms for all neurons except for the global neuron
which has τ = 9e − 3 and refractory period of 9ms, bWTA =

2, binh = −10, bglob = 10, B = 40, wWTA = −100,
wexc = 100, wOR1 = 2.5, wOR2 = 10, with rectangular
PSPs of 10ms duration without transmission delays for all
synapses except for the one from the global neuron to the
additional auxiliary neurons where the PSP duration is 11ms.
The network which solves the considered Boolean problem in
Figure 4A consisting of 50 variables and 218 clauses has 586
neurons.

To calculate the performance of a solution at any point in time
we use as a performance measure the ratio between the number
of satisfied clauses and total number of clauses. If none of the
variables which take part in a clause are properly defined then
that clause is considered unsatisfied. As a result, this performance
measure is well-defined at any point in time.

For the analysis in Figure 4F of problem size dependence we
created random 3-SAT problems of different sizes with clause-to-
variable ratio of 4.3. To ensure that a solution exists, each of the
created problems was checked for satisfiability with zhaff, a freely
available (complete) 3-SAT solver.

Finally, note that the proposed architecture can be used in
analogs way in order to solve k-SAT problems, where each clause
is composed of k literals. In this case the only change concerns
OR circuit motifs which now involve for each clause k associated
principal neurons.

4.3. Software Used for Simulations
All simulations were performed in NEVESIM, an event-
based neural simulator (Pecevski et al., 2014). The analysis of
simulation results was performed in Python and Matlab.
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