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Disentangling the tissue microstructural information from the diffusion magnetic

resonance imaging (dMRI) measurements is quite important for extracting brain tissue

specific measures. The autocorrelation function of diffusing spins is key for understanding

the relation between dMRI signals and the acquisition gradient sequences. In this

paper, we demonstrate that the autocorrelation of diffusion in restricted or bounded

spaces can be well approximated by exponential functions. To this end, we propose

to use the multivariate Ornstein-Uhlenbeck (OU) process to model the matrix-valued

exponential autocorrelation function of three-dimensional diffusion processes with

bounded trajectories. We present detailed analysis on the relation between the model

parameters and the time-dependent apparent axon radius and provide a general model

for dMRI signals from the frequency domain perspective. For our experimental setup, we

model the diffusion signal as a mixture of two compartments that correspond to diffusing

spins with bounded and unbounded trajectories, and analyze the corpus-callosum in an

ex-vivo data set of a monkey brain.

Keywords: diffusion MRI, autocorrelation function, single-pulsed field gradient, Ornstein-Uhlenbeck model

1. INTRODUCTION

Diffusion MRI (dMRI) is an important clinical tool for non-invasive investigation of tissue
microstructure. It can identify brain tissue abnormalities and provide useful image-based
biomarkers for diagnosing several neurological and psychiatric disorders. Since the dMRI signal
originates from diffusing water molecules, understanding the diffusion processes of these molecules
is pivotal for understanding the underlying tissue layout.

Diffusion tensor imaging (DTI) is a classical method for modeling dMRI signals (Basser et al.,
1994), where the probability distribution of the displacements of watermolecules, also referred to as
the ensemble average propagator (EAP), is assumed to be Gaussian. This assumption is not satisfied
in practice due to the restrictions and hindrances from cellular and axonal membranes. To account
for this deviation from free diffusion, several methods have been proposed to use non-Gaussian
functions for modeling the EAP (Cheng et al., 2010; Merlet et al., 2012; Özarslan et al., 2013;
Ning et al., 2015). A different group of methods have been proposed to estimate the time-varying
diffusion coefficient of the water displacements (Mitra and Halperin, 1995; Novikov et al., 2014;
Burcaw et al., 2015). For example, a bi-exponential model has been used in Niendorf et al. (1996)
to fit the dMRI measurements; the kurtosis of the diffusion propagator was estimated in Jensen
et al. (2005) for investigating the non-Gaussianity of the EAP; and the time-varying feature of the
covariance was shown to be closely related to the microstructural arrangement of axons in brain

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00129
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00129&domain=pdf&date_stamp=2016-03-31
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:lning@bwh.harvard.edu
http://dx.doi.org/10.3389/fnins.2016.00129
http://journal.frontiersin.org/article/10.3389/fnins.2016.00129/abstract
http://loop.frontiersin.org/people/268469/overview
http://loop.frontiersin.org/people/267684/overview


Ning et al. Estimation of Bounded Diffusion Trajectories

tissue (Burcaw et al., 2015). These methods can provide novel
information about the underlying diffusion processes and useful
indices for identifying tissue abnormalities.

One way to glean information about the tissue composition
is to use the multi-compartment model proposed in Assaf
et al. (2008). Very similar to the multi-exponential model,
the multi-compartment model also consists of two or more
terms that represent the dMRI signal from different parts of
the tissue. In particular, the model for the intra-axonal dMRI
signal is usually obtained by solving the diffusion equation with
suitable boundary conditions (Murday and Cotts, 1968; Neuman,
1974; Stepišnik, 1993), while the extra-axonal compartment is
usually modeled by free anisotropic diffusion. Thus, the multi-
compartment model provides insights on understanding the
reasons for the non-Gaussianity of the EAP and the time-
varying feature of the mean-squared displacements. The multi-
compartment model was used in Alexander et al. (2010) and
Huang et al. (2015) to estimate the axon diameter from in-vivo
human brain data. However, the estimated axon radius in these
works in the monkey corpus callosum was about 5µm, which
is much larger than the results obtained from histology studies
(Aboitiz et al., 1992; Liewald et al., 2014). Moreover, it was shown
in Huang et al. (2015) that the estimated radius was a function of
the diffusion time, which is not biologically plausible.

One possibility for the over-estimation and time-dependence
of axon diameters could be due to slowly diverging spins in the
extra-axonal space (Burcaw et al., 2015). In this approach, it
was assumed that the mean-squared displacement of the intra-
axonal spins reach a stationary value in very short time, but
the time-varying diffusivity from the diverging spins can be
misinterpreted as a component from the intra-axonal space,
leading to over-estimation and time-dependence of the apparent
axon radius. However, the time-dependence of the diffusivity
used in Burcaw et al. (2015) was is the long time limit, i.e.,
≥ 100ms, but the diffusion time used in Alexander et al. (2010)
was much shorter, i.e., ≤ 50ms. In this relatively shorter time
scale, one may be interested to know if it is still reasonable
to assume that the mean-squared displacement of bounded
diffusion trajectories has reached its stationary value, especially
when these trajectories have large radii, e.g., 5µm. If not,
what is the relation between the large radii of the bounded
components and the time-dependence of the apparent axon
radius? The answers to these questions can be obtained via
analyzing the dMRI signal from restricted or bounded pores
(spaces). In this paper, we demonstrate that the autocorrelation
function for diffusion trajectories in restricted pores can be
well approximated by an exponential function. Consequently,
the multivariate Ornstein-Uhlenbeck (OU) process (Uhlenbeck
and Ornstein, 1930) can be applied to model the diffusion of
spins in the three-dimensional space with statistically bounded
trajectories. The multivariate OU model leads to a matrix-valued
autocorrelation function, which can be applied for modeling
dMRI measurements acquired using single pulse field gradient
or other general type of gradient sequences. Using dMRI data
from an ex-vivo monkey brain, we show that the proposed
model provides a much more accurate fit of the measured dMRI
signals, compared to the fits shown for the same data set in

Alexander et al. (2010) and Huang et al. (2015). We conjecture
that, if the underlying structure contains diffusing spins with
bounded trajectories of large radii, then this may possibly explain
the overestimation and time-dependence of the estimated axon
diameter.

2. THEORY

The NMR precession frequency of a water molecule at location
x is given by −γg(t) · x where γ is the gyromagnetic ratio and
g(t) is a time-varying magnetic field gradient. Let x(t) represent
the trajectory traced by a water molecule (spin) as a function of
time t. Then the time-dependent phase change for a trajectory

x(t) over the interval [0,T] is given by φ(g) = −γ
∫ T
0 g(t) ·

x(t)dt. Let x̄ denote the center of mass of a trajectory, i.e.,

x̄ = 1
T

∫ T
0 x(t)dt. Let x̃(t) = x(t) − x̄ denote the centered spin

trajectory. Then,

φ(g) = −γ

∫ T

0
g(t) · x̃(t)dt + x̄ ·

∫ T

0
g(t)dt.

In order to obtain the spin echo, the gradient g(t) must satisfy
∫ T
0 g(t)dt = 0. Hence, φ(g) only depends on the zero-mean

trajectory x̃(t) with φ(g) = −γ
∫ T
0 g(t) · x̃(t)dt. For simplicity of

notation, we will use x(t) for x̃(t) as a zero-mean trajectory.
The normalized diffusion signal E(g) is the ensemble average

of all the molecules and is given by E(g) = exp(iφ(g))
where · denotes the ensemble average. Assuming φ(g) follows
a zero-mean Gaussian distribution, i.e., assuming a Gaussian
phase approximation, the diffusion signal is given by E(g) =
exp(− 1

2φ(g)
2), where φ(g)2 denotes the covariance of φ(g). Then,

the diffusion signal can be rewritten as:

E(g) = exp

(

−1

2
γ
2
∫ T

0

∫ T

0
g(t)′x(t)x(s)′g(s)dsdt

)

, (1)

where ′ denotes the transpose of a vector (or a matrix). Clearly,
the positional autocorrelation function C(t, s): = x(t)x(s)′ is key
to modeling the dMRI signal.

Consider a sPFG experiment with the pulse width and
diffusion time denoted by δ and 1, respectively. Let y1, y2 denote
the center of masses (COMs) during the two pulses (Mitra and
Halperin, 1995):

y1 =
1

δ

∫ δ

0
x(t)dt, y2 =

1

δ

∫ 1+δ

1

x(t)dt. (2)

Then the dMRI signal in Equation (1) can be written as:

E(q) = e−
1
2 q

′R(δ,1)q, (3)

where R(δ,1) = (y2 − y1)(y2 − y1)
′ denotes the mean-squared

displacement of the COMs, and q: = γgδn with g being the
gradient strength and n being a unit vector along the gradient
direction. Thus, the expression for R(δ,1) depends on the
position autocorrelation function of the water molecules.
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2.1. On the Positional Autocorrelation
Function
For freely diffusing water molecules, the increment of the
diffusion process x(s) − x(t) for s > t is uncorrelated with x(t).
The position autocorrelation function is then given by:

CD(t, s) = x(t)x(s)′ = 2Dmin(t, s),∀t, s ≥ 0,

where D denotes the diffusivity tensor. The mean-squared
displacement RD(δ,1) can be explicitly computed as:

RD(δ,1) = 2D(1 − δ/3), (4)

which turns (Equation 3) into the standard diffusion tensor
model. Due to restrictions and hindrances, the water molecules
in brain tissue are not free to diffuse in all directions. As a result,
RD(δ,1) does not correctly model the time-varying features
of the mean-squared displacements of COMs. Moreover, the
diffusion tensor model, while being sensitive, does not provide
any specific information about the tissue structure.

In the case for restricted and impermeable pores the
expression for the diffusion signal has been derived from the
solution of diffusion equation with suitable boundary conditions
(Stejskal and Tanner, 1965; Murday and Cotts, 1968; Neuman,
1974; Vangelderen et al., 1994; Åslund and Topgaard, 2009).
In particular, the position autocorrelation function along the
perpendicular direction of the restricted wall is given by Stepišnik
(1993):

cr⊥(t, s) = 2
∞
∑

m= 1

r2

α2
m(α

2
m + 1− n)

e
− α2md⊥

r2
|t−s|

, (5)

where n denotes the number of restricted dimensions (plane:
n = 1, cylinder n = 2, sphere: n = 3), and αm is the m-th root of
Jn/2(α) − αJ1+n/2(α) = 0, with Jv being the v-th order Bessel
function of the first kind, d⊥ denotes the diffusivity along the
perpendicular direction of the restricted walls. Themean-squared
displacement of COMs is given by Neuman (1974):

4

δ2

∞
∑

m=1

r2

α2
m(α

2
m + 1− n)

f (
α2
md⊥
r2

, δ,1),

where the function f (·, ·, ·) is defined as

f (a, δ,1) =
(

2e−aδ + 2e−a1 − e−a(1+δ) − e−a(1−δ)

−2+ 2aδ
)

a−2. (6)

We note that the autocorrelation function in Equation (5) is an
infinite series of weighted exponential functions. As m increases,
the weighting coefficients get smaller and the exponential
function decays quickly. As a result, for long-time scales, the
correlation is dominated by the first term corresponding to α1.
For example, the first three values of αm are approximately
given by α1 = 1.84, α2 = 5.33 and α3 = 8.54. Assuming
r = 1 µm, D = 1µm2/ms, t = 0.1 ms and n = 2, the
first three terms of Equation (5) are given by 0.1759, 0.0013 and

5.63×10−6. Thus, the contribution of the terms form ≥ 2 is very
minimal. To show that the correlation function is approximately
an exponential function, we plot the logarithm of cr(t, 0) with
r = 1, 2, . . . 8µm in Figure 1 where we include the first 500
terms (m = 1, . . . , 500) in the sum in Equation (5). The
linear curves imply that the correlation function of the diffusion
process in restricted pores can very well be approximated by
a single exponential function, as obtained from our analysis in
Equation (13). The validation of the exponential form of the
autocorrelation function has also been discussed in Sheltraw and
Kenkre (1996) and Burcaw et al. (2015).

In the multi-compartment model used in Alexander et al.
(2010), the spins were assumed to be freely diffusing along the
direction of the fiber bundles, leading to larger errors in data
fitting (see e.g., Figure 10 in Alexander et al., 2010). The large
fitting error may be due to the restricted diffusion along the
fiber orientation due to axonal undulation as well dispersion.
Thus, the intra-axonal spins experience bounded diffusion
in a three-dimensional space (and not just in the direction
orthogonal to the fiber orientation). For a three-dimensional
bounded diffusion process, the corresponding autocorrelation is
approximately given by a matrix-valued exponential function.
For this reason, we propose to model the three-dimensional
bounded diffusion using a multivariate Ornstein-Uhlenbeck
process, which provides the expected matrix-valued exponential
autocorrelation and can be applied to analyze dMRI signals
acquired using any type of gradient sequences.

2.2. The Ornstein-Uhlenbeck Model
We consider the following multivariate Ornstein-Uhlenbeck
(OU) model:

dx(t)

dt
= −Ax(t)+

√
2Dw(t) (7)

for the diffusion processes of water molecules with statistically
bounded trajectories, where w(t) denotes the three-dimensional
continuous Gaussian noise which is formally considered as the
derivative of the Brownian motion with w(t)w(s)′ = δ(t − s)Idt,
A ∈ R

3×3 is a matrix with all its eigenvalues having positive
real parts and the tensor D is positive definite and

√
D denotes

FIGURE 1 | The logarithm of the positional autocorrelation function of

diffusing particles in cylinders with radii varying from 1 to 8 µm. The

plots show that the autocorrelation functions decrease approximately as

exponential functions of diffusion time.
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the unique positive-definite square root of D. This model is a
multivariate extension of the one used in Stejskal (1965) and
Sevilla and Kenkre (2007). An intuitive interpretation for the
model parameter A is that it models the rate at which a particle
forgets its previous location. As a solution to Equation (7), x(t)
relates to x(s) with s < t by,

x(t) = e−A(t−s)x(s)+
∫ t

s
e−A(t−τ )

√
2Dw(τ )dτ, (8)

where e−At denotes the matrix exponential function. Clearly,
the particle’s memory of its previous location decays as an
exponential function of time. In anisotropic pores, this rate of
“forgetfulness" may be different along different directions and
is captured by the eigenvalues of A. In the stationary case, x(t)
follows a zero-mean Gaussian distribution with covariance C =
〈x(t)x(t)′〉 where 〈·〉 denotes the time average of the process.
Since the process is also ergodic, the ensemble average of the
trajectories of many particles (spins) is the same as their time
average. Hence, we also write C = x(t)x(t)′.

For the model in Equation (7), the covariance C(t) is related
to the model parameters by the following Lyapunov equation:

dC(t)

dt
= −AC(t)− C(t)A′ + 2D. (9)

Assuming that the covariance C is stationary, leads to the
following equality:

− AC − CA′ + 2D = 0. (10)

For a positive-definite tensor D and a matrix A with eigenvalues
having positive real parts, the covariance C can be uniquely
determined by solving the linear system of equations in (10).
On the other hand, we note that there may be different pairs of
A,D that give the same C. Throughout this paper, we assume that
A,C,D are invertible. Next, we show that the time-reversibility of
the of process imposes structural constraints on the parametersA
andD, which in turn reduces the number of free variables used in
the model.

Let Cou(t, s): = x(t)x(s)′ denote the position autocorrelation
function with Cou(t, t) = C. From the relation between x(t) and
x(s) given by Equation (8), we obtain

Cou(t, s) =
{

e−A(t−s)C if t ≥ s,

Ce−A′(s−t) if t < s,

where we have used the fact that w(τ ) is uncorrelated with x(s)
for τ ≥ s. Moreover, we assume that the diffusion process
is time reversible since the trajectories of diffusing molecules
should have the same pattern during both the forward and
backward evolution of time. This assumption implies that the
joint probability distribution function of [x(t)′ x(s)′]′ is the same
as that of [x(s)′ x(t)′]′. It further implies the following symmetry:

Cou(t, s) = Cou(s, t). (11)

In particular, setting s = 0 leads to e−AtC = Ce−A′t for any t ≥ 0.
Taking the derivative of both sides at t = 0, we obtain:AC = CA′.
Substituting this relation in Equation (10), we obtain:

AC = D. (12)

In the original model (Equation 7), the matrix A had 9 variables
and the tensor D had 6. However, following Equation (12), A
can be written as A = DC−1. A consequence of this relation
is that the eigenvalues of the matrix A become real-valued with
total number of free model parameters reducing to 12. Further,
one can also assume that A,C and D have the same eigenvectors,
which leads to a simplified model with 9 parameters. If Equation
(12) holds, we denote the autocorrelation function as:

Cou(t, s) = e−A|t−s|C (13)

which is the same as Ce−A′|t−s|. From Equations (13) and (11), we
can derive that

y1y
′
1 = 2

δ2

(

e−Aδ − I + Aδ
)

A−2C ,

y2y
′
1 = 1

δ2

(

e−A(1+δ) + e−A(1−δ) − 2e−A1
)

A−2C.

Further, y2y
′
2 = y1y

′
1 and y1y

′
2 = y2y

′
1. By substituting these

expressions for yiy
′
j with i, j = 1, 2, we obtain the expression for

the mean-squared displacement between the COMs as:

Rou(δ,1) = 2

δ2
f (A, δ,1)C, (14)

where the function f (·, ·, ·) is defined as in Equation (6).
The model parameter A characterizes the rate at which a

particle forgets its previous location. If the eigenvalues of A are
small, then the diffusion signal in Equation (3) is similar to free-
diffusion. To show this, we let A = ǫA0 for a constant A0. Then,
it is straightforward to show that

lim
ǫ→0

2

δ2
f (ǫA0, δ,1)(ǫ−1A−1

0 D) = 2D(1 − δ/3) = RD(δ,1).

Thus, free and hindered diffusion processes can be considered as
a special case of an OU diffusion process in the limiting case of
very small attraction potential.

2.3. A Frequency-Domain Model for dMRI
Signal
The OU model can also be studied from a frequency domain
perspective allowing for any type of gradient sequences, such as
the multiple-pulsed field gradient (mPFG) (Avram et al., 2013)
and oscillating gradient waveforms (Gore et al., 2010). Let g(t)

denote the gradient waveform and let G(ω): =
∫ T
0 g(t)e−iωtdt

denote its Fourier transform. We denote by X(ω) the power
spectral density (PSD) of the OU process which is defined by the
equation

Cou(t, s) =
1

2π

∫ ∞

−∞
X(ω)e−iω|t−s|dω (15)

and is given by
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X(ω) = 2(iωI + A)−1D(iωI + A)−∗.

Then the dMRI signal from the molecules with bounded
trajectories is given by

E(g) = exp

(

− 1

4π
γ
2
∫ ∞

−∞
G(ω)∗X(ω)G(ω)dω

)

. (16)

We note an important difference between the above formulation
and the frequency-domain expression used in Stepišnik (1993)
and Gore et al. (2010). The expression in Equation (16) is derived
for modeling dMRI signals from spins with bounded diffusion
trajectories and is written in terms of the position PSD X(ω)
and the Fourier transform of the gradient sequence. In the sPFG
case, the expression in Equation (16) will be identical to the
one obtained earlier in Equation (3). On the other hand, the
frequency-domain expression in Stepišnik (1993) and Gore et al.
(2010) was written in terms of the PSD of the velocity process and
the Fourier transform of the integral of the gradient sequence.

2.4. On the Time-Dependence of the
Apparent Axon Radius
The intra-axonal and extra-axonal dMRI signals have different
time-domain behaviors, making it possible to decompose the two
components from dMRI measurements acquired using different
diffusion times. However, the experimental results obtained in
Huang et al. (2015) show that the estimated axon size also
varies with diffusion time, which is biologically not possible.
Understanding the mean-squared displacements of the bounded
and unbounded components could provide more insights into
understanding the time-dependence of the estimated axon radius
in these works.

In the narrow-pulse case, the mean-squared displacement
between the COMs from the OU model is given by
lim
δ→0

Rou,⊥(δ,1) = 2c⊥(1 − e−a⊥1), where c⊥, a⊥ denote

the eigenvalue of C and A along the perpendicular direction to
the orientation of the fiber bundles. It is usually assumed that
the diffusion time 1 is long enough so that the mean-squared
displacement reaches its long-time limit 2c⊥. On the other hand,
the long-time limit of the mean-squared displacement in an
isotropic cylinder is given by r2/2 where r denotes the cylinder
radius. By equating the two expressions for mean-squared
displacements, we see that the apparent axon radius is a function
of time, and is given by:

r2app(1) = 4c⊥(1− e−a⊥1), (17)

which is a monotonic increasing function of1 and converges to a
constant 4c⊥ at long diffusion time. From the analysis in Section

2.1, the exponent a⊥ is approximately given by a⊥ ≈ α2
1d⊥
r2

. Thus,
if the underlying structure contains bounded spaces with radii
being about 5µm and if the diffusivity is about 1µm2/ms, then
it takes about 20 ∼ 30ms for the mean-squared displacement
to reach its limiting value. Thus, the time dependence of the
apparent axon radius at short-time scale may be due to the
slowly decaying autocorrelation function from diffusing spins
with bounded trajectories of large radii.

On the other hand, at long-time scale, the time-dependence
of the apparent axon radius may be due to the slowly diverging
spins in the extra-axonal space. It was pointed out in Burcaw et al.
(2015) that the apparent diffusivity monotonically decreases with
increasing diffusion time at long-time scale, e.g., 1 ≥ 100ms. If
the time-dependent terms of the diffusivity is misinterpreted as a
component from the intra-axonal space, then the apparent axon
radius is given by Burcaw et al. (2015):

r2app(1) = 〈r4〉/〈r2〉 + const. ln(1/tc), (18)

where 〈r2〉 and 〈r4〉 are the second and the fourth order moments
of the axon radius distribution. The ratio 〈r4〉/〈r2〉 is the expected
value of the squared apparent axon radius in the absence of extra-
axonal space. Thus, the time-dependent diffusivity in the extra-
axonal space will also lead to an over-estimation of the apparent
axon radius. Finally, we also remark that the non-Gaussianity
of the extra-axonal diffusion propagator should also be taken
into account at long-time scale, since it may also lead to biased
estimation of the diffusivity and the axon radius.

2.5. The Multi-Component Signal Model
Assuming that the diffusion process in brain tissue can
be decomposed into two categories that have bounded and
unbounded trajectories, we can denote the dMRI signal using the
following form:

E(q) = pEbounded(q)+ (1− p)Eunbounded(q), (19)

where p and 1 − p denote the relative volume fractions
of the molecules with bounded and unbounded trajectories,
respectively. For dMRI signal from sPFG experiments, the signal
model is given by:

E(q) = pe−
1
2 q

′Rou(δ,1)q + (1− p)e−
1
2 q

′RD(δ,1)q, (20)

where RD and Rou are defined in Equations (4) and (14),
respectively. The main difference between Equation (20) and
the model used in Alexander et al. (2010) and Huang et al.
(2015) is that the bounded component is given by a multivariate
OU model, which assumes that the diffusing spins along the
fiber-bundle direction also have bounded trajectories.

3. EXPERIMENTS

We used the proposed model to analyze an ex-vivo data
set from a young adult female vervet monkey brain. The
data set was obtained from the Danish Research Center
For Magnetic Resonance (http://dig.drcmr.dk/activeax-dataset/),
with scanning done as described in Dyrby et al. (2010).
The data was acquired on a 4.7 T Varian scanner with
the following acquisition parameters consisting of three sPFG
experiments: δ = {10, 7, 17} ms, 1 = {16, 45, 35} ms and
g = {0.14, 0.13, 0.14} T/m respectively. The b-values for the
three experiments were 1900, 3100, 13000 s/mm2, and the q-
values were 0.37, 0.24, 0.64 /µm, respectively. Each acquisition
consisted of 90 gradient directions with a spatial resolution of
0.4× 0.4× 0.5 mm3 and TE/TR = 60/5000 ms.
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We used the finite-pulsed model of Equation (20) for fitting
the dMRI measurements in order to estimate the volume fraction
of the molecules with bounded trajectories and the radius of
these trajectories. We assume that the tensors A,C in the mean-
squared displacement Rou(δ,1) and the tensor D in RD(δ,1)
have cylindrical symmetry with the same set of eigenvectors.
Then the total number of variables in our model (Equation
20) is 9 (2 eigenvalues for each of the tensors A,C,D0, the
weight p and the principal diffusion direction n). Although the
diffusion process along any radial direction in the cross-sectional
plane can be characterized by a one-dimensional model, the
three-dimensional Ornstein-Uhlenbeck process is necessary for
modeling diffusion in the three-dimensional space given that the
orientation of the fiber-bundle is not known a-priori.

In each voxel of a selected region of the corpus-callosum, we
used a nonlinear least-squares method (via Matlab command
lsqnonlin) to estimate the 9 model parameters from a total of
270 measurements. The computational time was about 4 h for
the entire data set using a 12-core workstation. We note that
Equation (20) is a highly nonlinear function of the variables. In
order to restrict the space of possible solutions to a biologically
meaningful range, we applied suitable constraints to the model
parameters based on prior knowledge about the tissue. For
example, the autocorrelation function of the OU process should
decay fast enough so that Rou(δ,1) can be distinguished from
RD(δ,1). Thus, we assumed that the eigenvalues of A to be not
smaller than 80s−1, where the lower-bound is approximately the
exponent of position autocorrelation function for molecules in
a cylindrical axon with diameter 6µm computed according to
Equation (5). We also note that since Rou(δ,1) depends on both
A and C, the constraint on A makes the estimated value for C
more sensitive to subtle variations in the diffusion signal.

4. RESULTS

For the estimated model parameters in each voxel, let c⊥ denote
the smallest eigenvalue of C. Then, we define

√
c⊥ as the average

radius of the bounded trajectories of the diffusing molecules.
Figure 2A shows the estimated average trajectory radius (

√
c⊥)

in the corpus-callosum of the monkey brain with the background
being the standard fractional anisotropy (FA) image. We can
see that the radius in the mid-body of the corpus-callosum is
larger than the genu and the splenium. We note that a similar
pattern for axon diameters has also been observed from histology
analysis in mouse (Barazany et al., 2009), monkey and human
brains (Caminiti et al., 2013). We note that the axon radius
reported from histology studies of the monkey corpus-callosum
range between 0.5 − 2.5µm, whereas the estimated values of√
c⊥ are in the range 0.7 − 5µm. We conjecture that the larger

value for the radius of spin trajectories compared with the axon
size may be due to bounded diffusion processes with larger radii
in densely packed extra axonal space. The estimated

√
c⊥ also

reveals a pattern similar to the known distribution of axon sizes as
larger axons will create more space for water molecules to diffuse,
leading to trajectories with larger radii.

Figure 2B shows the estimated relative volume fraction p,
which has an inverse contrast compared to Figure 2A. Based on
the study of rhesus monkey corpus callosum in Lamantia and

Rakic (1990), it was pointed out in Burcaw et al. (2015) that the
volume fraction of extra-axonal space is about 0.3. On the other
hand, the intra-axonal diameter is about 0.6 times the myelin
diameter, i.e., the g-ratio is 0.6 (Rushton, 1951). Thus, the average
fraction p in corpus callosum should be about 0.3/(0.3 + 0.7 ·
0.62) ≈ 0.5. The significantly higher values in the splenium
area of Figure 2B indicates that there is a large fraction of extra-
axonal water molecules having bounded trajectories, which may
be caused by very densely packed axons.

Figure 2C shows the normalized mean-square error (NMSE)
for the estimated signal with NMSE defined as ‖E − Ê‖2/‖Ê‖2
with E and Ê being the vector of measured signal and the
estimated signal, respectively. In most voxels, the NMSE is
around 0.03 implying the proposed model fits the measurement
accurately. Figures 2D–F show the estimated signal in three
representative voxels using the three acquisition parameters.
Note that the fit to the data is quite accurate for all the three
acquisitions, which is in contrast to the results reported in
Alexander et al. (2010), where the signal for the scan with
δ = 17ms was highly overestimated leading to a significant
overestimation of the axon diameter (on the same subset of
measurements).

According to Equation (20), the estimated mean-squared
displacements of the water molecules are given by pRou(δ,1) +
(1 − p)RD(δ,1). In order to compare this model with DTI, we
also computed the mean-squared displacements using DTI for
each data set. The solid and dashed plots in Figure 3A show the
estimatedmean-squared displacements along the radial direction
of the fiber bundles obtained using the proposed model and DTI,
where the blue, green and red curves denote the average values
from four voxels in the genu, midbody, and splenium areas,
respectively. The solid plots show similar features as the dashed
lines. Figure 3B shows the corresponding diffusion coefficients
estimated using the proposed model and DTI, respectively,
with the diffusion coefficients from the proposed model given
by
(

pRou(δ,1)+ (1− p)RD(δ,1)
)

/(1 − δ/3). The reasons for
the differences between the results include the measurement
noise and that the proposed model (Equation 20) is non-
Gaussian, i.e., a non-exponential function of the b-value, while
DTI corresponds to a Gaussian model. The Gaussian model is
not able to correctly estimate the diffusion coefficients at high
b-values as in the data sets used in this experiment.

5. DISCUSSION AND CONCLUSION

In this paper, we introduced an approach for modeling the
matrix-valued position autocorrelation function for diffusing
spins with statistically bounded trajectories using themultivariate
Ornstein-Uhlenbeck process. We provided detailed analysis
on the relation between the model parameters and the
corresponding structure of the bounded space. We also analyzed
the relation between the autocorrelation function and the time-
dependent axon radius in short-time scale. Moreover, the OU
model also provides a simple frequency-domain expression for
dMRI signals acquired using any type of gradient sequences.

We applied the proposed method on dMRI data acquired
from an ex-vivo monkey brain. Our results show that the
estimated radius of the bounded trajectories could provide more
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FIGURE 2 | (A–C) shows the estimated radius of bounded trajectories, the fraction of the bounded compartment in the dMRI signal and the normalized mean-square

error between the estimated signal and the measurements, respectively. (D–F) shows the measured (dot points) signal and the estimated signal (solid lines) in three

representative voxels from the genu, mid-body and splenium areas, respectively, with the horizontal axis being absolute value of the inner product between the

gradient direction and the axon orientation.

FIGURE 3 | (A) shows the mean-squared displacements of the three data sets with different (δ, 1) with the values shown in Figure 2F: the solid curves are the

estimated results using the proposed model and the dashed lines are the corresponding results obtained from the DTI model, respectively. (B) shows the

corresponding time-dependent diffusion coefficients for the three data sets.

specific structural information about the tissue compared to the
standard measures of fractional anisotropy (FA), despite the
fact that the proposed measure is a function of both the axon
radius and the volume fraction (axonal packing). Moreover, the
results also show that the proposed model better fits the acquired
measurements compared with the results shown in Alexander
et al. (2010), implying that the diffusion spins along the fiber-
bundle direction may also include some bounded component.

However, the estimated radii of the bounded trajectories are still
larger than the results from histology studies. We conjecture that
one possibility for the over-estimation is due to the bounded
diffusion trajectories in the extra-axonal space with large radii.
We also note that another possible reason for the overestimated
radii is due to the variability of the fiber-bundle orientation in
the corpus callosum (Nilsson et al., 2012; Ronen et al., 2013).
Future work will be on validating the proposed model using
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more measurements acquired using several measurements with
varying diffusion times and on extending the proposed method
for characterizing dMRI signal from voxels with fiber crossings.
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