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The ability of “looking into the future”—namely, the capacity of anticipating future states

of the environment or of the body—represents a fundamental function of human (and

animal) brains. A goalkeeper who tries to guess the ball’s direction; a chess player who

attempts to anticipate the opponent’s next move; or a man-in-love who tries to calculate

what are the chances of her saying yes—in all these cases, people are simulating possible

future states of the world, in order to maximize the success of their decisions or actions.

Research in neuroscience is showing that our ability to predict the behavior of physical

or social phenomena is largely dependent on the brain’s ability to integrate current and

past information to generate (probabilistic) simulations of the future. But could predictive

processing be augmented using advanced technologies? In this contribution, we discuss

how computational technologies may be used to support, facilitate or enhance the

prediction of future events, by considering exemplificative scenarios across different

domains, from simpler sensorimotor decisions to more complex cognitive tasks. We also

examine the key scientific and technical challenges that must be faced to turn this vision

into reality.

Keywords: predictive processing, planning, robotics, augmented reality, brain stimulation

INTRODUCTION

Modern cognitive neuroscience describes the brain as a predictive device, not a stimulus-response
system. In this “predictive brain” perspective, the brain continuously predicts environmental
dynamics and anticipates action effects, and this permits animals to be “ahead of time” when it
takes decisions, rather than just react to what it currently senses (Pezzulo, 2008; Bar, 2009; Friston,
2010). Predictive abilities range from short-term predictions, which target (say) the few hundreds of
milliseconds—the timescale of the sensorimotor loop, which is relevant to predict (say) whether or
not to cross a busy road—tomedium- or long-term predictions, which are useful for distal decisions
such as the road to take to go home or the career to choose.

Recent research is shedding light on the neuronal underpinnings of these diverse abilities.
For example, a growing literature studies predictive dynamics in sensorimotor control,
highlighting the importance of so-called forward models: internal models that the brain uses
to predict action consequences and plan accurate movements (Wolpert and Ghahramani,
2000). Even more interesting, research in “motor cognition” has shown that these forward
models can be widely reused outside motor control, in more cognitive such as domains
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action recognition, action simulation and imagery (Jeannerod,
2006). Predictive domains, have been widely studied in many
other domains of cognition, such as perceptual processing
and navigation. For example, growing evidence indicates
that internally generated brain dynamics in the (rodent)
hippocampus might support navigational planning: in fact,
if one registers from the hippocampus of rodents at rest
before a decision, one can find neuronal sequences of place
cells assembled to form trajectories in T-mazes, which can
be predictive of the actual trajectories that they will select
immediately afterwards (Johnson and Redish, 2007; Pfeiffer
and Foster, 2013; Pezzulo et al., 2014). Based on parallels
between neurophysiological evidence and human neuroimaging
studies, it has been (speculatively) proposed that the ability
to internally generate and “mesh” dynamical events—especially
in the hippocampus—might support sophisticated prospective
abilities such as the mental simulation of future events and
“mental time travel” (Schacter et al., 2012; Buzsáki et al., 2014).

From the “predictive brain” perspective, the ubiquity of
predictive components across cognitive domains reflects the
fact that brain processing is intrinsically predictive. The most
comprehensive attempt to describe formally the “predictive
brain” perspective is the free energy principle developed by
Friston and collaborators (Friston, 2010; Pezzulo et al., 2015).
In this perspective, the brain is a statistical machine that learns
a so-called generative model of external dynamics (especially
how the environment changes as a function of the agent’s
actions) and uses it for continuous prediction. Importantly,
prediction can be at multiple timescales, where these timescales
map to brain hierarchies (especially cortical hierarchies) and
increase from motor and premotor areas to prefrontal areas
(Badre, 2008). Here, cognition depends on the interplay of top-
down and bottom-up signals across (brain) hierarchical layers,
the former propagating predictions and the latter prediction
errors. Minimizing prediction errors (the difference from what
is expected and what is sensed) across layers—or more formally
minimizing free energy—supports both perception (because
perceptual hypotheses encoded at higher levels can be revised
based on prediction errors) and action (because goals encoded at
higher hierarchical layers generate a cascade of exteroceptive and
proprioceptive predictions, say on the next desired hand position,
and the latter are ultimately suppressed by engaged reflexes
that—essentially—guide the hand to the desired position).
The same principles of prediction error minimization have
been extended to model the planning of action sequences—
when, essentially, predictions stemming from the generative
model (encoding the agent’s knowledge of action-outcome
contingencies) are “chained” to covertly simulate and evaluate
possible action plans in advance, before the agent performs any
actual action or receives external feedback (Friston et al., 2012,
2015).

In sum, the idea of a “predictive brain” is becoming
dominant in cognitive neuroscience. In this article, we explore
an intriguing technological side of this phenomenon: the possible
development of “predictive technologies” that augment human
prediction. We address questions such as: is it possible to
augment predictive abilities in humans using technologies?

Which kind of predictions can be enhanced? Is it possible to
use enhanced predictive abilities to improve real-time decisions
and actions? What are the key scientific/technological issues for
developing predictive technologies? And what are their potential
applications?

Of course, prediction-based technologies are already routinely
used, for example, in weather or stock market forecast, or in the
development of smart (e.g., self-guiding) cars. Here, however, we
specifically focus on predictive technologies that can be seamlessly
integrated into real-time human cognition, and augment it. We
discuss, for example, new interfaces that help humans predict
the movements of a car in order to decide when to cross a
busy road. Below we consider this and other specific examples
of predictive technologies that—we will argue—might be soon
within our reach.

DOMAINS OF ENHANCED PREDICTION

Human cognitive tasks involve short-, medium- or long-term
predictions—and at least in principle, predictive technologies
can support all them. Here we focus our analysis on predictive
technologies that can support real-time, embodied decisions
(Cisek and Pastor-Bernier, 2014; Lepora and Pezzulo, 2015),
such as for example those that we continuously face when we
drive a car (should I accelerate or press the brake?), which
are based on short-term predictions of the order of hundreds
of milliseconds (am I risking a collision with a pedestrian?)
or sometimes medium-term predictions; but we do not target
decisions that unfold over longer-term timescales such as “which
University or career should I select?”.

It is important to distinguish between two potential
outputs of predictive technologies. The first, direct output
of a predictive technology is enhancing a person’s prediction
abilities. For example, the technology might help a goalkeeper
predicting the trajectory of a penalty kick, on the basis of
(say) statistical information about past penalty kicks and the
movements of the attacker. A second, more indirect output
of predictive technologies is aiding decision-making and/or
planning (based on prediction). For example, the predictive
technology might suggest the goalkeeper the action course that
maximizes the probability to parry the penalty kick, given
the predicted trajectory. Below we provide examples of both
kinds.

Consider the case of a person who wants to cross a busy road.
Deciding when to cross is a complex embodied decision that has
to take into consideration several factors, from cognitive rules
and knowledge (e.g., knowledge of traffic rules; presence of traffic
lights) to situational facts (e.g., where are the cars and at what
velocity they run; what my own velocity is; how long the road
to be crossed is). Various predictions can be useful to solve this
task, such as the prediction of “where” a car is going, “whether”
it will stop or “when” it will arrive at the crossing point. There
are cases when an augmentation technology may help, such as
when the person who is crossing has impaired perceptual or
cognitive abilities, or comes from another culture (think of a
Chinese tourist crossing a busy road in Rome).
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FIGURE 1 | How the affordance landscape changes as an effect of car movements and traffic signs. (A) An example situation: a pedestrian has to cross a

road, with a car approaching. (B) The same situation, but now with the putative results of a predictive technology superimposed: here, the lines in front of the car

represent its predicted future locations, and the colors represent a gradient of the “cross-ability” affordance (red = not crossable; green = crossable) ordered in a

continuum. (C) The same situation with a traffic panel does not afford cross-ability anymore. (D) A more complex scenario, in which the predictive technology might

simulate future simulated situations, e.g., display how the affordance landscape will change in the next 200, 400, and 600ms.

How can we design a predictive technology that augments
human cognition in this kind of situation? A useful starting point
is the notion of an “affordance,” which originates from ecological
psychology (Gibson, 1979) but is also used in neuroscience
(Cisek and Kalaska, 2010; Pezzulo and Cisek, 2016). In this
perspective, an empty street affords “cross-ability,” whereas a busy
road does not. More generally, one can think of a “landscape”
of affordances, which changes as an effect of environmental
dynamics and our own actions. For example a car approaching
fast in our direction (see Figure 1) modifies the landscape of
“cross-ability” over time: when the car is far, the road is cross-
able; but when it approaches, it becomes not cross-able. The
concept of a landscape of affordances is dynamical and highly
context-sensitive, in the sense that (for example) there is a
gradient of “cross-ability” over time and it depends on both our
and the car’s velocity and direction, as well as the color of the
traffic light (see Figures 1B–D).

While ecological psychology has often focused on the idea
of exploiting available affordances (e.g., use the “sit-ability” of a
chair to sit down), here we recast this concept in predictive terms,
and discuss how the prediction of (for example) car movements
permits to foresee how the affordance landscape will change in
the immediate future - and to spot in advance the right time
window to cross the road. Figure 2B exemplifies the potential
benefits of a predictive technology: an augmented reality display
that shows (predictively) the affordance landscape and signals
that a good time frame for crossing the road is approaching
(see later for a discussion of the feasibility of this technology
and its required components). Coming back to our previous
distinction between “prediction” and “prediction-based decision

or planning,” here the curved lines around the car represent
its predicted future locations, while the colored parts represent
the future predicted affordances (red = not crossable; green =

crossable)—which can be considered as an aid to the decision
(when and where to cross) based on the predicted car trajectory.

Another, more complex example concerns the decision of
which path to take to cross a crossroad and reach a supermarket.
This can be considered analogous to the “travel planning”
functionality of Google maps (https://www.google.it/maps),
which already takes several factors into account (e.g., length, size
of streets, current traffic) to provide an estimate of “the best”
or “the faster” road. Predictive technologies can extend these
functionalities by considering various contextual factors, such
as the current “cross-ability” affordances (as above) and the
anticipated effort associated to the different paths (e.g., one path
might require climbing stairs)—which in turn might require
predicting energy expenditure based on physiological signals
(e.g., heart rate) or other information (e.g., age). Here, different
from the former example, the predictive technology would not
(only) show a field of affordances, but—like Google maps—
propose several paths and suggest the best one. Importantly,
this exemplifies a medium-term decision, not a short-term
decision as in road crossing case, and it can incorporate
various elements and various predictions, at short and
medium terms.

As a third example, let’s consider a professional domain: an
aircraft pilot who has to decide which buttons to press, which
levers to pull, which indicators to look at, etc. A predictive
technology might help pilots predict (for example) the outcome
of different maneuver by directing attention to the controls
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FIGURE 2 | Examples of enabling technologies. (A) Sensors of a self-driving car (source: Google). (B) Schematic of how objects are represented (from the

self-guiding car’s perspective) while approaching a turn; the inset shows what a human driver sees from inside the car. This representation can be used to generate

predictions (e.g., of the trajectory of cars and pedestrians) based, for example, on probabilistic mechanisms (Thrun et al., 2006).

that are likely to show the most critical information. These
functionalities might be useful for pilots but more critically to
those who are learning to fly; the latter might learn faster if their
attention is directed to the most relevant displays or controls.

As these examples illustrate, predictive technologies can
augment human predictive abilities and be flexibly incorporated
into human cognition, providing raw predictions (of car
movements), suggestions (of a road to take) or guiding attention
(to the most-likely-to-be-useful displays)—just to make a few
examples.

ENABLING TECHNOLOGIES

In the previous section we have briefly discussed a few examples
of predictive technologies and their use in everyday life. These
examples are (on purpose) beyond the scope of the current state
of the art. However, some components required by predictive
technologies—software or hardware—are already available as
components of existing technologies, or are currently studied as
part of research programs. Here we provide some examples of
enabling technologies that might support the future development
of predictive technologies.

Self-driving cars are under development by many companies
(e.g., Google, Tesla) and they might enter in the market
in the near future. Self-driving cars already use many
technologies—from sensors such as laser cameras and radars
to dedicated processors—that can be integrated in future
predictive technologies, see Figure 2A. Furthermore, at the
software level, self-driving cars use prediction for control and
planning—for example, to predict car trajectories that avoid
collisions; and some of the solutions implemented in self-
driving cars might be reused within human augmentation
systems such as those that we described in the previous
section.

Although self-driving cars use a range of diverse mechanisms,
some solutions to key problems such as self-localization, path
planning, data fusion and trajectory prediction are reused
from robot navigation (Thrun et al., 2006) and most can be
solved using probabilistic prediction methods (Thrun et al.,
2006). Predictive mechanisms, and in particular methods for

approximate-but-fast prediction figure prominently in both
robot navigation (Montemerlo et al., 2002) and self-driving cars.

Another example of predictive algorithm that was initially
developed for robotics but might be reused (or modified) within
predictive technologies is the “internal world model” used by
Ripley the robot (Roy et al., 2004). The system uses a physical
engine to simulate or predict the robot movements, and to keep
the “world model” of the robot updated—for example, to keep
simulating the trajectory of a moving ball even if the robot is
looking somewhere else. In this way, the robot’s internal model is
continuously “in register” with the external world. This software
exemplifies the idea of using a physical engine—of the kind
used, for example, in computer games—to run physically realistic
simulations.Many widely-used physical engines are very accurate
and can afford real-time simulation or prediction. Of course, they
cannot simulate everything with the required level of accuracy
(and in real time), thus their putative role within a predictive
technology can only be evaluated case-by-case.

Physical engines have been also used for simulation in a
series of studies on human physical scene understanding, such
as how well humans predict how towers of wooden bricks will
fall down (Battaglia et al., 2013). This study illustrates that a
physical engine simulation can be used to predict in real time
a challenging physical event that derives from the interaction
of many components (here, many wooden bricks). This method
might be extended to predict how other physical events (e.g.,
movements of objects such as cars) unfold in time.

Another example of a computational solution developed
within robotics is the idea of “affordance gradients”: a formalism
that describes the transformations that can be applied on an
object (e.g., how a triangular object rotates when it is pushed
or pulled) and permits a robot to plan actions that exploit the
affordances to achieve goals (e.g., plan a series of pushing actions
that guide the triangular object to a desired or goal position, see
Sanchez-Fibla et al., 2011). This method can be potentially reused
outside robotics to represent e.g., the affordances of objects and
infer their dynamics.

As these examples demonstrate, some component solutions
of predictive technologies are available or under development.
At the same time, these are still incomplete solutions to the
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problems of prediction, planning and decision, especially in real
time (Geffner, 2013; Donnarumma et al., 2016). Thus, a key
challenge for future research is integrating and extending these
(and other) models to deliver predictive technologies that are
effective and usable. Another key issue is making predictive
technologies usable—a theme that we explore next.

REPRESENTING PREDICTIVE
INFORMATION

A key challenge of predictive technologies is how to represent
the information about an upcoming event (predictive cue).
As suggested earlier, augmented reality may provide a viable
solution. An augmented reality system allows superimposing
digital information on the physical environment in real-time
using a smartphone or head-mounted see-through displays
coupled with a wearable computer. Thanks to recent progresses,
current augmented reality systems afford real-time applications
in which the user can interact with synthetic objects, manipulate
them and receive additional information about the environment
or the task at hand, in the form of images, text, video, audio
components, etc.

Predictive information could be represented in augmented
reality using various levels of abstraction, ranging from analog
models to symbolic cues. For example, consider the question
of how to represent the predicted trajectory of a ball. One
could either visualize a virtual ball that precedes the actual
ball (analog representation) or use a dynamic arrow (symbolic
representation). In choosing the most appropriate representation
of the predictive cue, a key requirement is the definition of
temporal constraints. If the augmentation cue is too complex,
its processing time may even exceed the timeframe available
to complete the task, thus rendering the augmentation useless.
For example, in rallying the pacenotes are a commonly used
method of describing a route to be taken, in terms of turnings,
junctions, the degree and severity of bends etc. The notes
are designed to help the driver anticipating the conditions
of the course ahead, but with a fast-moving vehicle, they are
encoded to carry maximal information in minimum reading
time. Relatedly, the design of AR interface should take into
account user’s cognitive requirements, i.e., by preventing split-
attention between multiple predictive cues while preserving
global situation awareness. This translates to the need for
optimizing the trade-off between cue’s maximal informativity
about upcoming event(s) and least cognitive processing
effort.

A further issue is whether, and in which ways, the
presentation of the predictive cue could affect the course of
the predicted event. For example, if a goalkeeper is shown
the prediction that the penalty taker is going to place the
ball at the lower right corner, he/she will jump as fast as
possible to the lower right corner in order to reach the
ball. However, if the goalkeeper initiates the movement too
early, the penalty taker may notice the goalkeeper’s intention
and kick the ball in the opposite corner. Thus, in designing
augmented predictions, it is necessary to model the complex

interdependencies between the user’s action and the context of
his/her action, in order to prevent the predictive cue triggering
behaviors that affect the course of events in (unpredictable)
ways.

CONCLUSIONS

We have explored the idea of using technology to augment
the human ability of predicting future events, by seamlessly
integrating anticipatory information in the perception-action
loop. The presentation of predictive cues is meant to facilitate
perceptual, decision and action processes. Some key building
blocks of predictive technology are available from developments
in robotics and machine learning. In these fields, the need
of accurately modeling the evolution of complex system
has led to the deployment of computational solutions that
could be eventually re-adapted to match the requirements of
predictive cognition. However, the provision of external cues
may not be the only possible approach to augment predictive
processing. A rather more ambitious strategy could be to
directly stimulating brain areas that are implicated in the
computation of future events. Numerous studies have shown the
possibility of modulating, and in some cases enhancing, cognitive
processes by exciting brain regions involved in working memory
and attention through transcranial electrical brain stimulation,
including planning ability (Dockery et al., 2009). This approach
could be justifiable within rehabilitation domains, where the goal
would be to restore or support predictive functions in individuals
suffering from neurocognitive impairments.

As the rehabilitation example suggests, predictive technologies
hold the promise to enable a wide range of applications based
on the extension of our prediction and planning abilities.
Such application scenarios may include, but are not be limited
to, anticipation of sources of dangers in natural or working
environments for enhancing personal safety; support decision
making and judgments in emergency situations; optimization of
team coordination in complex collaboration tasks. Clearly, the
exploitation of these possibilities require to address significant
scientific and technological challenges, some of which have been
outlined in this contribution. However, as understanding of
cognitive mechanisms involved in predicting future progresses,
so should the ability of enhancing these processes using advanced
technologies.
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