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INTRODUCTION

The electroencephalogram (EEG) is an excellent tool for probing neural function, both in clinical
and research environments, due to its low cost, non-invasive nature, and pervasiveness. In the
clinic, the EEG is the standard test for diagnosing and characterizing epilepsy and stroke, as well
as a host of other trauma and pathology related conditions (Tatum et al., 2007; Yamada and Meng,
2009). In research laboratories, EEG is used to study neural responses to external stimuli, motor
planning and execution, and brain-computer interfaces (Lebedev and Nicolelis, 2006; Wang et al.,
2013). While human interpretation is still the gold standard for EEG analysis in the clinic, a host of
software tools exist to facilitate the process or tomake predictive analyses such as seizure prediction.

Recently, a confluence of events has underscored the need for robust EEG tools. First, there has
been a renewed push via the White House BRAIN initiative to understand neural function and
disease (Weiss, 2013). Secondly, there is an increased awareness on brain injury owing to both
the influx of injured warfighters and numerous high-profile athletes found to have chronic brain
damage (McKee et al., 2009; Stern et al., 2011). And thirdly, a wave of consumer grade scalp sensors
has entered the market, allowing end users to monitor sleep, arousal, and mood (Liao et al., 2012).

In all these applications, there is a need for robust signal processing tools to analyze the EEG
data. Historically, EEG signal processing tools have been devised using either ad hoc heuristic
methods, or by training pattern recognition engines on small data sets (Gotman, 1982). These
methods have yielded limited results, owing mostly to the fact that brain signals (and EEG
in particular) are characterized by great variability, which can only be properly interpreted by
building statistical models using massive amounts of data (Alotaiby et al., 2014; Ramgopal et al.,
2014). Unfortunately, despite EEG being perhaps the most pervasive modality for acquiring
brain signals, there is a severe lack of data in the public domain. For example, the “EEG
Motor Movement/Imagery Dataset” (http://www.physionet.org/pn4/eegmmidb/) contains ∼1500
recordings of 1 or 2 min duration apiece from 109 subjects (Goldberger et al., 2000; Schalk et al.,
2004). The CHB-MIT database contains data from 22 subjects, mostly pediatric (Shoeb, 2009).
A database from Karunya University contains 175 16-channel EEGs of duration 10 s (Selvaraj
et al., 2014). One of the most extensive databases for supporting epilepsy research is the European
Epilepsy Database (http://epilepsy-database.eu/), which contains 250 datasets from 30 unique
patients, but sells for e3000. Other databases, such as ieee.org, contain a wealth of data from more
invasive modalities such as electrocorticogram, but little or no EEG.

This lack of publically available data is ironic considering that hundreds of thousands of EEGs
are administered annually in clinical settings around the world. Relatively little of this data is
publicly available to the research community in a form that is useful to machine learning research.
Massive amounts of EEG data would allow the use of state-of-the-art machine learning algorithms
to discover new diagnostics and validate clinical practice. Furthermore, it is desirable that such
data be collected in clinical settings, as opposed to tightly controlled research environments, since
“clinical-grade” data is inherently more variable with respect to parameters such as electrode
location, clinical environment, equipment, and noise. Capturing this variability is critical to the
development of robust, high performance technology that has real-world impact.
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In this work, we describe a new corpus, the TUH-EEG
Corpus, which is an ongoing data collection effort that has
recently released 14 years of clinical EEG data collected at Temple
University Hospital. The records have been curated, organized,
and paired with textual clinician reports that describe the patients
and scans. The corpus is publicly available from the Neural
Engineering Data Consortium (www.nedcdata.org) (Picone and
Obeid, 2016).

METHODS

Clinical EEG data were collected from archival records at
Temple University Hospital (TUH). All work was performed in
accordance with the Declaration of Helsinki and with the full
approval of the Temple University IRB. All personnel in contact
with privileged patient information were fully trained on patient
privacy and were certified by the Temple IRB.

Archival EEG signal data were recovered from CD-ROMs.
Files were converted from their native proprietary file format
(Nicolet’s NicVue) to an open format EDF standard. Data was
then rigorously de-identified to conform to the HIPAA Privacy
Rule by eliminating 18 potential identifiers including patient
names and dates of birth. Patient medical record numbers were
replaced with randomized database identifiers, with a key to that
mapping being saved to a secure off-line location. Importantly,
our process captured instances in which the same patient
received multiple EEGs over time and assigned database IDs
accordingly. Data de-identification was performed by combining
automated custom-designed software tools with manual editing
and proofreading. All storage and manipulation of source files
was conducted on dedicated non-network connected computers
that were physically located within the TUH Department of
Neurology.

We also manually paired each retrieved EEG with its
corresponding clinician report. These reports are generated by

FIGURE 1 | Directory and file structure of the TUH-EEG database. Data is organized by patient (orange) and then by session (yellow). Each session contains

one or more signal (edf) and physician report (txt) files. To accommodate file system management issues, patients are grouped into sets of about 100 (blue).

the neurologist after analyzing the EEG scan and are the official
hospital summary of the clinical impression. These reports
are comprised of unstructured text that describes the patient,
relevant history, medications, and clinical impression. Reports
were mined from the hospital’s central electronic medical records
archives and typically consisted of image scans of printed reports.
Various levels of image processing were employed to improve
the image quality before applying optical character recognition
(OCR) to convert the images into text. A combination of
software and manual editing was used to scrub protected health
information (PHI) from the reports and to correct errors
in OCR transcription. Only sessions with both an EEG and
a corresponding clinician report were included in the final
corpus.

The corpus was defined with a hierarchical Unix-style filetree
structure. The top folder, edf, contains 109 numbered folders,
each of which contain numbered folders for up to 100 patients.
Each of these patient folders contains sub-folders that correspond
to individual recording sessions. Those folder names reflect the
session number and date of recording. Finally, each session
folder includes one or more EEG (.edf) data files as well
as the clinician report in .txt format. Figure 1 summarizes
the corpus file structure and gives examples of text and
signal data.

RESULTS

The completed corpus comprises 16,986 sessions from 10,874
unique subjects. Each of these sessions contains at least one EDF
file (more in the case of long term monitoring sessions that were
broken into multiple files) and one physician report. Corpus
metrics are summarized in Figure 2. Subjects were 51% female
and ranged in age from less than 1 year to over 90 (average
51.6, stdev 55.9; see Figure 2 bottom left). The average number of
sessions per patient was 1.56, although as many as 37 EEGs were
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FIGURE 2 | Metrics describing the TUH-EEG corpus. [Top left] histogram showing number of sessions per patient; [top right] histogram showing number of

sessions recorded per calendar year; [bottom left] histogram of patient ages; [bottom right] histogram showing number of EEG-only channels (purple); and total

channels (green).

recorded for a single patient over an 8-month period (Figure 2
top left). The number of sessions per year varies from ∼1000 to
2500 (with the exception of years 2000–2002, and 2005, in which
limited numbers of complete reports were found in the various
electronic medical record archives; see Figure 2 top right).

There was a substantial degree of variability with respect to the
number of channels included in the corpus (see Figure 2 bottom
right). EDF files typically contained both EEG-specific channels
as well as supplementary channels such as detected bursts, EKG,
EMG, and photic stimuli. The most common number of EEG-
only channels per EDF file was 31, although there were cases with
as few as 20. A majority of the EEG data was sampled at 250 Hz
(87%) with the remaining data being sampled at 256 Hz (8.3%),
400 Hz (3.8%), and 512 Hz (1%).

An initial analysis of the physician reports reveals a wide

range ofmedications andmedical conditions. Unsurprisingly, the

most common listed medications were anti-convulsants such as
Keppra and Dilantin, as well as blood thinners such as Lovenox
and heparin. Approximately 87% of the reports included the text
string “epilep,” and about 12% included “stroke.” Only 48
total reports included the string “concus.”

The TUH-EEG corpus v0.6.0 has been released and is
freely available online at www.nedcdata.org. Users must register
with a valid email address. The uncompressed EDF files
and reports together comprise 572GB. For convenience, the
website stores all data from each patient as individual gzip
files with a median filesize of 4.1 MB; all 10,874 gzips

together comprise 330GB. Users wanting to access the entire
database are encouraged to physically mail a USB hard

drive to the authors in order to avoid the downloading
process.

DISCUSSION

This work presents the world’s largest publically available corpus
of clinical EEG data, representing a grand total of 29.1 years
(total duration summed over all EEG channels) of EEG data. In
addition to its size, this corpus features a wide variation of patient
ages, diagnoses, medications, channel counts, and sampling rates.
Furthermore, the corpus continues to be expanded at a rate
of∼2500 new sessions per year.

Biomedicine is entering a new age of data-driven discovery
driven by ubiquitous computing power, inexpensive data storage,
the machine learning revolution, and high speed internet
connections. Access to massive quantities of properly curated
data is now the critical bottleneck to advancement in many areas
of biomedical research. Ironically, doctors and clinicians generate
enormous quantities of data every day, but that information is
almost exclusively sequestered in secure archives where it cannot
be used for research by the biomedical research community.
The quantity, quality, and variability of such data represent
a significant unrealized potential, which is doubly unfortunate
considering that the cost of generating that data has already
been borne. Although, there has been some advancement with
respect to publishing databases of patient metadata, curated
signal databases are much less commonly available, especially in
quantities that would be sufficient to train most contemporary
machine learning engines.
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In this work, we have endeavored to achieve two goals. The
first is to create a corpus of clinical EEG signals and their
corresponding physician reports. The second is to establish best
practices for the curation and publication of clinical signal data,
which is an inherently different entity than discrete metadata.
The EEG corpus we present here is the first of its kind,
both in terms of volume and heterogeneity, both of which are
critical factors for training machine learning engines. Typically,
“research-grade” data is created by tightly controlling as many
external factors as possible. In contrast, “clinical-grade” data is
inherently heterogeneous with respect to those same external
factors. Whereas certain classes of research questions can only
be answered using well-controlled data, others benefit from
variability. For example, an epilepsy detection algorithm that
is trained using 31 specific EEG channels may not be effective
if one or more of those channels are not connected, or if
the electrodes are improperly located or affixed to the scalp.
Algorithms that must be sufficiently robust to function under
a plurality of conditions must be trained with data that is
sufficiently heterogeneous.

Our work has shown that, although clinical signal data is
ubiquitous and inherently valuable to the research community,
it requires substantial manipulation before it can be released
as an adequately curated data corpus. This effort is non-trivial,
both in terms of time and cost. Our team’s activities ranged
from the mundane (e.g., manually copying archival hospital data
from over 1500 CD-ROMs) to more technical challenges (e.g.,
developing software for detecting data entry errors in the clinical
records). Physician reports had to be located through one of five
different EMR portals, often manually. A battery of tests was
created to validate that each record was complete, unique, error-
free, and completely free of privileged patient information. A
rigorous accounting system was created to track and organize the
tens of thousands of files and their status.

The cost to develop the TUH EEG Corpus has been relatively
low, totaling less than $100K in direct charges. As medical record
technology improves, the cost of this collection can be reduced
even further. On the balance, these types of large-scale collections
are a worthwhile investment, since costs are minor relative to the
cost of acquiring the data or conducting research on the data.
In general, the authors expect that a dedicated community-wide
data facility would be best suited to curate data of the magnitude
and complexity described here because there are significant on-
going costs associated with such an activity.

An example of these on-going costs is annotation of the data—
a critical issue for machine learning research. In most semi-
supervised machine learning applications, one of the first steps is
to annotate the data, a process in which important elements of the
signal are marked as such. This can be performed either manually

by a human domain expert, or automatically with a bootstrap-
style algorithm. In addition to the EEG data itself, we are releasing
a collection of annotations which may be downloaded separately
if they are of interest to the user. The annotations contain the start
and stop time and an event label and are specific to each channel.
Six classes of events are included: (1) spike and/or sharp waves
(SPSW), (2) periodic lateralized epileptiform discharges (PLED),
and (3) generalized periodic epileptiform discharges (GPED).

SPSW events are epileptiform transients that are typically
observed in patients with epilepsy. PLED events are indicative of
EEG abnormalities and often manifest themselves with repetitive
spike or sharp wave discharges that can be focal or lateralized over
one hemisphere. These signals display quasi-periodic behavior.
GPED events are similar to PLEDs, and manifest themselves as
periodic short-interval diffuse discharges, periodic long-interval
diffuse discharges and suppression-burst patterns according to
the interval between the discharges. Triphasic waves, which
manifest themselves as diffuse and bilaterally synchronous spikes
with bifrontal predominance, typically at a rate of 1–2Hz, are also
included in this class.

Three events are used to model background noise: (1) artifacts
(ARTF) are recorded electrical activity that is not of cerebral
origin, such as those due to the equipment, patient behavior or
the environment; (2) eye movement (EYEM) are common events
that can often be confused with a spike; (3) background (BCKG)
is used for all other signals.

These six classes (three signal classes and three noise classes)
were arrived at through several iterations of a study conducted
with Temple University Hospital neurologists. Automatic
labeling of these events allows a neurologist to rapidly search
long-term EEG recordings for anomalous behavior. However,
there are many more annotations that need to be developed for
this data. For example, we are currently developing technology
to automatically annotate seizures. There are many other events
of interest that need annotation (e.g., sleep states). We expect
to be continually enhancing the value of the TUH EEG
Corpus.
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