
ORIGINAL RESEARCH
published: 18 May 2016

doi: 10.3389/fnins.2016.00206

Frontiers in Neuroscience | www.frontiersin.org 1 May 2016 | Volume 10 | Article 206

Edited by:

Don Kulasiri,

Lincoln University, New Zealand

Reviewed by:

Céline Kuttler,

Université de Lille, France

Yoshiyuki Asai,

Okinawa Institute of Science and

Technology, Japan

*Correspondence:

David B. Kastner

david.kastner2@ucsf.edu

†
Present Address:

David B. Kastner,

Department of Psychiatry, University

of California, San Francisco, CA, USA

‡
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Neuroscience

Received: 14 December 2015

Accepted: 25 April 2016

Published: 18 May 2016

Citation:

Kastner DB, Schwalger T, Ziegler L

and Gerstner W (2016) A Model of

Synaptic Reconsolidation.

Front. Neurosci. 10:206.

doi: 10.3389/fnins.2016.00206

A Model of Synaptic Reconsolidation
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Reconsolidation of memories has mostly been studied at the behavioral and molecular

level. Here, we put forward a simple extension of existing computational models

of synaptic consolidation to capture hippocampal slice experiments that have

been interpreted as reconsolidation at the synaptic level. The model implements

reconsolidation through stabilization of consolidated synapses by stabilizing entities

combined with an activity-dependent reservoir of stabilizing entities that are immune to

protein synthesis inhibition (PSI). We derive a reduced version of our model to explore the

conditions under which synaptic reconsolidation does or does not occur, often referred

to as the boundary conditions of reconsolidation. We find that our computational model

of synaptic reconsolidation displays complex boundary conditions. Our results suggest

that a limited resource of hypothetical stabilizing molecules or complexes, which may be

implemented by protein phosphorylation or different receptor subtypes, can underlie the

phenomenon of synaptic reconsolidation.
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INTRODUCTION

Reconsolidation describes a process for the alteration of memories, and highlights the dynamic
nature of information processing and storage in the brain. Reconsolidation represents the
phenomenon that recently triggered memories are susceptible to degradation whereas memories
that have not been retrieved are spared from degradation (Nader et al., 2000). Research has shown
reconsolidation to be a general phenomenon, occurring in a wide array of species, including
humans (Kroes et al., 2014), and a diverse set of brain regions (Besnard et al., 2012), and has
exposed various synaptic and molecular components underlying reconsolidation (Tronson and
Taylor, 2007). However, scant evidence exists as to the nature of the circuit and cellular level
phenomenon of reconsolidation, as opposed to the phenomenon of consolidation—the initial
storage of a memory—for which a vast literature exists based on slice electrophysiology (Redondo
and Morris, 2011).

Recent reviews (Nader and Hardt, 2009; Besnard et al., 2012) have highlighted the potential
link of behavioral reconsolidation to experiments on long-term potentiation (LTP) in hippocampal
slices. To make that link they cited an elegant set of experiments (Fonseca et al., 2006a) that caused
the degradation of potentiated synapses through the interaction of stimulation and PSI.

Although cognitive and conceptual models have elucidated functional roles for reconsolidation
(Blumenfeld et al., 2006; Siegelmann, 2008; Osan et al., 2011; Nowicki et al., 2013), and a simplified
molecular model has been proposed to explain some aspects of reconsolidation (Zhang et al., 2010),
synaptic models of reconsolidation have been lacking. Here we extend models of LTP to capture
the results of Fonseca et al. (2006a), and simulate a process akin to reconsolidation in spiking leaky
integrate and fire neurons.
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Computational models of consolidation involve a cascade
of different processes acting on different time scales (Fusi
et al., 2005). Consolidation models have been formulated at the
level of transitions between abstract states (Fusi et al., 2005;
Barrett et al., 2009) or as extensions to models of spike-timing
dependent plasticity (Gerstner et al., 1996; Song et al., 2000) for
induction of plasticity so as to include the first steps of synaptic
stabilization (Brader et al., 2007; Clopath et al., 2008; Ziegler
et al., 2015). The model presented here adds two features to
existing models of consolidation: first, a stabilization process at
each potentiated synapse, and second, an activity-dependent pool
of hypothetical stabilizing entities from which all synapses within
a single neuron draw upon for stabilization. The dynamics of the
stabilizing entities, established by state transitions between bound
and unbound states, determine when reconsolidation occurs,
and form the substrate for the so-called boundary conditions
characteristic of behavioral reconsolidation. A particular focus
of our study has been put on the role of PSI during synaptic
reconsolidation. We match our model to existing data using
high-frequency stimulation (HFS) to produce LTP of synapses,
and discuss the need for multiple, interacting, activity-dependent
processes in memory formation.

MATERIALS AND METHODS

General Setup
We consider a postsynaptic neuron that receives input from N
presynaptic neurons. The N synapses between the presynaptic
ensemble and the postsynaptic target are subject to synaptic
plasticity and consolidation, i.e., activity-dependent changes
of the synaptic efficacies and slower internal synaptic states.
Specifically, we consider two models of synaptic consolidation
(Barrett et al., 2009; Ziegler et al., 2015), that reproduce a range
of experimental data on synaptic tagging and consolidation in
the hippocampus (see “Write-protected model” and “State-based
model” below), but the method could also be applied to other
models (e.g., Brader et al., 2007).

In the following, we put forward a generic extension of such
models that endows synapses with synaptic reconsolidation-
like dynamics and yields a possible explanation for the slice
experiments of Fonseca et al. (2006a). Toward that end, we
exploit the fact that synaptic consolidation models work on
different time scales (Fusi et al., 2005). We require that the basic
synapse model that we want to extend possesses variables on at
least two different time scales. First, we assume that the synapse
model exhibits a variable IAj that reflects the recent coactivity of

pre- and postsynaptic neurons at synapse j. This activity-related
variable picks up correlations between pre- and postsynaptic
firing and might result from a Hebbian learning rule, such as
the triplet spike-timing dependent plasticity (STDP) rule (Pfister
andGerstner, 2006) discussed below. In our stimulation protocol,
IAj reflects the presence of strong extracellular stimulation of

presynaptic neurons j because such stimulation is known to cause
an increase in the coactivation of pre- and postsynaptic neurons.
Second, we assume that the slowest timescale of the synaptic
model is characterized by a variable zj that represents the state

of consolidation at synapse j. We can assume that this variable is
normalized such that a positive value, zj > 0, signifies that the
synapse is in a consolidated, “strong” state, whereas a negative
value indicates that the synapse is not consolidated, or in a “weak”
state. In the following, a consolidated synapse will be also referred
to as a “big” synapse.

Stabilizing Entity
A consolidated synapse interacts with hypothetical stabilizing
entities, A, that are synthesized in the postsynaptic cell
(Figures 1A,B). The stabilizing entities A could be proteins
or more complex compounds. These entities can bind to any
unbound “big” synapse Synj (zj > 0), and thereby stabilize
its “big” state. The rate at which this synapse gets bound is
k1NAH

(

zj
)

, where k1 is the constant binding rate per stabilizing
entity; NA is the number of available entities A that are not
yet bound to a synapse; and H (x) denotes the Heaviside step
function with H (x) = 1 for x ≥ 0 and zero otherwise. In order
to model the experimental results of Fonseca et al. (2006a), we
need to specify how protein-synthesis inhibition is implemented
in our model. We assume that during PSI, the synthesis of A is
blocked and the stabilizing entities degrade rapidly compared to
the relatively long time scale on which pharmacological PSI is
applied. This time-scale separation essentially amounts to setting
the number NA of available unbound entities to zero during
application of PSI.

To capture the combined effect of PSI duration and low-
frequency stimulation (LFS) reported in Fonseca et al. (2006a),
we posit activity-dependent unbinding of stabilizing entities from
stable synapses. After unbinding, the stabilizing entity can exist in
one of two different forms: the original form A, characterized by
a high rate of degradation, and an immune form A∗, which does
not degrade on the time scale during which PSI is applied. In this
way, the pool of immune entities A∗ is resistant against PSI, and
forms an effective reservoir of stabilizing entities for consolidated
synapses. Like the original form, the immune form can bind to
an unbound big synapse, and thereby stabilize the synapse even
in the presence of PSI. The binding rate of a big synapse with A∗

is k3NA∗H
(

zj
)

, where k3 is a constant rate andNA∗ is the number
of A∗ entities.

To capture the effect of LFS on the stability of consolidation,
as reported in Fonseca et al. (2006a), we made the growth of
the immune pool activity-dependent. This can be achieved by

activity-dependent unbinding rates, k
j
2 and k

j
4, corresponding to

the unbinding of a bound synapse into the forms A and A∗,
respectively. Specifically, LFS yields an increased synapse specific
input, IAj , which in turn results in increased unbinding rates. This

is modeled by the logistic function

k
j
α

(

IAj

)

= k0 +
m

1+ exp

(

Iα0 − IAj
r

) , (1)

α = 2, 4. In Equation (1), k0 is the minimal unbinding rate,
m + k0 is the maximal unbinding rate, r is the rate of increase
of the unbinding rate, and Iα0 is the input value that leads to half

maximal unbinding (the value is different for k
j
2 and k

j
4). Taken
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FIGURE 1 | Write-protected model extended with dynamic stabilization captures reconsolidation. (A) The write-protected model simulates the dynamics of

synapses as they transition from low weight, low tag, and small scaffold (left) to their big, consolidated state (middle). The write-protected model contains multiple

interacting steps, indicated by the broken arrows linking the small synapse to the big synapse. To extend the write-protected model to capture reconsolidation we

added an additional step (right), whereby a consolidated synapse binds to a stabilizing entity (green rectangle), identified as A and A* (see Equation 2), and only when

it is bound can it remain in the consolidated state. (B) Stabilization (destabilization) is a process in which a synapse binds (unbinds) a stabilizing entity, A and A* (see

Equation 2). An unstable big synapse (left) can bind a stabilizer coming from two different pools, a PSI susceptible pool (green rectangles, left, A from Equation 2), or

from a PSI immune pool (green rectangles with asterisk, right, A* from Equation 2). A stabilized synapse (right) is more likely to release the stabilizer into the PSI

immune pool (solid arrow) than into the PSI susceptible pool. All synapses on the postsynaptic neuron, which is modeled as a leaky integrate-and-fire neuron, use the

same pool of stabilizing entities. For (C–F) the upper part of the figure shows a cartooned version of the stimulation. All paradigms were matched to Fonseca et al.

(2006a). Low-frequency stimulation, as indicated by the pulse-train on the top of each panel, was 0.1Hz. HFS, to induce LTP, occurred where indicated by the arrow.

For each panel there are two curves, one in blue (often covered by the red, most easily seen in (D), which shows the response of the model without PSI, and one in

red which shows the response of the model with PSI. The red bar indicates the timing and duration of the PSI. The output of the model is the average weight across

all synapses, and this is averaged across ten different simulated neurons. For (C–F) the width of the line indicates s.e.m.
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together, our model for synaptic stabilization can be summarized
by the following reaction scheme

A+ Synj

H(zj)k1

−−−−⇀↽−−−−
k
j
2

(

IAj

)

(ASyn)j

k
j
4

(

IAj

)

−−−−−⇀↽−−−−−
H(zj)k3

A∗ + Synj. (2)

A big synapses (i.e., zj > 0) will eventually decay and transition
to a value zj < 0 if it is not bound to a stabilizing entity,
see “extended write-protected model” and “extended state-
based model” below. In this way, the model can be seen as
an activity-dependent creation of a PSI immune reservoir of
entities A∗ that are useful for the stabilization of consolidated
synapses.

The total number of stabilizing entities available in the
postsynaptic cells is NA,tot = NA + NA∗ + NASyn. In the
absence of PSI, this number is constant. For simplicity, we also
assume that before and after PSI this number remains the same,
which in a biological system could be realized by a homeostatic
mechanism. However, this assumption is not essential for the
main mechanism of synaptic stabilization and creation of the
reservoir. For the stochastic simulation of the NA,tot stabilizers
we do not need to keep track of each stabilizing entity but
only the total numbers NA and NA∗ , respectively, as well as
the state of each synapse. In each time step of length 1t,
we compute the binding and unbinding of all synapses in a
random sequence. If a synapse was unbound, we first calculate
the probability pbindj =

(

k1NA + k3NA∗

)

H
(

zj
)

1t that the

synapse binds to a stabilizing entity. A binding event takes place
if a uniform random number R1j ∈ [0, 1) is smaller than pbindj .

If binding occurs, NA is decremented by 1 if a second random
number R2j ∈ [0, 1) is smaller than k1NA/

(

k1NA + k3NA∗

)

;

otherwise NA∗ is decremented by 1. An analogous scheme with
independent random numbers is used for unbinding. If a synapse
is already bound, it releases the stabilizing entity with probability

punbindj =
(

k
j
2 + k

j
4

)

1t where k
j
2 and k

j
4 depend upon the

stimulation IAj according to Equation 1. If unbinding occurs, NA

is incremented by 1 with probability k
j
2/
(

k
j
2 + k

j
4

)

; otherwise

NA∗ is incremented by 1.

See Table 1 for a description of all the parameters used.

Reduced Reconsolidation Model
To understand the dynamics of synaptic reconsolidation, we
compare simulations of the full stochastic model with an
effective model of the stabilizing entities (A and A∗) inside the
postsynaptic cell. Besides providing analytical insight into the
reservoir dynamics, the reduced model also allows us to rapidly
explore the parameter space for cellular reconsolidation so as
to trace the “boundary conditions” observed in experimental
data. The reduced model is derived as follows: first, we note that
it is sufficient to study the mean of the number of stabilizers,
nA = 〈NA〉 and nA∗ = 〈NA∗〉, because the fluctuations around
the mean are not essential for the reconsolidation mechanism.
Second, we approximate the synapse specific unbinding rates

k
j
2 and k

j
4 by average non-specific rates k̂2 and k̂4, respectively.

Those non-specific rates still depend upon the input IA = IAj
(assumed to be the same for all synapses), but no longer depend
upon the synapse index. This allows us to obtain a reduced
two-dimensional description for the mean number of stabilized
synapses and the mean reservoir size,

d

dt
nASyn = −

(

k̂4 + k̂2

)

nASyn +
(

k1nA + k3nA∗

)

(

Nbig − nASyn
)

(3)

d

dt
nA∗ = −k3nA∗

(

Nbig − nASyn
)

+ k̂4nASyn. (4)

Here, nA = NA,tot − nASyn − nA∗ , and Nbig =
∑N

j= 1H
(

zj
)

is

the number of big, or consolidated, synapses on the postsynaptic
neuron. Equations 3 and 4 are approximations because, in

general, k̂2nASyn 6=
∑

j k
j
2p

j
ASyn since there are correlations

between the unbinding rate and the probability p
j
ASyn of synapse

j being in the bound state. The same holds true for k̂4. Numerical
simulations verified that these approximations are accurate
enough to predict the evolutions of the full model. Equations 3
and 4 correspond to the simplified reaction

A+ Syn
k1

−−−−⇀↽−−−−
k̂2(IA)

(ASyn)
k̂4(I

A)
−−−−⇀↽−−−−

k3

A∗ + Syn (5)

of Nbig synapses with NA,tot stabilizers. The unbinding rates k̂2

and k̂4 are given by Equation 2 with the global activity IA (t)
modeled as

τA İ
A = −IA + ω

∑

k

δ (t − tk). (6)

Here, ω is a fixed increase that occurs with each pulse of
stimulation during LFS captured by the sum of δ functions.

Dynamics of the Reservoir
The number NA∗ of stabilizing entities that is immune to
PSI is of particular interest and is called the reservoir in the
following. Equations 3 and 4 can be used to quantitatively
understand the evolution of the reservoir, as illustrated in
Figures 2, 3. For simplicity, we initialize the dynamics with
NA∗ = 0 for the simulation of the full model, and with
nA∗ = 0 for the reduced model, such that before LTP
induction there are no stabilizing entities in the reservoir
yet.

Let us first consider the case with intact protein synthesis.
After LTP induction, synapses in the “big” state rapidly bind

to a stabilizing entity, since k1nA >>
(

k̂4 + k̂2

)

nASyn

(Equation 3), such that the number of bound synapses nASyn(t)
follows the comparatively slow dynamics of Nbig. More formally,
Equation 3 predicts under the stated assumptions nASyn =

Nbig. Equation 4 then implies that the reservoir obeys the

simple dynamics dnA∗/dt = k̂4Nbig, which describes the
rising phase of the reservoir in Figures 2B, 3C. In particular,
it explains the decrease of the slope after removing the
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TABLE 1 | Model parameters.

WRITE-PROTECTED MODEL

Neuron model

Membrane Threshold Connections

Vexc 0mV τthr 2 ms τampa 5 ms τadapt 250ms

Vrest −70mV ϑ rest −50 mV τnmda 100 ms gspike 10

V inh −80mV ϑspike 100 mV β 0.5 w− 0.05

τm 20 ms kw 3

Synaptic model

Synaptic state Plasticity induction

τw 200 s awT/Tz 3.5 A− 2 × 10−4 kup 1 s−1

τT 200 s aTw 1.3 A+ 5 × 10−4 kdown 1/2000 s−1

τz 200 s azT 0.95 τx 16.8 ms θ 0.01

kw 3 τγ 600 s τy 33.7 ms

σ 10−2 s−1/2 ϑγ 0.37 τtriplet 114 ms

STATE-BASED MODEL

Transition rates

α 0.017min−1 β 0.067min−1 τe 0.017 min−1 τl 0.01 min−1 τr 1 × 10−4 min−1

RECONSOLIDATION MODEL

Full model Reduced model

ab 1 k0 5 × 10−4 s−1 (wp) I20
5.7 × 10−2 (wp) ϕ 72 s

k1 1/10,000 s−1 (wp) 0.02 s−1 (sb) 5.8 × 10−2 (sb) ϑbig −80 s−1

1/3,000 s−1 (sb) m 2 × 10−3 s−1 (wp) I40
4.5 × 10−2 η 10 s

k3 1/1,750 s−1 (wp) 0.25 s−1 (sb) NA,tot 2 × 104 ω 5.4 s

1/30 s−1 (sb) r 3 × 10−3 τA 150 s

For the reconsolidation extension different values were used for some of the parameters between the write-protected (wp) and state-based (sb) model, as indicated.

stimulation: in that case k̂4 goes to its baseline value k0 so
that the increase is slower. Note that the initial increase in
the slope is due to the fast rise of the number of consolidated
synapses Nbig from near zero to its constant maximal value
(Figure 3B).

In contrast, in the case of PSI, the pool of non-immune
stabilizers degrades immediately. As a consequence, we cannot
exactly replace nASyn (t) by the number of consolidated synapses
anymore. Setting nA = 0, Equations 3 and 4 can be combined

to dnA∗/dt = −k̂2nASyn − dnASyn/dt . If the reservoir is
not yet depleted (nA∗ > 0), nASyn is roughly constant and we

find that the reservoir decays like dnA∗/dt = −k̂2nASyn (in
that case, the number of stabilized synapses nASyn is still roughly

given by Nbig). The activity dependence of k̂2 thus explains the
effect of stimulation on the decrease of the reservoir during PSI

(Figure 2B): without stimulations k̂2 = k0, whereas k̂2 > k0
during stimulation leading to a faster decay.

We stated above that with intact protein synthesis Equation
3 lets us deduce that nASyn = Nbig, i.e., each big synapse is in
contact with a stabilizing entity. For rapid changes, however, this
is not correct.Moreover, if not enough stabilizers are available not

all of the big synapses can be stabilized, and Nbig will itself not be
constant. Empirically, the decay ofNbig follows that of nASyn with
a small delay:

dNbig

dt
=

1nASyn (t − ϕ)

1t
H

(

ϑbig −
1nASyn (t − ϕ)

1t

)

, (7)

where ϕ is the temporal delay. The negative change in nASyn has
to be steeper than a (negative) threshold ϑbig for it to manifest
itself in a decay in Nbig, and

1nASyn (t)

1t
=

nASyn (t + η) − nASyn (t)

η
, (8)

where η is a time window over which the change in nASyn is
computed.

The numerical values of ϕ and η were determined empirically.
See Table 1 for a description of all the parameters used.

Neuron Model
A postsynaptic neuron is connected to a random number of
presynaptic Poisson neurons drawn from a binomial distribution

Frontiers in Neuroscience | www.frontiersin.org 5 May 2016 | Volume 10 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kastner et al. A Model of Synaptic Reconsolidation

FIGURE 2 | Stabilization of the consolidated synaptic state and

reservoir dynamics. (A) Weight (orange), scaffold (black), and binding state

(green) of a single synapse in the extended write-protected model (see

Materials and Methods section). HFS, to induce LTP, occurs at the point

indicated by the black arrow. Green line indicates if the synapse is bound by a

stabilizing entity (value of 1), or unbound (value of 0). At around 3 h into the

simulation (green arrow) the synapse was artificially set to be “unbound” and

kept “unbound” thereafter. This destabilizes the scaffold, causing it to degrade

to its low state, which then eventually forces the tag and the weight to decay

to their low states as well. Inset circle shows the magnified time course of the

binding state of the synapse. While the synapse is big, unbinding of a stabilizer

is followed, within a few seconds, by the binding of the same or another

stabilizing entity. (B) Evolution of the reservoir of PSI immune stabilizers in

response to different stimulation paradigms (shown at the top), corresponding

to Figures 1C–E, indicated by the lower case letters next to the stimulations.

The reservoir grows until the initiation of PSI, whose duration is indicated by

the red bar. The reservoir grows faster in the presence of activity. Once protein

synthesis is inhibited, the reservoir decays, decaying faster in the presence of

activity. If during PSI the reservoir drops to zero, consolidation degrades

because no stabilizing entities are available to stabilize the scaffolds of the

consolidated synapses, similar to the scenario depicted in (A). The time axis is

magnified compared to Figure 1 (3 vs. 10 h) to highlight the differences in the

reservoir dynamics that underlie the different conditions. The width of the line

indicates s.e.m averaged over 10 repeats.

with a mean of 200. The variability in the number of presynaptic
neurons is included to ensure that our results were not dependent
upon an exact number of presynaptic neurons, and can occur
over a range of connectivity.

The postsynaptic neuron is modeled as a leaky integrate-
and-fire (LIF) neuron with conductance based synapses and
adaptation (Gerstner et al., 2014). The membrane potential of the
LIF neuron evolves according to the equation:

τm
dV

dt
=
(

Vrest − V
)

+ gexc (t)
(

Vexc − V
)

+ gadapt (t)
(

Vadapt − V
)

(9)

where gexc and Vexc (gadapt and Vadapt) are the excitatory
(adapting) conductance and reversal potential respectively. A
spike is emitted when the potential reaches the threshold ϑ . After
a spike, V is reset to Vrest and ϑ is set to ϑ spike to implement
refractoriness. The threshold then relaxes back to its rest value
according to

τthr
dϑ

dt
= ϑ rest − ϑ . (10)

The excitatory conductance, gexc, has a fast and a slow
component, representing α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) conductance, and
N-methyl-D-aspartate (NMDA) conductance, respectively. The
two components are combined as gexc = βgampa+(1− β) gnmda,
where β is the relative contribution of AMPA. The time course
of the conductance of the AMPA receptor channel is given a by a
first order low-pass filter

dgampa

dt
= −

gampa

τampa
+
∑

j

1gjSj (t), (11)

where 1gj is the plastic synaptic weight of the connection from
presynaptic neuron j, and Sj (t) is the spike train arriving from

the presynaptic neuron defined as Sj (t) =
∑

k δ
(

t − tkj

)

, with

tkj being the kth spike from the presynaptic neuron j and δ

the Dirac δ-function. The NMDA receptor channel undergoes a
second-order low-pass filtering, such that

τnmda
dgnmda

dt
= −gnmda + gampa. (12)

The voltage dependence of NMDA receptors is neglected for the
sake of computational efficiency.

For the simulations presented here, there are no inhibitory
presynaptic neurons, and therefore no γ-amionbutyric acid
(GABA) receptor simulation. However, the postsynaptic neuron
has an adaptive component with spike-triggered self inhibition,
where the adaptation conductance increases by an amount, gspike,
with each spike of the postsynaptic neuron, otherwise relaxing
exponentially to zero as described by

dgadapt

dt
= −

gadapt

τadapt
+ gspikeS (t) , (13)

where S (t) =
∑

k δ
(

t − tk
)

is the spike train of the postsynaptic
neuron.

The initial conditions for the neuron model were: V (0) =

Vrest , ϑ (0) = ϑ rest , and all conductances (gampa (0), gnmda (0),
and gadapt (0)) were initialized to 0. See Table 1 for a description
of all the parameters used.

Stimulation Protocols
The low frequency stimulation (LFS) is modeled by prescribed
spiking activity of the presynaptic neurons. During LFS the
presynaptic spike trains are jittered versions of a periodic spike
train with rate 0.1Hz, meaning that a spike shifts around the
periodic time t0 by a delay drawn from a Gaussian distribution
with mean of 0 and a standard deviation of 3ms. HFS occurs
in the same manner as LFS, but the frequency of stimulation is
100Hz for 60 s.

Extended Write-Protected Model
We extend the model of Ziegler et al. (2015) to incorporate
reconsolidation. In that model a set of 3 interacting bistable
equations governs the state of each synapse. All three variables
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FIGURE 3 | Boundary conditions for reconsolidation mapped using a

reduced model. The reduced model (black) approximates the activity

averaged across all synapses (A), the number of consolidated synapses (B),

the dynamics of the reservoir (C), and the number of stabilized synapses (D) of

the detailed write-protected model (green). The stimulation protocol is shown

above the plots for (A,B), a red bar shows the duration and timing of the PSI,

and an arrow indicates the time of the HFS. For (A,B) the gray line shows the

60min initiation phase, as simulated with the detailed model. The prediction of

the reduced model only begins with the black line after 60min of simulation.

For (A–D) the width of the line indicates s.e.m. (E) A range of conditions to

map out when reconsolidation would and would not occur—the “boundary

conditions” to reconsolidation. All simulations began with a period of 40min of

background 0.1Hz stimulation with a HFS at 20 min to induce LTP, as shown

to the left of the dotted line. Arrow indicates the time of the HFS. We varied the

duration of the following period with no stimulation and the duration of PSI,

with examples shown to the right of the dotted line. Stimulation duration and

PSI ranged from 0 s to 2.5 h. Both the stimulation and PSI were centered at

150min. (F) Remaining fraction of consolidated synapses (color code, see

scale) at the end of the stimulation protocol relative to the maximal number of

consolidated synapses after 60min for all combinations of different durations

of stimulation (vertical axis) and PSI (horizontal axis).

follow the same bistable dynamics τxẋ = f (x) = − dU
dx

with

U (x) = x4

4 − x2

2 . This equation has two stable fixed points,
x = +1 and x = −1. The first equation determines the weight of
the synapse,

d

dt
wj =

1

τw
f
(

wj

)

+
aTw

4τw

(

1− Gj (t)
) (

Tj − wj

)

+ σξwj (t) + Iwj .

(14)
The external input Iwj , defined below in Equation 23, has units

of a stimulation frequency (1/s). The synaptic conductance is
determined by 1gj = g0

[

w− +
(

wj + 1
)

(w+ − w−)/2
]

, where
w+ = kww−. The second equation determines the state of the tag

at the synapse,

d

dt
Tj =

1

τT
f
(

Tj

)

+
awT

4τT
Gj (t)

(

wj − Tj

)

+
azT

4τT

(

1− p (t)
) (

zj − Tj

)

+ σξTj (t) . (15)

And the third equation determines the state of the scaffold of the
synapse,

d

dt
zj =

1

τz
f
(

zj
)

+
aTz

4τz
p (t)

(

Tj − zj
)

+
ab

τz
H
(

zj
) (

bj − 1
)

+σξ zj (t) .

(16)
For all of these equations f (x) = −x (x− 1) (x+ 1), which is the
derivative of −U, and the terms ξj(t) are independent Gaussian

white noise processes with the properties
〈

ξα
j (t)

〉

= 0 and

〈

ξα
j (t) ξ

β
i

(

t′
)

〉

= δ
(

t − t′
)

· δαβ · δij. (17)

The coupling parameter terms aTw, awT , azT , and aTz determine
the strength of the interactions between the variables. The gating
variable Gj couples the weight and the tag, and depends upon a
low-pass filtered version of the plasticity-induction stimulus, I

γ
j

(with units 1/s as described below in Equation 24), as follows:

Gj = H
(

γj − ϑγ

)

,

τγ γ̇j = −γj + κI
γ
j . (18)

That is, Gj switches if γj surpasses the threshold ϑγ . The factor
κ = 1s takes care of the correct units in the last equation.

The second gating variable p couples the tag and the scaffold
and represents the availability or concentration of plasticity
related products in the postsynaptic neuron. It is dependent upon
an external reward or novelty signal, such as dopamine or other
neuromodulators, in the following way:

d

dt
p = D (t) kup

(

1− p
)

− kdownp. (19)

The constants kup and kdown determine the sensitivity of p to
the dopamine signal D (t) and the decay rate of p in the absence
of dopamine, respectively. The dopamine signal in our model is
instantaneously switched from 0 to 1 for 60 s, coincident with a
HFS stimulation used to induce LTP.

The input dependent terms Iwj and I
γ
j are based upon the same

standard Hebbian learning rule, but differ in their details. The
triplet spike-timing dependent plasticity (STDP) rule with the
original set of reduced parameters (Pfister and Gerstner, 2006)
was used to characterize Hebbian learning. In the triplet rule, LTP
induction

I+
triplet

= A+x+j (t) ytriplet (t − ε) S (t) (20)

is driven at the moment of postsynaptic spiking, S (t), and

proportional to the two ‘traces’ x+j (t) and y
triplet
j (t) left by earlier
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pre- or postsynaptic spikes. ε is an infinitesimally small time step.
LTD induction

I−
triplet

= A−y− (t) Sj (t) (21)

is independent from LTP inductions and occurs in the model at
the moment of presynaptic spikes Sj (t) and proportional to trace

y−i (t) left by earlier postsynaptic spikes. The traces are given by

dξα
k

dt
= −

ξα
k

τα

+ Sk (t) , (22)

where ξα ∈
{

x+, ytriplet, y−
}

and τα is the respective decay

constant. Using the above formulation of the triplet rule as the
foundation (Ziegler et al., 2015), the drive for weight induction is

Iwj = I+
triplet

(

1+
[

zj − wj

]

+

)

(

1− wj

)

− I−
triplet

(

1+
[

wj − zj
]

+

)

(

1+ wj

)

, (23)

where [x]+ = xH (x) denotes linear rectification. The input
dependence of the coupling between weight and tag-related
variables is

I
γ
j =

[

I+
triplet

·H
(

wj − zj
)

+ I−
triplet

·H
(

zj − wj

)

]

(

1− γj
)

.

(24)
In contrast to the original model by Ziegler et al., the equation for
the consolidation variable zj, Equation 16, includes an additional
coupling term with strength ab ≥ 0. This term destabilizes the
consolidated state when the synapse is not bound to a stabilizing
entity. To that end, we introduced a binary variable bj that
is unity if the synapse is bound and zero if it is unbound. If
bj = 1 the novel term vanishes and Equation 16 becomes
identical to that in Ziegler et al. (2015). However, if bj =

0 the novel term tilts the potential to the left such that the
right potential well (corresponding to the consolidated state)
becomes shallower or even vanishes, thereby destabilizing the
consolidation. The Heaviside function in Equation 16 ensures
that the destabilization is only effective when the synapse is in
the consolidated state.

Transitions between bj = 0 and bj = 1 (binding and
unbinding) occur according to the kinetics given by Equation 2.

The transition rates for unbinding k
j
2 and k

j
4 (Equation 1) depend

on the co-activity of pre- and postsynaptic neurons IAj . In our

model this co-activity is based upon the triplet STDP rule (see
Equations 20 and 21, above), such that

τA
dIAj

dt
= −IAj + I+

triplet
+ I−

triplet
, (25)

where τA is the decay constant.
The delayed decay of consolidation discussed in the last

paragraphs of the “Results” section, is achieved by an activity-
dependent intensity of the noise associated with the weight

(Equations 14 and 15) as follows:

d

dt
wj =

1

τw
f
(

wj

)

+
aTw

4τw

(

1− Gj (t)
) (

Tj − wj

)

+ H
(

IAj − θ
)

σξwj (t) + Iwj (26)

d

dt
Tj =

1

τT
f
(

Tj

)

+
awT

4τT
Gj (t)

(

wj − Tj

)

+
azT

4τT

(

1− p (t)
) (

zj − Tj

)

+H
(

IAj − θ
)

σξTj (t) .

(27)

This ensures that the noise is bigger in the presence of activity (as
long as the activity is greater than θ).

One third of synapses were initialized to their big,
consolidated, state, meaning wj (0) = 1, Tj (0) = 1, and
zj (0) = 1, the remaining synapses were initialized as
unconsolidated, meaning wj (0) = −1, Tj (0) = −1, and
zj (0) = −1. All of the synapses that were initially consolidated
were initialized as bound by stabilizing entities (i.e., initialized in
the ASyn state). In the initial state γj (0) = 0, and all of the STDP

parameters (x+j (0), y
triplet
j , and y− (0)) were initialized to 0. See

Table 1 for a description of all the parameters used.

Extended State Based Model
We extend the model of Barrett et al. (2009) to capture
reconsolidation. Each synapse exists in one of 7 different states
(the original model only had 6 states). States 1–3 correspond,
with differing amounts of stability, to a weak synapse, while states
4–7 correspond, with differing amounts of stability, to a strong
synapse (see Figure 4A). We assume 1000 synapses in the model.
Initially 800 are in the weak state and 200 are in the strong state.
The relative field excitatory post-synaptic potential is

% fEPSP (t) =
1

1200

(

3
∑

i= 1

Ni (t) +

6
∑

i= 4

2Ni (t)

)

× 100%, (28)

where Ni (t) are the number of synapses that occupy state i at
time t. Because the strong states carry twice the weight of the
weak states, the scaling factor 1

1200 is due to the fact that initially
80% of the 1000 synapses are weak, so that the division by 800×
1+ 200× 2 ensures an initial value of 100%.

The state-based model works through the changes in the
transition rates between the seven states in response to different
stimulus paradigms, such as HFS to cause LTP, or LFS to cause
long-term depression (LTD). In the absence of any LTP or LTD
inducing stimulus, the weak and strong basal states (states 3 and
4) transition back and forth by a rate of α (weak to strong) and
β (strong to weak). The intermediately stable weak and strong
states (states 2 and 5) both transition back to the basal states with
a fixed rate of τe, and the stable weak and strong states (states 1
and 6) both transition to the basal states with a fixed rate of τl.

The original paper (Barrett et al., 2009) used one burst of HFS
to induce early LTP, and 3 bursts of HFS to induce consolidation
and late LTP. Here we follow the experimental paradigm of
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FIGURE 4 | State-based model extended with dynamic stabilization captures reconsolidation. (A) The state-based model describes each synapse as being

in one of six states, three of which describe weak weights, and three of which describe strong weights. The transitions between the states can either be constant

(solid arrows) or dynamic (dashed arrows). The dynamics of the transitions change during a given stimulation paradigm to cause different forms of LTP or LTD. To

extend the model we added a 7th state. State 6 and 7 are in dynamic equilibrium with the binding and unbinding of a stabilizing entity. For the extended model the

transition from state 6 to state 3 is relatively fast, while state 7 has a very slow decay time. (B–E) are identical conditions as in Figures 1C–F, with the same layout,

and the width of the line indicates s.e.m averaged over 10 repeats.

Fonseca et al. (2006a), and only use a single burst of HFS for
consolidation and to induce late LTP.

Following HFS, α becomes instantaneously very large (α (t) =
1hr−1 + δ (t − t0) for stimulation at t = t0), moving all synapses
that are in the weak basal state to the strong basal state. The
rate from the strong basal state (state 4) to the intermediately
stable strong state (state 5) becomes non-zero, following the time
course:

p (t) =
t − t0

50min
exp {1− (t − t0)/10min }min−1. (29)

And the transition rate from the intermediately stable strong state
(state 5) to the stable strong state (state 6) becomes non-zero,
following the time course:

c (t) =
t − t0

30min
exp {1− (t − t0)/30min }min−1. (30)

The induction of LTD follows a similar pattern, just in response
to LFS; however, that part of the model was not relevant to this
study.
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The transition from state 6 to 7 occurs through the binding
of a stabilizer, and the transition back from state 7 to 6 occurs
through the unbinding of a stabilizer. The dynamics of the
stabilizer and its binding and unbinding was identical to that
described for the extended write protected model, just with
different values for some of the parameters. We selected a faster
decay rate for the transition from state 6 to state 4, τl, making
state 6 far less stable than in the original model. State 7 now has
the longest decay rate, τr , making it the most stable state.

Since the state based model does not have any activity
dependence, we used the averaged input values IA from the
reduced model, see Equation 25, at each point in time to
determine the unbinding rates.

See Table 1 for a description of all the parameters used.

Simulation Protocols
All simulations were run in Igor Pro (WaveMetrics). The leaky
integrate-and-fire neuron for the write protected model was
simulated with a time-step of 0.1ms, the synapse model with
the reconsolidation extension was simulated with a time step
of 100ms, and the state based model was simulated with a
time step of 1 s. We used the Euler method for the integration
of the deterministic neuron dynamics (Sections Neuron Model
and Stimulation Protocols), and we used the Euler-Maruyama
method for the integration of the stochastic differential equations
in Section Extended Write-Protected Model.

All of the code for the simulations has been
placed in a github repository, which can be found at
https://github.com/dbkastner/SynReconModel.git.

RESULTS

To model synaptic reconsolidation we took advantage of the
finding that the molecular machinery for reconsolidation is
distinct from that of consolidation (Taubenfeld et al., 2001;
Lee et al., 2004; Li et al., 2013). That allowed us to build
upon preexisting models for consolidation, rather than to
start from scratch and model both synaptic consolidation and
reconsolidation. Existing models of synaptic consolidation (Fusi
et al., 2005; Brader et al., 2007; Clopath et al., 2008; Barrett et al.,
2009; Ziegler et al., 2015) all describe layers of processes with
different time constants. The slowest of these time constants
is linked to consolidation. For example a recently described
model of synaptic consolidation—the write-protected model for
consolidation (Ziegler et al., 2015)—simulates three interacting
variables that describe the state of each synapse. The three
variables relate to the weight, the tag, and the scaffold of each
synapse (Figure 1A), in line with the synaptic tagging and
capture hypothesis of consolidation (Redondo andMorris, 2011).
A synapse with a “big” scaffold supports a large synaptic weight
via the placement of multiple AMPA receptors, and is therefore
interpreted as a “consolidated” synapse.

Experimentally, reconsolidation paradigms involve PSI
combined with activation of synapses. The synaptic activation
during reconsolidation paradigms is significantly weaker than
during an LTD protocol. However, once synapses in the write-
protected model reside in the consolidated state, the only way

to transition back to the unconsolidated state is in response to
a stimulation protocol for LTD. Therefore, this model has no
capacity to undergo reconsolidation since no amount of PSI
combined with activity that is insufficient to cause LTD would
cause its synapses to decay from a consolidated state. The same
observation holds for other models of consolidation (Fusi et al.,
2005; Brader et al., 2007; Clopath et al., 2008; Barrett et al., 2009),
none of which can capture reconsolidation, i.e., the degradation
of consolidation due to the combined action of PSI and weak
synaptic activity.

Extended Write-Protected Models
Captures Reconsolidation
We analyzed the results of Fonseca et al. (2006a) to determine
the essential components for a model of slice-based synaptic
reconsolidation. We found two necessary features: stabilization
of consolidated synapses, and an activity-dependent reservoir of
stabilizing entities that is immune to PSI. We implemented these
two features by positing a large pool of stabilizing entities inside
the postsynaptic cell, which are available to stabilize all of the cell’s
consolidated synapses. A stabilizing entity can reside in one of
three states (see Materials andMethods, Equation 2): it can either
be bound to an individual synapse, leading to the stabilization
of that synapse, or it can be in one of two distinct unbound
states. In the naïve unbound state, the number of available
stabilizing entities is maintained by protein synthesis and decays
rapidly during application of PSI. Therefore, the stabilization
of a synapse becomes protein-synthesis dependent. Stabilizing
entities that are in the modified unbound state, however, can
bind to a strong synapse and stabilize it even in the presence
of PSI. Thus, unbound stabilizers form two distinct pools—a
first pool that can be emptied by PSI, and a second pool where
entities are immune to PSI. In the following, the latter will be
referred to as the reservoir of immune entities, or simply the
reservoir (Figure 1B). Binding and unbinding rates characterize
the transitions between the three different states of stabilizing
entities. The rates for binding are high and independent of
activity, while the rates for unbinding (destabilization) are low
and activity dependent.

This simple model, combined with the write-protected
consolidation model reproduces the results of Fonseca et al.
(2006a), capturing slice-based reconsolidation in four different
stimulation paradigms (Figures 1C–F). The first two resemble
the initial description of the behavioral manifestation of
reconsolidation (Nader et al., 2000). For all paradigms, synapses
were stimulated with a low frequency stimulation of 0.1Hz,
as was done in the original set of experiments to monitor the
synaptic weights. Consolidation occurred in response to HFS
to induce LTP. Following HFS, the low frequency stimulation
continued for a brief time before stimulation ceased. After
60min without stimulation, PSI began. In the first paradigm,
no stimulation occurred during PSI (Figure 1C), while in the
second paradigm a period (20 min) of low frequency stimulation
occurred in the midst of the PSI (Figure 1D). Then in both
paradigms there was a time of no stimulation followed by a final
extended period of low frequency stimulation.
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In response to the first paradigm, where PSI occurred
alone without any stimulation, consolidation persisted in the
model throughout the entire duration of the experiment, and
was indistinguishable from the control condition without
PSI (Figure 1C). However, in the second paradigm, where
stimulation occurred during PSI, consolidation degraded
(Figure 1D). The degradation occurred with a delay and was
highly significant compared to control (p < 0.005).

The stimulation for the third paradigmwas almost identical to
that of the second paradigm except that the initial low frequency
stimulation continued for more than 1 h after LTP induction.
Consolidation persisted in response to this paradigm with and
without PSI (Figure 1E).

Finally, the fourth paradigm was the simplest, and most
comparable to standard experiments of slice-based consolidation.
This paradigm had continuous low frequency stimulation with an
extended period of PSI. Consolidation persisted in response to
this final paradigm, indistinguishable from the control condition
without PSI (Figure 1F).

The extended write-protected model works as follows: the
state of each synapse results from the interaction of three bistable
systems, which are related to the weight, tag, and scaffold. Once
the scaffold transitions from its “small” to its “big” state, it
supports the tagging-related and the weight-related variables to
also remain in their high state. This high state with “big” scaffold
corresponds to the consolidated state of the synapse. In our
extension of the model, the scaffold can remain “big” only if it
is bound to a stabilizing entity. If the scaffold remains unbound,
the consolidated “big” state is unstable and it will jump back to its
small state after some time (Figure 2A). As a consequence, the tag
and then the weight are in a metastable state, eventually decaying
back to their low states as well.

To understand the different behaviors of the model in
response to the different stimulus paradigms we need to track the
development of the reservoir of PSI immune stabilizing entities
(Figure 2B). When protein synthesis is intact the reservoir
grows after induction of LTP due to the persistent binding and
unbinding of stabilizing entities to “big” synapses. This leads
to a net flux of stabilizers into the reservoir. With activity the
reservoir grows faster than without activity; hence the longer the
low frequency stimulation the larger the reservoir. Once protein
synthesis is inhibited, the reservoir decays because some of the
immune entities are used for stabilizing those strong synapses
that are currently unbound. The decay is faster in the presence of
low frequency stimulation because of increased unbinding rates.
For a quantitative analysis of the reservoir dynamics, see the
Materials and Methods section.

The difference between the responses to the first stimulation
paradigm (Figure 1C) and the second (Figure 1D) is that without
the stimulation during the PSI the reservoir of immune entities
decays more slowly, so that the reservoir of PSI immune entities
survives the perturbation and can continue to stabilize all of the
consolidated synapses. However, in the presence of stimulation,
the reservoir of PSI immune entities decays faster toward zero,
so that after a prolonged application of PSI no stabilizing entities
remain to maintain all of the scaffolds of the synapses in their
big, consolidated states (Figure 2B). This phenomenon depends

on the durations of stimulation and PSI. This will be explored in
further detail below.

The responses to the second stimulation paradigm
(Figure 1D) and the third (Figure 1E) differ in that with
the third paradigm there is a larger buildup of the reservoir
of PSI immune entities due to the longer initial stimulation
such that the reservoir is larger and can withstand the same
perturbation during PSI (Figure 2B). This effect is even more
pronounced in the case of the fourth stimulation paradigm
(Figure 1F) where the reservoir continues to grow during the
prolonged stimulation allowing for robustness to the extended
protein synthesis blockade even in the presence of continuous
stimulation.

Simplified Model Maps Out the Boundary
Conditions for Reconsolidation
The “boundary conditions” for reconsolidation refer to the
conditions under which reconsolidation does or does not
occur (Eisenberg et al., 2003; Pedreira and Maldonado, 2003;
Nader et al., 2005; Morris et al., 2006; Tronson and Taylor,
2007). In order to rapidly explore the boundary conditions
of synaptic reconsolidation, we derived a reduced, two-
dimensional, description of the reservoir dynamics (seeMaterials
and Methods). This reduced model quantitatively captured the
average behavior of the reservoir dynamics, and ultimately the
final number of stabilized consolidated synapses at the end of
a stimulation protocol. The reduced model also explains the
different rates of growth and decay of the reservoir during
different phases of the experiment (Figure 2B).

We distinguish two phases of the experiment. First, the
rising phase, corresponding to the first 60 min, was simulated
with the complete stochastic model. Because during this phase
the stimulation was identical for all simulations (20min @
0.1Hz HFS 20min @ 0.1Hz 20 min no stimulation)
we could use the state of a single detailed simulation at t =

60min as a starting point (initial condition) for multiple runs
of the reduced model with different stimulation paradigms.
Second, we then used the simplified model to explore the
further evolution. In this second phase, all big synapses were
initially bound to stabilizers. Decay started when the reservoir
of PSI immune entities was empty so that not all big synapses
could find a binding partner. In this final decaying phase, the
number of big synapses was approximately equal to a delayed
version of the number of bound synapses (see Materials and
Methods).

The reduced model describes a system of two coupled
differential equations for the number of bound synapses and
the size of the reservoir of PSI immune entities. Two inputs
drive it. First, an activity-related input captures the average
joint spiking activity of the pre- and postsynaptic neuron
pair (Figure 3A). This activity is approximately given by a
low-pass filtered version of the low-frequency stimulation (see
Materials and Methods, Equation 8). Second, the number of
big synapses (Figure 3B) influences the dynamics because
only those synapses can be stabilized, and therefore their
number yields the maximal attainable value for the number

Frontiers in Neuroscience | www.frontiersin.org 11 May 2016 | Volume 10 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kastner et al. A Model of Synaptic Reconsolidation

of bound synapses. We compared the detailed model with
the reduced one using a protocol with 20min of activity
centered at 150min after LTP induction. The reduced
model accurately predicted the time course of the reservoir
(Figure 3C) and the number of stabilized synapses (Figure 3D)
during the entire reconsolidation protocol. In particular, it
provided an efficient means to obtain a reliable estimate
for the final number of bound synapses, i.e., the number of
stabilized synapses at the end of the reconsolidation experiment
(Figures 3B,D).

Importantly, the reduced model predicted the presence or
absence of synaptic reconsolidation in the full model when
tested on 5 arbitrary combinations of the durations of PSI and
stimulation (data not shown). This allowed us to explore a broad
range of combinations of PSI and stimulation to map out the
boundary conditions for reconsolidation. This broad exploration
would have taken a prohibitive amount of time if run on the full
model, since the full model requires the stochastic simulation
of the full neural dynamics including spike generation, and the
dynamics of the variables that relate to the weight, tag, and
scaffold for every synapse. All simulations began with a period
of HFS and then a brief period of background low frequency
stimulation. The PSI and stimulation were always centered
on the same point in time such that an increase in duration
would cause the beginning and ending to occur earlier or later
(Figure 3E). Our model of synaptic reconsolidation exhibits a
non-monotonic, and relatively complicated boundary conditions
to reconsolidation (Figure 3F).

Extended State-Based Model Also
Captures Reconsolidation
The write-protected model is not the only model of slice-
based consolidation. Another useful model is the state-based
model (Barrett et al., 2009), which captures diverse features of
consolidation. Given the generality of our extension to the write-
protected model, we sought to extend the state-based model in a
similar way to check the generality of our findings.

The state-based model describes each synapse as residing in
one of six states (Figure 4A). The different states correspond
to weak or strong synapses with different amounts of stability.
The transitions between states are modified based upon the
stimulation protocol, such that in response to HFS most
synapses end up in a very stable strong state. Like the write-
protected model, the state-based model does not have any means
for activity dependent degradation of consolidated synapses.
Additionally, the state-based model does not have any built-
in relationship between how the specific pre- and postsynaptic
spiking activity drives synaptic plasticity. All changes result from
ad-hoc changes in the transition rates.

We extended the state-based model to capture the four
stimulation paradigms studied in Fonseca et al. (2006a)
(Figures 4B–E) using the identical kinetics developed for the
write-protected model. To integrate the dynamic stabilization we
added a seventh state (Figure 4A). The transition between the
sixth state and the seventh occurs with binding and unbinding
of the stabilizing entity, respectively. The sixth state now has a

faster decay time, where the seventh state has the slow decay
time. Additionally, since the state based model did not have any
input dependent activity, we used the activity from the reduced
model as an input for the transition rates between binding and
unbinding of the stabilizing entity (see Materials and Methods).

Delayed Decay of Consolidation Requires
Multiple Levels of Activity Dependence
Both extended models deviated from the results described by
Fonseca et al. (2006a) in an informative way. For the second
stimulation paradigm (Figures 1D, 4C) where consolidation
degrades due to the combination of PSI and coincident
stimulation, the average weight decays immediately in both
models. However, that is not the case in the slice-based
experiment. There, the weight only decays once the stimulus
starts up again after the end of the PSI and a prolonged period
with no stimulation.

The absence of the delayed decay in our models occurs
because once the reservoir is empty (Figure 2B) there can be no
dynamic stability of consolidated synapses. In the extended write-
protected model without any stabilizing entities the scaffold
decays, which then forces the variables related to the tag and
the weight to decay (Figure 2A). That decay occurs with only a
relatively short delay set by the size of the noise coupled with the
time constants on the weight and the tag (Ziegler et al., 2015).
In the extended state-based model with no stabilizing entities the
synapses can only be in state 6 which has a short decay time to
state 3, which then quickly equilibrates with the weak synaptic
state (Figure 4A).

We were able to capture the delayed decay found by Fonseca
et al. (2006a) by adding an additional activity dependence to the
two models (Figure 5). For the write-protected model, we used
an activity-dependent noise intensity for the bistable dynamics of
the weight and the tag, such that in the absence of stimulation
the noise vanished. This effectively prevents the weight and the
tag from transitioning to the low state before further stimulation
(see Materials and Methods). For the state-based model, we
added activity dependence to the transition between the weak
and strong basal states, such that without stimulation there could
be no transition between the states. These additions made the
metastable states stable as long as there is no activity.

DISCUSSION

We have put forward a model that extends two different
existing models of consolidation to enable them to capture
reconsolidation at the synaptic level. Our model implements,
using simple kinetics, two key features of slice-based
reconsolidation: stabilization of consolidated synapses through
the binding of stabilizing entities (Figure 2A), and an activity
dependent reservoir of synaptic stabilizing entities that is
immune to PSI (Figures 1B, 2B). By implementing these two
features the model reproduces experimental results (Figures 1,
4, 5), capturing conditions where consolidation decays in the
presence of PSI coupled with stimulation (Figures 1D, 4C),
and conditions where consolidation does not decay either due
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FIGURE 5 | Delayed decay of consolidation captured by multiple levels of activity dependent processes. Response of the extended write-protected model

(A) and extended state-based model (B) to the stimulation paradigm shown at the top of the figures, and the same as in Figures 1D, 4C. Arrow indicates the time of

the HFS, and red bar shows the duration of the PSI. Blue shows the response of the models with intact protein synthesis, light red shows the response of the original

model (reproduced from Figures 1D, 4C). Note that the light red traces begin to decay prior to the beginning of the final stimulation. Red traces show the response of

the model with added activity dependent parameters. For the write-protected model the activity dependence is added to the noise of the weight and tag. For the

state-based model the activity dependence is added to the transition rate between state 4 and state 3 (β in Figure 4). Note that the red trace and the blue trace are

identical until the beginning of the final stimulation. For (B) the light and dark red traces differ due to the change in dynamic equilibrium that occurs once β becomes

activity dependent. The width of the line indicates s.e.m averaged over 10 repeats.

to no stimulation during application of PSI (Figures 1C, 4B)
or due to longer initial stimulation prior to PSI (Figures 1E,F,
4D,E). The model’s maintenance or degradation of consolidation
rests on the growth and size of its reservoir of PSI immune
stabilizing entities (Figure 2B). The reservoir grows and decays
in an activity dependent fashion such that the more stimulation
occurs prior to PSI and the less stimulation occurs during PSI
the greater the robustness of consolidation.

Given the critical nature of the evolution of the reservoir for
reconsolidation we developed a reduced two-dimensional model
of the reservoir dynamics (Figure 3). This allowed us to explore
the boundary conditions of reconsolidation in the model, which
revealed a U-shaped boundary for reconsolidation as a function
of stimulus duration.

Model Design and Limitations
In designing the model, we sought simplicity while still
maintaining a connection to the underlying biology. Such
biophysically inspired models have proven useful in connecting
the molecular and cellular level to the computation performed
by neurons and circuits (Ozuysal and Baccus, 2012; David and
Shamma, 2013; Ziegler et al., 2015). In suchmodels the goal is not
to implement the biophysics of each molecule, even if they were
known, but rather to extract core features of the biology to design
a simple and informative model of the process under study.

Protein degradation plays a critical role in consolidation
(Fonseca et al., 2006b; Karpova et al., 2006; Dong et al., 2008; Cai
et al., 2010) and reconsolidation (Lee et al., 2008; Kaang and Choi,
2011; Da Silva et al., 2013). Furthermore, protein degradation
is an activity dependent process (Ehlers, 2003; Karpova et al.,
2006; Djakovic et al., 2009). Given that we needed to enhance
the dynamic capabilities of prior consolidation models we
gained inspiration from the biology, and implemented activity
dependent unbinding of the stabilizing entity. Although there
is no actual degradation of stabilizing entities in our model, the
unbinding into the PSI susceptible pool can be viewed as protein
degradation, and the dynamics between binding and unbinding

can be viewed as the interplay between protein synthesis and
protein degradation.

In deciding upon the dynamics of the stabilizing entity,
we used the finding that there seems to be limited, shared
resources for consolidation (Fonseca et al., 2004). We therefore
hypothesized the existence of a finite number of stabilizing
entities residing in the postsynaptic neuron, which were shared
by all synapses. We chose not to reproduce the finding of
competition between synapses to keep the model simple, but
with a few additions, such as making binding activity dependent
as well, this model probably could display competition between
synapses in a situation of reduced protein synthesis.

The existence of a reservoir of immune stabilizing entities
seemed a plausible and parsimonious way to capture the
experimental results; however, we are not aware of an
exact biologic corollary to such a reservoir in this system.
Posttranslational modifications, such as phosphorylation,
provides enhanced stability for proteins (Cohen, 2000). If
reconsolidation relied upon such posttranslational modifications,
that would create a reservoir for the stabilization of
consolidation. Whether an actual reservoir of posttranslationally
modified proteins exists, or if there was just a functional
reservoir making use of different types of receptors that are more
or less stable at the synapse (Hong et al., 2013), remains to be
determined.

In keeping with our goal of simplicity, we chose to have
relatively simple dynamics for the binding and unbinding. This
limits the model in its robustness to perturbation. For instance,
if the duration of PSI were a little longer in Figures 1F, 4E,
then consolidation would have decayed. Given the experimental
findings, we had no reason to add those complexities, but there
remains a possibility for more highly nonlinear or thresholded
activity dependent functions. Further slice-based experiments
will be helpful in exposing such failings, and help refine the
underlying dynamics necessary for reconsolidation. One possible
role for more complex dynamics could become relevant when
distinguishing the consolidated state from the unconsolidated
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state. In the current model, the reservoir grows even when the
overall neuron has not undergone stable and long-lasting LTP
because there are still synapses with big scaffolds. It could very
well be that there is a neuromodulatory effect (Lisman et al., 2011)
on the size, dynamics, or even existence of the reservoir or PSI
susceptible pool to distinguish the global states.

AUTHOR CONTRIBUTIONS

DK, LZ, and WG designed the research; LZ contributed
unpublished reagents; DK and TS performed the research; DK,
TS, and WG wrote the paper.

FUNDING

This work was supported by the European Research Council
(Grant Agreement no. 268689, MultiRules), by a Swiss
Government Excellence Scholarship as part of a Fulbright
Award (DK) and by NIH R25MH060482 (DK).

ACKNOWLEDGMENTS

We thank F. Zenke, S. Mensi, C. Pozzorini, A. Seeholzer,
M. Deger, and J. Fitzgerald for helpful discussions, and we
thank F. Dunn and O. Gozel for helpful comments on the
manuscript.

REFERENCES

Barrett, A. B., Billings, G. O., Morris, R. G. M., and van Rossum, M. C. W. (2009).

State based model of long-term potentiation and synaptic tagging and capture.

PLoS Comput. Biol. 5:e1000259. doi: 10.1371/journal.pcbi.1000259

Besnard, A., Caboche, J., and Laroche, S. (2012). Reconsolidation of memory: a

decade of debate. Prog. Neurobiol. 99, 61–80. doi: 10.1016/j.pneurobio.2012.

07.002

Blumenfeld, B., Preminger, S., Sagi, D., and Tsodyks, M. (2006). Dynamics

of memory representations in networks with novelty-facilitated synaptic

plasticity. Neuron 52, 383–394. doi: 10.1016/j.neuron.2006.08.016

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural

network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912.

doi: 10.1162/neco.2007.19.11.2881

Cai, F., Frey, J. U., Sanna, P. P., and Behnisch, T. (2010). Protein degradation

by the proteasome is required for synaptic tagging and the heterosynaptic

stabilization of hippocampal late-phase long-term potentiation. Neuroscience

169, 1520–1526. doi: 10.1016/j.neuroscience.2010.06.032

Clopath, C., Ziegler, L., Vasilaki, E., Büsing, L., and Gerstner, W. (2008).

Tag-trigger-consolidation: a model of early and late long-term-potentiation

and depression. PLoS Comput. Biol. 4:e1000248. doi: 10.1371/journal.pcbi.

1000248

Cohen, P. (2000). The regulation of protein function bymultisite phosphorylation–

a 25 year update. Trends Biochem. Sci. 25, 596–601. doi: 10.1016/S0968-0004

(00)01712-6

Da Silva, W. C., Cardoso, G., Bonini, J. S., Benetti, F., and Izquierdo, I.

(2013). Memory reconsolidation and its maintenance depend on L-voltage-

dependent calcium channels and CaMKII functions regulating protein

turnover in the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 110, 6566–6570. doi:

10.1073/pnas.1302356110

David, S. V., and Shamma, S. A. (2013). Integration over multiple

timescales in primary auditory cortex. J. Neurosci. 33, 19154–19166. doi:

10.1523/JNEUROSCI.2270-13.2013

Djakovic, S. N., Schwarz, L. A., Barylko, B., DeMartino, G. N., and

Patrick, G. N. (2009). Regulation of the proteasome by neuronal activity

and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 284,

26655–26665. doi: 10.1074/jbc.M109.021956

Dong, C., Upadhya, S. C., Ding, L., Smith, T. K., and Hegde, A. N.

(2008). Proteasome inhibition enhances the induction and impairs the

maintenance of late-phase long-term potentiation. Learn. Mem. 15, 335–347.

doi: 10.1101/lm.984508

Ehlers, M. D. (2003). Activity level controls postsynaptic composition and

signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242. doi:

10.1038/nn1013

Eisenberg,M., Kobilo, T., Berman, D. E., andDudai, Y. (2003). Stability of retrieved

memory: inverse correlation with trace dominance. Science 301, 1102–1104.

doi: 10.1126/science.1086881

Fonseca, R., Nägerl, U. V., and Bonhoeffer, T. (2006a). Neuronal activity

determines the protein synthesis dependence of long-term potentiation. Nat.

Neurosci. 9, 478–480. doi: 10.1038/nn1667

Fonseca, R., Nägerl, U. V., Morris, R. G. M., and Bonhoeffer, T. (2004).

Competing for memory - hippocampal LTP under regimes of reduced

protein synthesis. Neuron 44, 1011–1020. doi: 10.1016/j.neuron.2004.

10.033

Fonseca, R., Vabulas, R. M., Hartl, F. U., Bonhoeffer, T., and Nägerl, U. V.

(2006b). A balance of protein synthesis and proteasome-fependent degradation

determines the maintenance of LTP. Neuron 52, 239–245. doi: 10.1016/j.

neuron.2006.08.015

Fusi, S., Drew, P. J., and Abbott, L. F. (2005). Cascade models of synaptically stored

memories. Neuron 45, 599–611. doi: 10.1016/j.neuron.2005.02.001

Gerstner, W., Kempter, R., vanHemmen, J., and Wagner, H. (1996). A neuronal

learning rule for sub-millisecond temporal coding. Nature 383, 76–78. doi:

10.1038/383076a0

Gerstner,W., Kistler,W.M., Naud, R., and Paninski, L. (2014).Neuronal Dynamics.

New York, NY: Cambridge University Press.

Hong, I., Kim, J., Kim, J., Lee, S., Ko, H.-G., Nader, K., et al. (2013).

AMPA receptor exchange underlies transient memory destabilization on

retrieval. Proc. Natl. Acad. Sci. U.S.A. 110, 8218–8223. doi: 10.1073/pnas.130

5235110

Kaang, B.-K., and Choi, J.-H. (2011). Protein degradation during reconsolidation

as a mechanism for memory reorganization. Front. Behav. Neurosci. 5:2. doi:

10.3389/fnbeh.2011.00002

Karpova, A., Mikhaylova, M., Thomas, U., Knöpfel, T., and Behnisch, T.

(2006). Involvement of protein synthesis and degradation in long-term

potentiation of schaffer collateral CA1 synapses. J. Neurosci. 26, 4949–4955. doi:

10.1523/JNEUROSCI.4573-05.2006

Kroes, M. C. W., Tendolkar, I., van Wingen, G. A., van Waarde, J. A., Strange, B.

A., and Fernández, G. (2014). An electroconvulsive therapy procedure impairs

reconsolidation of episodic memories in humans. Nat. Neurosci. 17, 204–206.

doi: 10.1038/nn.3609

Lee, J. L. C., Everitt, B. J., and Thomas, K. L. (2004). Independent cellular

processes for hippocampal memory consolidation and reconsolidation. Science

304, 839–843. doi: 10.1126/science.1095760

Lee, S.-H., Choi, J.-H., Lee, N., Lee, H.-R., Kim, J.-I., Choi, S.-L., et al.

(2008). Synaptic protein degradation underlies destabilization of

retrieved fear memory. Science 319, 1253–1256. doi: 10.1126/science.

1150541

Li, Y., Meloni, E. G., Carlezon, W. A., Milad, M. R., Pitman, R. K., Nader,

K., et al. (2013). Learning and reconsolidation implicate different synaptic

mechanisms. Proc. Natl. Acad. Sci. U.S.A. 110, 4798–4803. doi: 10.1073/pnas.

1217878110

Lisman, J. E., Grace, A. A., and Duzel, E. (2011). A neoHebbian framework for

episodic memory; role of dopamine-dependent late LTP. Trends Neurosci. 34,

536–547. doi: 10.1016/j.tins.2011.07.006

Morris, R. G. M., Inglis, J., Ainge, J. A., Olverman, H. J., Tulloch, J., Dudai, Y., et al.

(2006). Memory reconsolidation: sensitivity of spatial memory to inhibition of

protein synthesis in dorsal hippocampus during encoding and retrieval.Neuron

50, 479–489. doi: 10.1016/j.neuron.2006.04.012

Nader, K., and Hardt, O. (2009). A single standard for memory: the case for

reconsolidation. Nat. Rev. Neurosci. 10, 224–234. doi: 10.1038/nrn2590

Frontiers in Neuroscience | www.frontiersin.org 14 May 2016 | Volume 10 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kastner et al. A Model of Synaptic Reconsolidation

Nader, K., Hardt, O., and Wang, S.-H. (2005). Response to alberini: right answer,

wrong question. Trends Neurosci. 28, 346–347. doi: 10.1016/j.tins.2005.04.011

Nader, K., Schafe, G. E., and Le Doux, J. E. (2000). Fear memories require

protein synthesis in the amygdala for reconsolidation after retrieval. Nature

406, 722–726. doi: 10.1038/35021052

Nowicki, D., Verga, P., and Siegelmann, H. (2013). Modeling

reconsolidation in kernel associative memory. PLoS ONE 8:e68189. doi:

10.1371/journal.pone.0068189

Osan, R., Tort, A. B. L., and Amaral, O. B. (2011). A mismatch-based model

for memory reconsolidation and extinction in attractor networks. PLoS ONE

6:e23113. doi: 10.1371/journal.pone.0023113

Ozuysal, Y., and Baccus, S. A. (2012). Linking the computational structure of

variance adaptation to biophysical mechanisms. Neuron 73, 1002–1015. doi:

10.1016/j.neuron.2011.12.029

Pedreira, M. E., and Maldonado, H. (2003). Protein synthesis subserves

reconsolidation or extinction depending on reminder duration. Neuron 38,

863–869. doi: 10.1016/S0896-6273(03)00352-0

Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a model

of spike timing-dependent plasticity. J. Neurosci. 26, 9673–9682. doi:

10.1523/JNEUROSCI.1425-06.2006

Redondo, R. L., and Morris, R. G. M. (2011). Making memories last: the

synaptic tagging and capture hypothesis. Nat. Rev. Neurosci. 12, 17–30. doi:

10.1038/nrn2963

Siegelmann, H. T. (2008). Analog-symbolic memory that tracks via

reconsolidation. Physica D 237, 1201–1214. doi: 10.1016/j.physd.2008.

03.038

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning

through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.

doi: 10.1038/78829

Taubenfeld, S. M., Milekic, M. H., Monti, B., and Alberini, C. M. (2001).

The consolidation of new but not reactivated memory requires hippocampal

C/EBPbeta. Nat. Neurosci. 4, 813–818. doi: 10.1038/90520

Tronson, N. C., and Taylor, J. R. (2007). Molecular mechanisms of memory

reconsolidation. Nat. Rev. Neurosci. 8, 262–275. doi: 10.1038/nrn2090

Zhang, Y., Smolen, P., Baxter, D. A., and Byrne, J. H. (2010). The sensitivity

of memory consolidation and reconsolidation to inhibitors of protein

synthesis and kinases: computational analysis. Learn. Mem. 17, 428–439. doi:

10.1101/lm.1844010

Ziegler, L., Zenke, F., Kastner, D. B., and Gerstner, W. (2015). Synaptic

consolidation: from synapses to behavioral modeling. J. Neurosci. 35,

1319–1334. doi: 10.1523/JNEUROSCI.3989-14.2015

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Kastner, Schwalger, Ziegler and Gerstner. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 May 2016 | Volume 10 | Article 206

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	A Model of Synaptic Reconsolidation
	Introduction
	Materials and Methods
	General Setup
	Stabilizing Entity
	Reduced Reconsolidation Model
	Dynamics of the Reservoir
	Neuron Model
	Stimulation Protocols
	Extended Write-Protected Model
	Extended State Based Model
	Simulation Protocols

	Results
	Extended Write-Protected Models Captures Reconsolidation
	Simplified Model Maps Out the Boundary Conditions for Reconsolidation
	Extended State-Based Model Also Captures Reconsolidation
	Delayed Decay of Consolidation Requires Multiple Levels of Activity Dependence

	Discussion
	Model Design and Limitations

	Author Contributions
	Funding
	Acknowledgments
	References


