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The goal of the Perspective-n-Point problem (PnP) is to find the relative pose between an

object and a camera from a set of n pairings between 3D points and their corresponding

2D projections on the focal plane. Current state of the art solutions, designed to operate

on images, rely on computationally expensive minimization techniques. For the first time,

this work introduces an event-based PnP algorithm designed to work on the output

of a neuromorphic event-based vision sensor. The problem is formulated here as a

least-squares minimization problem, where the error function is updated with every

incoming event. The optimal translation is then computed in closed form, while the

desired rotation is given by the evolution of a virtual mechanical system whose energy

is proven to be equal to the error function. This allows for a simple yet robust solution

of the problem, showing how event-based vision can simplify computer vision tasks.

The approach takes full advantage of the high temporal resolution of the sensor, as the

estimated pose is incrementally updated with every incoming event. Two approaches are

proposed: the Full and the Efficient methods. These two methods are compared against

a state of the art PnP algorithm both on synthetic and on real data, producing similar

accuracy in addition of being faster.

Keywords: neuromorphic vision, event-based imaging, 3D pose estimation, PnP problem, visual tracking

1. INTRODUCTION

The Perspective-n-Point problem—usually referred to as PnP—is the problem of finding the
relative pose between an object and a camera from a set of n pairings between 3D points of the object
and their corresponding 2D projections on the focal plane, assuming that a model of the object is
available. Since it was formally introduced in 1981 (Fischler and Bolles, 1981), the PnP problem has
found numerous applications in photogrammetry and computer vision, such as tracking (Lepetit
and Fua, 2006), visual servoing (Montenegro Campos and de Souza Coelho, 1999), or augmented
reality (Skrypnyk and Lowe, 2004).

For three or four points with non-collinear projections on the focal plane, the PnP problem can
be solved up to some ambiguity in the camera pose (Haralick et al., 1994). When more points are to
be considered, the standard method is to minimize the sum of some squared error, usually defined
on the focal plane. Existing methods differ in the way this error function is minimized, and can
be classified as iterative (see Dementhon and Davis, 1995) and non-iterative (Lepetit et al., 2008).
Other techniques consider an object-space error function instead (Lu et al., 2000; Schweighofer and
Pinz, 2006). The advantage of such an approach is that a correct matching of the 3D points leads to
a correct 2D projection on the focal plane, while the reverse is not necessarily true.

Current methods, designed to work on images, are inevitably limited by the low frame rates of
conventional cameras, usually in the range of 30–60 Hz. The frame based stroboscopic acquisition
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induces redundant data and temporal gaps that make it difficult
to estimate the pose of a 3D object without computationally
expensive iterative optimization techniques (Chong and Zak,
2001). Frame-based methods are suitable for many applications,
as long as the frame rate is able to capture the motion. However,
even if the frame rate is sufficient, it is mandatory to process
non-relevant information. This paper introduces a new approach
designed to work on the output of an asynchronous event-based
neuromorphic camera. Neuromorphic cameras are a novel type
of vision sensors that operate on a new acquisition paradigm:
instead of capturing static images of the scene, they record pixel
intensity changes at the precise instants they occur. This results in
a high temporal precision that provides information about scene
dynamics which introduce a paradigm shift in visual processing,
as shown in previous contributions (Clady et al., 2014; Lagorce
et al., 2014).

To our knowledge, this is the first PnP algorithm designed
to work on the asynchronous output of neuromorphic event-
based vision sensors. In Ni et al. (2014), an event-based iterative
closest point (ICP) like tracking algorithm is introduced, where
the pattern is a 2D point cloud which is updated with every
incoming event, so that it matches the projection of a given
object. However, their solution assumes that the pattern is
undergoing some affine transformation (Coxeter, 1961), and
therefore it does not account for a more general transformation
due to perspective projection that an object freely evolving in the
3D space can experiment. Furthermore, the pose of the object
in the 3D space is never estimated. The work of Ni et al. was
extended in Reverter Valeiras et al. (2016), where we presented an
event-based 3D pose estimation algorithm. In Reverter Valeiras
et al. (2016), the model of an object is given as a collection of
points, edges and faces, and iteratively attracted toward the line of
sight of every incoming event. However, the method is based on
the assumption that the estimation is always close to the true pose
of the object, and thus requires a manual initialization step. The
technique described in the present paper, greatly inspired by the
work of Lu et al. (2000), is designed to overcome this limitation.

The main motivation of this work is its application to visual
servoing. Our goal is to build a perception-action loop fast and
efficient enough to match the performance of biological sensory-
motor systems. From past experiences, neuromorphic sensing
techniques seem to be the most promising way to reach this goal.

2. MATERIALS AND METHODS

2.1. Event-Based Imaging
Neuromorphic cameras are a new type of biomimetic vision
sensors, often referred to as “silicon retinas.” Unlike conventional
imagers, these devices are not controlled by artificially created
clock signals that have no relation to the source of the visual
information (Lichtsteiner et al., 2008). Instead, neuromorphic
cameras are driven by “events” happening within the scene, and
they transmit information in an asynchronous manner, just like
the biological eye does.

One of the first attempts of designing a neuromorphic
vision sensor incorporating the functionalities of the retina is
the pioneering work of Mahowald (1992) in the late eighties.

Since then, a variety of these event-based devices have been
created, including gradient-based sensors sensitive to static edges
(Delbrück, 1993), temporal contrast vision sensors sensitive to
relative illuminance change (Lichtsteiner et al., 2008; Posch et al.,
2008, 2011), edge-orientation sensitive devices and optical-flow
sensors (Etienne-Cummings et al., 1997; Krammer and Koch,
1997). Most of these sensors output compressed digital data in
the form of asynchronous address events (AER; Boahen, 2000),
removing redundancy, reducing latency and increasing dynamic
range as compared with traditional imagers. A comprehensive
review of neuromorphic vision sensors can be found in Delbrück
et al. (2010) and Posch et al. (2014).

The presented solution to the PnP problem is designed to
work with such sensors, and it takes full advantage of the sparse
data representation and high temporal resolution of their output.
The Asynchronous Time Image Sensor (ATIS) used in this work
is a time-domain encoding vision sensor with 304 × 240 pixels
resolution (Posch et al., 2008). The sensor contains an array of
fully autonomous pixels that combine an illuminance change
detector circuit and a conditional exposure measurement block.
As shown in the functional diagram of the ATIS pixel in Figure 1,
the change detector individually and asynchronously initiates
the measurement of an exposure/gray scale value only if—and
immediately after—an illuminance change of a certainmagnitude
has been detected in the field-of-view of the respective pixel.
The exposure measurement circuit in each pixel individually
encodes the absolute pixel illuminance into the timing of
asynchronous event pulses, more precisely into inter-event
intervals.

Because the ATIS reads out events as they happen, its temporal
resolution is highly accurate—on the order of microseconds.
The time-domain encoding of the intensity information
automatically optimizes the exposure time separately for each
pixel instead of imposing a fixed integration time for the entire
array, resulting in an exceptionally high dynamic range and
improved signal to noise ratio. The individual pixel change
detector operation yields almost ideal temporal redundancy
suppression, resulting in a sparse encoding of the image data.
Frames are absent from this acquisition process. They can
however be reconstructed, when needed, at frequencies limited
only by the temporal resolution of the pixel circuits (up to
hundreds of kiloframes per second). Reconstructed images from
the sensor have been used for display purposes.

The stream of events can be mathematically described as
follows: let ek = (uT

k
, tk, pk)

T be a quadruplet describing an event

occurring at time tk at the position uk = (xk, yk)
T on the focal

plane. The two possible values for pk are 1 or −1, depending on
whether a positive or negative change of illuminance has been
detected.

2.2. Event-Based Solution to the PnP
Problem
2.2.1. Problem Formulation
Let us imagine a scene with a moving rigid object observed from
a calibrated silicon retina, as shown in Figure 2A. Let {Vi} be
a model of the object, described as a collection of 3D points
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FIGURE 1 | Functional diagram of an ATIS pixel (Posch et al., 2011). Two types of asynchronous events, encoding change (top) and illuminance (bottom)

information, are generated and transmitted individually by each pixel in the imaging array when a change is detected in the scene. The bottom right image only shows

grayscale of pixels for which illuminance has recently been measured. Black pixels indicate locations where illuminance has not been measured recently.

Vi = (Xi,Yi,Zi)
T . Attached to this object there is a frame of

reference, whose origin we denote as V0.
The pinhole projection maps 3D points Vi expressed in the

object’s frame of reference into vi on the camera’s focal plane,
according to the relation:

(

vi
1

)

∼ K
(

R T
)

(

Vi

1

)

, (1)

where K is the 3 × 3 matrix defining the camera’s intrinsic
parameters—obtained through a prior calibration procedure —
and R ∈ SO(3), T ∈ R

3 are the extrinsic ones. The sign ∼
indicates that the equality is defined up to a scale (Hartley and
Zisserman, 2003). (R, T) are also referred to as the relative pose
between the object and the camera (Murray et al., 1994). As the
object moves, only the pose changes and needs to be estimated.
We will denote (R∗, T∗) our current estimation of the pose,
that we update with the incoming events. The corresponding
points of the estimation are denoted as V∗

i and computed with
the expression:

V∗
i = R∗Vi + T∗. (2)

Analogously, the origin of the frame of reference attached to the
estimation is denoted as V∗

0 .

2.2.2. Rotation Formalisms
Rotation matrices are one of the most widely used formalisms for
representing rotations, and they will be employed throughout the
whole article for developing our algorithm. However, some other
representations are possible, each one with its own advances
and disadvantages (Murray et al., 1994). For example, rotations
matrices are not well suited for visualization. Hence, when trying
to visualize rotations we will use the axis-angle representation,
where the rotation is expressed as the rotation vector r = φr̃,
where r̃ is a unit vector in the direction of the axis of rotation and
φ is the rotation angle.

2.2.3. Object-Space Collinearity Error
Let us consider an event ek = (uT

k
, tk, pk)

T occurring at time tk at

location uk = (xk, yk)
T . According to the pinhole camera model,

we know that this event has to be generated by a point lying on
the line of sight of event ek—the line defined by the optical center
and the spatial position of the event on the focal plane—as shown
in Figure 2A. Assuming that we can identify which point of the
object has generated the event, we try to estimate the pose that
minimizes the orthogonal projection errors on the line of sight
for the last n events.

LetMk be a vector defining the line of sight of event ek, whose
coordinates can be easily obtained as:

Mk = K−1

(

uk
1

)

. (3)

Next, let us assume that we can identify the point of the object
that has generated event ek, that we denote by the index i(k).
Hence, if the true pose of the object and the estimation were
perfectly aligned, V∗

i(k)
would necessarily lie on the line of sight

of event ek.
Let Qi(k) be the projection of V∗

i(k)
on the line of sight of event

ek, that can be computed as:

Qi(k) =
(

V∗
i(k)

)T
Mk

‖Mk‖2
Mk = LkV

∗
i (k), (4)

where Lk is the Line-of-Sight projection matrix of event ek that
takes the value:

Lk =
MkM

T
k

MT
k
Mk

. (5)

For a given event ek, we define the object-space collinearity error
ξk(R

∗,T∗) as:

ξ k(R
∗,T∗) = Qi(k) − V∗

i(k) = (Lk − I3)V
∗
i(k), (6)
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FIGURE 2 | (A) An object, given as a collection of 3D points {Vi}, is observed by a calibrated silicon retina. The true pose of the object is given by (R, T), while the

estimated pose is denoted (R*, T*). Attached to the estimation there is a frame of reference, whose origin we denote by V0*. An event ek has to be generated by a

point lying on the line of sight of the event, whose direction is given by the vector Mk . The point of the object generating event ek is denoted by the index i(k). Qi(k) is

then the projection of V*i(k) on its corresponding line of sight. When the estimation is aligned with the true position of the object, then Qi(k) and V*i(k) are the same. (B)

In order to solve the rotation, we build the following virtual mechanical system: the origin of the estimation V0* is linked to the world by a spherical joint, and every

point of the estimation V*i(k−j) generating an event ek−j is linked to its corresponding line of sight by a linear spring. Simulating the behavior of this mechanical system

is equivalent to minimizing the collinearity error.

where I3 denotes the 3 × 3 identity matrix. We will take into
account the last n events and minimize the sum of the squared
collinearity errors, where errors can be weighted. The goal of
our algorithm will therefore be to minimize the following error
function Ek(R

∗,T∗):

Ek(R
∗,T∗) =

1

W

n−1
∑

j=0

wj‖ξ k−j(R
∗,T∗)‖2, (7)

where ξ k−j(R
∗,T∗) denotes the collinearity error of event ek−j

(that is to say, the event occurring j steps before the current one)
with j = 0, 1, ..., n − 1. The weight of the corresponding error is
then denoted wj, verifying:

wj ≥ 0, ∀j = 0, 1, ..., n− 1, (8a)

W =
n−1
∑

j=0

wj. (8b)

In general, we will set the weights wj so that they decrease with j,
giving a greater importance to the most recent events. Here,W is
just a normalizing factor, whose value is usually imposed to be 1.

We will therefore be looking for the pose (R∗,T∗) that
minimizes the error function given by Equation (7), which is
computed as the sum of the collinearity errors for the last
n events. These collinearity errors depend on the estimated
position of the point generating the event (where we assume that
we can identify the point) and the position of the corresponding
event on the focal plane (or, equivalently, the projection of the
point generating the event). Consequently, our approach can
be classified as a solution to the PnP problem, since we are
estimating the pose of an object from a set of n pairings between
3D points of the object and their projections on the focal plane.

Unlike classical frame-based techniques, our approach allows us
to consider several events generated by the same point of the
object, and thus n can be chosen to be bigger than the number
of points conforming the object.

Remark: PnP methods always require matching 3D points
with their corresponding 2D projections. In the case of our
method, this equals to identifying which point of the object has
generated an event. Consequently, our algorithm relies on an
event-based tracking technique. For the rest of this paper, the
term “tracking” will always refer to this previous method. As
we will show in the experiments, the overall performance of the
system is strongly dependent on the accuracy of this tracking.

2.2.4. Translation
For a given rotation R∗, the optimal translation that minimizes
the sum of the squared collinearity errors can be computed in
closed form Lu et al. (2000). Equivalently, for a given estimation
(R∗, T∗), the optimal displacement 1Tk can be computed as:

1Tk(R
∗,T∗) = A−1

k
Bk, (9)

where Ak is a 3× 3 matrix and Bk a 3D vector given by:

Ak =
n−1
∑

j=0

wj(I3 − Lk−j), (10)

Bk =
n−1
∑

j=0

wj(Lk−j − I3)V
∗
i(k−j). (11)

We will refer to this way of computing Ak and Bk as the full
method. As shown in Lu et al. (2000),Ak can be proven to be non-
singular, guaranteeing that Equation (9) can always be solved.We
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then update the estimation of the position making:

T∗
k = T∗

k−1 + λT1Tk, (12)

where T∗
k denotes the estimated translation at time tk, and λT is a

tuning factor. Let us note that λT is a dimensionless quantity, and
it should always be chosen smaller or equal to one. Its effect will
be more carefully studied in the experiments.

As shown in the Appendix A in Supplementary Material, for
a correctly chosen set of weights and under some reasonable
assumptions, Ak and Bk can be iteratively updated making:

Ak ≈ w0(I3 − Lk)+ (1− w0)Ak−1, (13)

Bk ≈ w0(Lk − I3)V
∗
i(k) + (1− w0)Bk−1. (14)

This allows us to update Ak and Bk for each event in an iterative
manner, saving memory and computation time. We will refer to
this way of updating Ak and Bk as the efficient method, and test its
effect on the experiments.

2.2.5. Rotation
As shown in Lu et al. (2000), for a given translation T∗

the optimal rotation R∗ cannot be computed in closed form.
In Lu et al. (2000), the rotation is obtained via an absolute
orientation problem between the points of the estimation and
their projections onto the corresponding line of sight, which
is then solved using Singular Value Decomposition. This is,
however, a computationally expensive process, not well-suited to
the output of the neuromorphic camera: in order to fully exploit
the high dynamics of the sensor, we wish to update the estimated
pose with every incoming event. Given the high frequency of the
arrival of events, the computations carried out with each one of
them should be kept to a minimum, in order to achieve real-time
performance.

In our approach, instead of trying to find the optimal rotation
for each event, we will simply apply a rotation such that our
error function is reduced at each step. Since events happen
with such a high temporal resolution, this will very fast lead
to a correct estimation. To that end, we will define a virtual
mechanical system whose energy is equal to the error function.
Since mechanical systems evolve in the sense of minimizing their
energy, simulating the behavior of this system will be equivalent
to minimizing the error function, approaching the estimation
toward its true value.

Consequently, let us picture the following virtual mechanical
system: since rotations happen around the origin of the
estimation V∗

0 , let us imagine V∗
0 to be attached to the world by

a spherical joint, as shown in Figure 2B. This allows the object
to freely rotate around this point, but prevents any translation.
Next, for every event ek−j with j = 0, 1, ..., n − 1 (that is to say,
for the last n events) we wish to attract the corresponding point of
the estimationV∗

i(k−j)
toward the line of sight of the event. To that

end, let us imagine V∗
i(k−j)

and the line of sight to be linked by a

linear spring, whose direction is always perpendicular to the line
of sight. In other words, we link V∗

i(k−j)
and Qi(k−j) by a linear

spring. In a real mechanical system, this would be achieved by

linking the spring and the line of sight with a cylindrical joint, as
shown in Figure 2B.

The force Fk−j exerted by a linear spring is given by Hooke’s
law, which states that the direction of the force is that of the axis
of the spring, and its magnitude is given by the expression:

‖Fk−j‖ = Ck−j1lk−j = Ck−j(lk−j − l0), (15)

where Ck−j is the stiffness of the spring and 1lk−j = lk−j − l0 its
elongation. Since the axis of the spring is aligned with Qi(k−j) −
V∗
i(k−j)

, and considering Equation (6), Fk−j takes the value:

Fk−j = Ck−j

ξ k−j

‖ξ k−j‖
1lk−j. (16)

Next, let us make l0 = 0. This implies that the elongation at rest
is zero. In other words, the virtual spring will not produce any
force when V∗

i(k−j)
lies on its corresponding line of sight, that is

to say when it is correctly aligned with the corresponding event.
The elongation 1lk−j then takes the value:

1lk−j = lk−j = ‖Qi(k−j) − V∗
i(k−j)‖ = ‖ξ k−j‖. (17)

Finally, let us make the magnitude of the stiffness equal to the
weight of the corresponding event:

Ck−j = βwj, (18)

where β is just a unit adjustment constant, that compensates for
the fact that weights are dimensionless, but not the stiffness. For
the rest of this paper all distances will be given in mm, and thus
β = 1 Nmm-1. Fk−j becomes:

Fk−j = βwjξ k−j. (19)

Let us remind the reader that the energy gk−j of a linear spring is
given by the expression:

gk−j =
1

2
Ck−j(1lk−j)

2. (20)

The energy Gk of the whole system, when considering the last n
events, is computed by applying the principle of superposition:

Gk =
n−1
∑

j=0

gk−j =
1

2

n−1
∑

j=0

βwj‖ξ k−j‖2 =
βW

2
Ek, (21)

whose magnitude is equal to the error function, up to some
normalization factor. Simulating the behavior of this system will
then be equivalent to minimizing the error function.

Since the translation is prevented in this case, we only wish to
compute themoments of the forces and their effect. Thus, let τ k−j

be the torque generated by force Fk−j with respect to the origin of
the estimation V∗

0 :

τ k−j = (V∗
i(k−j) − V∗

0)× Fk−j

= R∗Vi(k−j) × βwj(Lk−j − I3)V
∗
i(k−j),

(22)
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where× denotes the cross product. The resulting torqueŴk when
we take into account the last n events takes the value:

Ŵk =
n−1
∑

j=0

R∗Vi(k−j) × βwj(Lk−j − I3)V
∗
i(k−j). (23)

We will compute the resulting torque using this expression when
applying the full method. We then approximate its effect by a
rotation given, in its axis-angle representation, by the vector rk
computed as:

rk = λrŴk, (24)

where λr is a tuning factor. A complete justification of this choice
is given in the Appendix B in Supplementary Material.

In the Appendix C in Supplementary Material we give some
more insight on how to pick a value for λr , and derive the

following expression for its theoretical optimum λ
opt
r :

λ
opt
r =

3π

2(1+
√
2)

1

βWρ2
max

, (25)

where ρmax is equal to the maximum distance in the object
ρmax = max

i
{‖Vi‖}. From this expression it is evident that λr

is not dimensionless, and its optimal value will therefore depend
on the dimensions of the object whose pose we want to estimate
(and the units in which they are expressed). For the rest of this
paper, all values of λr will be expressed in N-1mm-1.

Let 1Rk be the rotation matrix corresponding to the rotation
represented by rk. We update the estimation with the following
expression:

R∗k = 1RkR
∗
k−1. (26)

As in the case of Ak and Bk, the resulting torque can be
approximated with the iterative expression:

Ŵk ≈ βw0R
∗Vi(k) × (Lk − I3)V

∗
i(k) + (1− w0)Ŵk−1. (27)

The value of the resulting torque will be updated in this way when
applying the efficient method.

2.2.6. Global Algorithm
The PnP problem is solved by the global algorithm described
below.

3. RESULTS

In this section, two experiments showing the accuracy of our
method are presented. The algorithm is implemented in Matlab
and C++ and tested in a synthetic scene for the first experiment.
Next, another experiment is produced from a real recording.

In order to characterize the accuracy of our method we
will consider the sum of the squared collinearity errors Ek.
Additionally, we adopt the following metrics in the space of rigid
motions:

Algorithm 1 Event-Based PnP algorithm

Require: ek = (uT
k
, tk, pk)

T ∀k > 0
Ensure: R∗, T∗

Initialize the parameters
for every incoming event ek do
Identify the point generating the event i(k)
Compute the Line-of-Sight projection matrix Lk using
Equation (5)
if full method then
Compute the resulting torque Ŵk using Equation (23)
Compute Ak and Bk using Equations (10) and (11)

else if efficient method then
Update the resulting torque Ŵk using Equation (27)
Update Ak and Bk using Equations (13) and (14)

end if

Compute the resulting rotation 1Rk using Equation (24)
Compute the resulting displacement1Tk using Equation (9)

Update R∗ using Equation (26)
Update T∗ using Equation (12)

end for

• The absolute estimation error in linear translation is given by
the norm of the difference between the estimated translation
T∗ and its true value T. We define the relative translation error
ξT as:

ξT(%) = 100
‖T∗ − T‖

‖T‖
, (28)

where ‖T‖ is the norm of the mean translation of the object for
the whole experiment.

• The distance d between two rotations, given by the
corresponding rotation matrices R1 and R2 can be computed
as:

d(R1,R2) = ‖I3 − R1R
T
2 ‖F, (29)

where I3 is the 3 × 3 identity matrix and ‖ · ‖F denotes
the Frobenius norm of the matrix. This can be proven to
be a metric in the space of 3D rotations (Huynh, 2009) and
takes values in the range [0, 2

√
2]. Thus, let ξR be the relative

rotation error computed as:

ξR(%) = 100
d(R∗,R)

2
√
2

. (30)

For all of the following experiments the weights of the past events
are chosen to be linearly decaying. ImposingW = 1 yields:

wj =
2(n− j)

n(n+ 1)
, ∀j = 0, ..., n− 1. (31)

3.1. Synthetic Scene
The algorithm is first tested in a synthetic scene containing
a virtual object. This object is composed by 10 points whose
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3D coordinates were randomly initialized following a normal
distribution with zero mean and standard deviation equal to
10 mm. Both the object and the camera are assumed to be
static, and the pose of the object relative to the camera is
given by the translation vector T = (0, 0, 200)T (in mm) and
the rotation vector r = (2/3, 2/3, 1/3)T . Figure 3 shows the
resulting geometry.

The virtual camera has the following intrinsic parameters
matrix:

K =





fmx 0 cx
0 fmy cy
0 0 1



 , with



















f = 20 mm

mx = my = 30 px/mm

cx = 152 px

cy = 120 px

which corresponds to an ideal pinhole cameramodel. The precise
geometric parameters are those of an ATIS device equipped with
an objective with focal distance 20 mm.

A stream of events is generated from this synthetic scene,
sequentially selecting a randompoint of the object and generating
an event on its corresponding projection on the focal plane.
The inter-event times are random integers following a normal
distribution with mean 5 µs and standard deviation 2 µs
(corresponding to some characteristic values observed in ATIS
recordings of real moving objects). Let us note, however, that
we are not trying to accurately simulate the event generation
mechanism of neuromorphic image sensors. For this first
experiment we are just trying to evaluate the algorithm when
the object is static and assuming perfect tracking. Even if the
events are not generated in a realistic fashion, this will allow
us to characterize different aspects of the algorithm in the
simplest possible situation. We will evaluate our method on real
recordings in the next experiment.

In a first step we test the accuracy of the rotation and the
translation estimation strategies separately. This will allow us to
explore the space of parameters and give some guidance on how
to set them.

FIGURE 3 | Synthetic scene: the solid dots represent the pose of the

object, static in this experiment. We randomly select a point of the object

and generate an event located on its projection on the focal plane.

3.1.1. Translation
In order to exclusively check how the algorithm estimates
translation, we make the initial estimation of the rotation R∗(0)
equal to its true value R. Additionally, we set the tuning factor
for the rotation λr as being zero. Let us remind the reader that
the object is in this case static, and thus the estimated rotation
will remain equal to its true value at every instant. We make the
initial estimation of the translation T∗(0) = (0, 0, 0)T .

Let us first apply the full method to the synthetic stream of
events making n = 20. Figure 4A shows the evolution of both
the sum of the squared collinearity errors Ek and the relative
translation error ξT with the incoming events for four different
values of λT . We do not plot the relative rotation error ξR, since
it will always be zero in this case. Let us note that, for the first n
events, we cumulate the information (updating Ak, Bk and Ŵk)
but we do not update the estimation of the pose. Consequently,
the relative translation error remains stable. Ek is not stable
because, in general, different points of the object will yield
different collinearity errors. After n events we start updating the
estimation, and we can see how both errors decay toward zero.

Comparing the results obtained with different values of λT , we
verify that the bigger λT the faster the convergence. As a matter
of fact, we could consider making λT = 1. This value of λT
makes the estimated translation equal to the optimal one for the
last n events at every iteration. If we are confident enough in the
accuracy of our tracking this constitutes an acceptable strategy.

Figure 4B shows the evolution of Ek and ξT for four different
values of n, with λT = 0.1. We can see how the estimation is
not updated until n events have elapsed, but once it does the
behavior of the system is very similar for all values of n. This
can be explained because the object is in this case static and the
tracking is perfect. In real world scenarios, choosing nwill require
a tradeoff between acceptable velocities of the object—a smaller n
results in a shorter reaction time—and stability in the presence of
tracking errors—if n is big enough we can expect tracking errors

FIGURE 4 | (A) Evolution of the sum of the squared collinearity errors Ek and

the relative translation error ξT with the number of iterations for four different

values of λT , when applying the full method with n = 20. The bigger λT , the

faster the convergence. (B) Evolution of Ek and ξT for four values of n when

λT = 0.1. We do not start updating the estimation until we have accumulated

n events. After that point, the behavior of the system is very similar for every

value of n.
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to be canceled out. In order to illustrate this point, let us simulate
some inaccuracy in the tracking and evaluate the algorithm again.

To that end, we will assume that events are correctly assigned
to the points generating them, but their position is noisy. This
would correspond to a real case in which we are estimating
the position of some markers, but there is some inaccuracy in
this estimation. We will model the tracking errors as a gaussian
noise with zero mean and standard deviation equal to σ . We
plot in Figure 5A the evolution of the relative translation error
ξT for four different values of σ (in pixels) and n. We verify
that an inaccurate tracking strongly degrades the performance of
our algorithm, resulting in increasing values for the final error.
Additionally, for small values of n the estimated pose has a greater
variance as the inaccuracy grows.

We next evaluate the effect of matching errors, i.e., when
events are not correctly assigned to the point of the object
generating them. Thus, we take a percentage of the events and
randomly assign them to some other point of the object.We show
in Figure 5B the evolution of the relative translation error ξT
for four different percentages of wrongly assigned events. Again,
we observe that matching errors degrade the performance of the
algorithm.

These results allow us to conclude that the overall
performance of the system is strongly dependent on the
accuracy of the tracking. Additionally, we conclude that n should
be chosen to be big enough to assure stability in the presence
of tracking errors. The effect of this parameter will be more
deeply analyzed in the next experiment, when treating real
recordings. Let us note that increasing n will also result in a
greater computation time.

Next, let us estimate the translation by applying the efficient
method to the synthetic stream of events. Figure 6A shows the
evolution of both Ek and ξT for four different values of λT ,
when w0 = 0.1. Let us note that when applying this strategy
we do not set the value of n, and thus we will start updating
the estimation from the first incoming event. As we can see in
Figure 6A, both errors decay toward zero in this case as well,
and the convergence is faster for bigger values of λT . When
applying the efficient method, however, big values of λT will cause

the system to oscillate. Choosing λT will consequently require
a tradeoff between speed of convergence and stability of the
system.

Figure 6B shows the evolution of Ek and ξT for four different
values of w0, when applying the efficient method with λT = 0.03.
We observe that the system has a tendency to oscillate for small
values of w0. This can be explained because small values of w0

result in a big “inertia” of the system. Let us remind the reader
that we are iteratively updating the desired displacement 1T

at each step. The parameter w0 controls how much we update
1T with every incoming event. Consequently, if w0 is too small,
the desired displacement will continue to be big even when the
collinearity errors are already small.

In order to further clarify this point, let us plot in Figure 7 the
evolution of the relative translation error ξT for different values
of w0 and λT . As we can see, for small values of w0 the system
tends to oscillate even when λT is small. This result suggests that
one should assign big values to w0 (close to one) and to λT ,
allowing to achieve fast convergence while the system remains

FIGURE 6 | (A) Evolution of Ek and ξT with the number of iterations for four

different values of λT , with w0 = 0.1. The bigger λT , the faster the

convergence. However, too big a value of λT will cause the system to oscillate.

(B) Evolution of Ek and ξT for four different values of w0, with λT = 0.03.

Bigger values of w0 make the system more stable.

FIGURE 5 | (A) Evolution of the relative translation error ξT when the tracking is not perfectly accurate. As the inaccuracy σ grows, the results of the pose estimation

are strongly degraded. Additionally, when n is small the estimated pose has a greater variance. (B) Evolution of ξT with different percentages of wrongly assigned

events.
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stable. However, if the value of w0 is too big we will be assigning
a great importance to the most recent events. This is actually
equivalent to setting a small value for n, which will cause the
system to be less stable in the presence of tracking errors.

We conclude that when applying the efficient method w0 and
λT should be chosen together. We thus recommend values of w0

between 0.03 and 0.3, for λT between 0.01 and 0.1. In this case,
the value of w0 has no effect on the computation time required.

3.1.2. Rotation
We next test how the algorithm estimates only rotation. To that
end, we make the initial estimation of the translation T∗(0) equal
to its true value T, and set λT = 0. The initial estimation of the
rotation is made R∗o(0) = I3, the 3× 3 identity matrix.

The maximum distance in the synthetic object is
ρmax = 19.95 mm. Applying Equation (25) yields:

λ
opt
r = 0.0049N−1mm−1 ≈ 0.005 N−1mm−1. (32)

We will test different values of λr around λ
opt
r . Figure 8A shows

the evolution of Ek and ξR with the incoming events for four
different values of λr , when applying the full method with n = 20.
We verify that the results are very similar to the ones obtained in
the case of the translation, with both errors decaying toward zero
after n events. Analogously, the convergence is faster for bigger
values of λr . We verify that the system still yields stable results

for λr > λ
opt
r . In this case, we experimentally determine that

for values of λr greater than 0.01 the rotation fails to converge.
We verify that Equation (25) provides good theoretical guidance
for setting the order of magnitude of λr . We thus recommend to

simply set the value of λr as λ
opt
r .

Figure 8B shows the evolution of Ek and ξR with the incoming

events for four different values of n, when λr = λ
opt
r = 0.005

N−1mm−1. As in the case of the translation, after n events have
elapsed both errors decay toward zero. Again, since the object
is static and the tracking is perfect the behavior of the system
is very similar for all values of n. For inaccurate tracking the

FIGURE 7 | Evolution of the relative translation error ξT with the

incoming events for different values of w0 and λT . We verify that bigger

values of w0 allow us to set a bigger λT without loosing stability. However, the

system will become more sensible to tracking errors.

same tradeoff applies as in the case of the translation, and we
recommend values of n between 20 and 200.

Finally, let us apply the efficient method to estimate the
rotation. Figure 9A shows the evolution of both Ek and ξT for
four different values of λr , when w0 = 0.1. We verify that when
applying the efficient method the system has a bigger tendency to
oscillate.

Figure 9B shows the evolution of the errors for four different
values of w0, when λr = 0.002 N-1mm-1. As in the case of the
translation, we verify that small values of w0 cause the system to
oscillate. Analogously, too big a value of w0 will cause the system
to be sensible to tracking errors. Consequently, we recommend
the same fork of values for w0 between 0.03 and 0.3.

3.2. Real Recordings
Next, our algorithm is tested on real data obtained from an ATIS
sensor, where an object moves and rotates in front the camera.
As an object, we use a white piece of paper in which we printed

FIGURE 8 | (A) Evolution of the errors for four different values of λr (in

N−1mm−1), when n = 20. After n events both errors decay toward zero, the

convergence being faster for bigger values of λr . (B) Evolution of the errors for

four different values of n, with λr = 0.005 (in N-1mm-1 ). After n events have

elapsed, the behavior of the system is very similar for all values of n.

FIGURE 9 | (A) Evolution of Ek and ξR for four different values of λr , when

w0 = 0.1. For big values of λr the system has a tendency to oscillate, and it

might even fail to converge. (B) Evolution of the errors when λr = 0.001

N−1mm−1, for four different values of w0. When w0 is small, the system has a

bigger tendency to oscillate.
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some logo and a set of black dots (see Figure 10A). These dots
constitute the model of the object.

In order to determine which point of the object has generated
an event, we track these dots using the Spring-Linked Tracker Set
presented in Reverter Valeiras et al. (2015). That work introduces
a plane part-based tracking technique which describes an object
as a set of simple trackers linked by springs. When the position
of an incoming event is close enough to one of these simple
trackers, then the event is assigned to that tracker, whose 2D
location is updated. The springs then guarantee that the shape
of the object keeps a certain coherence, while some variability—
corresponding to the perspective transformation of the moving
object—is allowed. When tracking a grid of points, the mean
tracking errors reported in Reverter Valeiras et al. (2015) are
below 3%, relative to the size of the object. This corresponds,
for an object occupying a third of the camera’s field of view, to
an absolute tracking error of 3 px. From the results shown in
Figure 5 we consider this value to be acceptable.

Figure 10B shows the output of the Spring-Linked Tracker Set
when it is applied to one of our recordings. In the image, circles
represent the position of each one of the simple trackers, while
dashed lines depict the springs linking them. As we can see, we
associate a simple tracker with each one of the black dots. Thus,
when an event is assigned to one of these trackers, we consider
that the event has been generated by the corresponding point of
the object. In order to increase the accuracy of the method, we
make the location of the event equal to the current position of
the tracker, and then feed the resulting stream of clustered events
to our PnP algorithm.

Ground truth values for numerical evaluation are obtained
from an OptiTrack1system. OptiTrack is a motion capture
system that outputs reliable values for the 3D pose of rigid bodies,

1http://www.optitrack.com/.

FIGURE 10 | (A) Real object used in the experiments: black dots constitute

the model of the object, while the logo in the center is used just for visual

verification. (B) Output of the Spring-Linked Tracker Set: circles show the

position of the simple trackers, while the dashed lines represent the springs

linking them. (C) 3-point object (D) 4-point object (E) 8-point object.

provided that they are equipped with a number of infrared
markers. Fixing markers on the object and the camera allows us
to obtain their poses in the 3D space, from which we retrieve the
pose of the object relative to the camera. Comparing this value
with the estimation of our algorithm we compute the relative
translation and rotation errors. Accuracy is characterized by the
mean value of these errors computed for a whole recording.

We consider three different objects: the ones composed by
three, four or eight points (see Figures 10C–E, respectively). This
will allow us to evaluate the effect of the number of points on
the accuracy of the algorithm. For all three objects the maximum
distance is ρmax = 136.01 mm. Applying Equation (25) yields

λ
opt
r ≈ 0.0001 N−1mm−1.
We make three different recordings for each one of the

objects, producing a total of nine recordings. We identify them
by their index, going from one to nine, where recordings #01
to #03 correspond to scenes containing the 3-point object.
Recordings #04 to #06 contain the 4-point object, and #07 to
#09 the 8-point object. In all of them the corresponding object
is displaced and rotated in every direction. All recordings are
cropped to have the same duration of 25 s and solved using the
same set of parameters. The initial estimation of the pose is always
made T∗ = (0, 0, 0)T , R∗(0) = I3.

We test the accuracy of both the full method and the efficient
method on these real data. Additionally, we implement Lu’s
method (Lu et al., 2000) and apply it to our recordings as well.
This allows us to evaluate our approach against a state of the art
PnP algorithm.

Let us first apply the full method to the 9 recordings.
Parameters are selected in the range giving stable results in the
previous experiment. After several trials, they are experimentally
set to n = 50, λT = 0.1 and λr = 0.0001 N−1mm−1. Figure 11A
depicts the characteristic output of the PnP algorithm at a given
instant, corresponding to recording #09. Here, the background
of the image shows a snapshot of the ATIS output. Additionally,
events assigned to different points of the object are indicated
by different shapes (crosses, triangles, and so on), while circles
represent the reprojection of the object at the pose estimated
by the algorithm. We can see that, in general, circles surround
the events generated by the corresponding points, showing that
our method is yielding good results on the focal plane. We also
reproject the logo, that as we can see matches the corresponding
events. Figure 11B shows the state of the system at the same
instant represented in the 3D space, where the camera’s optical
center has been placed at the origin. Recent trajectories of the
points of the object have been plotted too, represented with the
same set of symbols as in the 2D image. We show in Video 1 the
output of the algorithm for this recordings: to the left we show
results obtained on the focal plane, while 3D results are shown
on the right side.

In order to illustrate pose estimation results produced by the
algorithm, let us plot in Figure 12A the evolution of the three
components of the translation vector T (in mm) for recording
#09. In the figure, ground truth values are represented by dashed
lines, and estimated values by continuous lines. We verify that
these curves are coincidental, showing that the algorithm is
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FIGURE 11 | (A) Characteristic output of the PnP algorithm, corresponding to recording #09. The background of the image shows a snapshot of the ATIS recording,

while events assigned to different points of the object are represented by different shapes (crosses, triangles, etc.). Circles indicate the reprojection of the object at its

estimated pose: as we can see, the reprojection matches the corresponding events, showing that the algorithm is yielding good results on the focal plane. We

reproject the logo as well, that matches the corresponding events. (B) 3D representation of the same instant, where the recent trajectories of the points of the object

have been plotted using the same set of symbols.

FIGURE 12 | (A) Evolution of the three components of the translation vector T

(in mm) for recording #09. Ground truth values are indicated by dashed lines,

while the results produced by the full method are represented by solid lines.

We verify that these two curves are coincidental. The resulting value of the

relative translation error ξT is shown at the bottom: after a short initial transient

its value remains always below 5%, yielding a mean value for the whole

recording of just 1.79%. (B) Evolution of the rotation vector r: estimated values

are coincidental with ground truth values. This results in a mean value for the

relative rotation error of 0.79%.

correctly estimating translation. The relative translation error ξT
is shown at the bottom of the figure: as we can see, after a short
initial transient its value stabilizes to be always lower than 5%.
This results in amean value for the whole recording of just 1.79%.
We denote this mean error ξT , and use it to characterize the
accuracy of a given approach.

Analogously, Figure 12B shows the three components of the
rotation vector r. As in the case of the translation, estimated
values are coincidental with the ground truth references provided
by the OptiTrack system. Consequently, the relative rotation
error ξR is always below 5%, resulting in a mean value (denoted
ξR) of only 0.79%. These results allow us to conclude that the
full method is correctly estimating the pose of the object for this
recording.

Let us next apply the efficient method to all the recordings
with the following set of parameters: w0 = 0.1, λT = 0.1 and
λr = 0.0001 N−1mm−1 (note that λT and λr take the same
values as for the full method). Considering Lu’s algorithm, the
only parameter is n, that we experimentally set to n = 50. We
show in Figure 13 the mean errors obtained for every recording
with all three methods, where the relative translation error is
shown on top and the relative rotation error at the bottom.
Recordings of the same object are grouped together. From the
results displayed in Figure 13 we can extract the following
conclusions:

• The full method and the efficient method yield statistically
equivalent results: for every recording, results obtained with
both methods are almost identical. This proves the efficient
method to be a valuable approximation.

• We cannot uniquely estimate the pose of an object with less
than four points: when the 3-point object is considered, every
method fails to produce accurate pose estimations. This is a

known limitation of the PnP technique (Haralick et al., 1994),
not specific to the event-based approach.

• When four or eight points are considered, pose is correctly
estimated by our algorithm. Results obtained by our method
are as reliable as the ones provided by Lu’s, showing the

accuracy of our approach. Both the efficient method and the

full method produce errors in the same range of values, from
1.9% to 2.8% for the translation, and from 0.8 to 1.2% in the
case of the rotation.

• Increasing the number of points to more than four does not

improve the accuracy of the algorithm in the experiments.
More than four points produce an overdetermined system,
which is not always a guarantee of a better accuracy in the pose

estimation. We hypothesize that, in this particular case, we
have reached the limit of the algorithm because of the sensor’s

spatial resolution. A more thorough study with different

stimuli, experimental conditions and tracking techniques is
necessary to reach a firm conclusion.
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FIGURE 13 | Statistics of the errors obtained for each one of the nine

recordings. The full method and the efficient method yield equivalent results.

When four or eight points are considered, the accuracy of our algorithm is

equivalent to Lu’s.

In summary, when the object is composed by at least four points
all three methods provide comparable accuracy. In order to
establish a complete comparison between them we next evaluate
their computation time.

3.3. Computation Time
The presented experiments were carried out using a conventional
laptop equipped with an Intel Core i7 processor and running
Debian Linux. The algorithm was implemented both in Matlab
and C++. Only the computation time of the C++ implementation
is discussed. The code is not parallelized and a single core was
used.

When applying the full method or Lu’s method, the
computation time depends on the value of n (the number of
past events taken into account for updating the pose). We thus
evaluate the evolution of both the computation time and the pose
errors with the value of this parameter. We show in Figure 14 the
results obtained for recordings #01, #04, and #07, where n takes
values between 2 and 30. Only three recordings are shown for
clarity reasons, results obtained for the remaining recordings are
equivalent.

Figure 14A shows the results obtained for recording #01,
which contains the 3-point object. On top, the evolution of the
mean translation error ξT with the value of n is shown. If we
analyze the efficient method, we observe that a straight line is
obtained. This is an expected result, since this method does not
depend on n. The value of the error is ξT = 2.95%.

In the case of the full method, we observe that large errors are
obtained for small values of n. This is also an expected result,
as explained in Section 3.1. From n = 6 the error stabilizes at
around 3%.

Finally, when applying Lu’s method, we verify that the
errors are even higher for small values of n, and they do
not stabilize until n = 15. This can be explained because
Lu’s method is not incremental. Instead, it computes at each
iteration the best solution for the last n events. Due to the
nature of the neuromorphic camera, it often occurs that several

consecutive events are generated by the same point of the object.
Consequently, when Lu’s method is applied with a small value
of n, pose is often estimated using just one or two points of the
object. This causes the estimation to be flawed, leading to large
oscillations which result in the large observed errors. This is an
indication that Lu’s algorithm is not well-suited to the output of
the neuromorphic camera.

Themiddle row of Figure 14A shows themean rotation errors
for recording #01. Since the 3-point object is considered in this
case, rotation cannot be uniquely estimated. This results in large
rotation errors for all three methods.

At the bottom of Figure 14A we show the computation time
required for applying the PnP algorithm to recording #01. Values
are averaged over 10 trials for each set of parameters. For the
efficient method we observe a straight line at the value 0.017 s. In
the case of the full method, we verify that the computation time
grows linearly with n. If we analyze Lu’s method, we verify that it
also grows with n, linearly from n = 8.

We consider the computation time at n = 30 as a reference,
since this value ensures stable solutions for all recordings with
every method. The efficient method is then 6.1 times faster than
the full method and 57.5 times faster than Lu’s.

Figure 14B shows the results obtained for recording #04, that
contains the 4-point object. Rotations can be correctly estimated
in this case, the efficient method yields a mean rotation error
ξR = 0.89%. The full method and Lu’s method stabilize around
this value from n = 6 and n = 30, respectively. As observed
before, small values of n cause the solution to oscillate, specially
in the case of Lu’s method.

At the bottom of Figure 14B the computation time required to
solve recording #04 is shown. We verify that it follows the same
previously observed pattern. However, the computation time is
larger for every method, because consideringmore points implies
more events to process. The computation time for the efficient
method is 0.035 s. This is 6.0 times faster than the full method and
58.4 times faster than Lu’s method (with n = 30).

Figure 14C shows the results for recording #07, that contains
the 8-point object. Pose can be correctly estimated from n = 4
when applying the full method, and from n = 15 when Lu’s
method is chosen. When n = 30, the efficient method is 5.5 times
faster than the full method and 52.4 times faster than Lu’s.

It is important to emphasize that these results are
implementation-dependent. Several optimization techniques
can be applied, providing faster computation times. However,
our implementation shows the efficient method to be around 50
times faster than Lu’s method.

4. DISCUSSION

An event-based PnP algorithm has been presented. To our
knowledge, this is the first purely event-based solution to the PnP
problem.

When computing the optimal translation of the object, we
adapt a preexisting closed-form solution to our incremental
approach. Rotation, however, cannot be solved in such a simple
manner. Previous solutions employed complicated techniques to
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FIGURE 14 | Evolution of the pose estimation errors and the computation time with the value of n. (A) Results for recording #01. Top: mean translation error.

Lu’s method is unstable for small values of n, and its behavior is not predictable until n = 15. Middle: mean rotation error. Since this recording contains the 3-point

object, rotation cannot be correctly estimated and rotation errors take big values for all three methods. Bottom: computation time. The efficient method is the fastest

one, and it does not depend on n. (B) Results for recording #02. Rotation can be correctly estimated in this case. The computation time is greater than for recording

#01, because more points in the object implies more events to treat. (C) Results for recording #07.

compute the optimal rotation for each frame, applying SVD to
the solution of complex systems of equations. In our work, the
rotation is estimated by simulating the evolution of a virtual
mechanical system instead. This results in a simple yet robust
solution to the problem, showing how event-based vision has the
potential to simplify pose estimation tasks. We show how the
high temporal resolution of incoming events makes it possible to
apply simplifying assumptions without degrading the obtained
results, but greatly reducing the number of operations per event.
As an additional advantage, we consider our algorithm to be
more intuitive and easier to implement than Lu’s one. As a
drawback, it requires the tuning of three parameters, while Lu’s
method has only one. However, we prove that there is a big range
of values for which our method provides stable and accurate
results.

When applying the efficient method, the resulting equations
are very simple. Nevertheless, we prove that this approximation
yields equivalent results to the full method when dealing with real
recordings of moving objects. For the chosen set of parameters,
when the object is composed of at least four points both the
efficient method and the full method produce errors in the same
range of values: from 1.9 to 2.8% for the translation, between 0.8
and 1.2% for the rotation. These values, very similar to the ones
produced by Lu’s algorithm, are sufficiently low to conclude that
our method can correctly estimate 3D pose at a lower cost.

When the computation time of the different approaches is
analyzed, we show that the efficient method is faster than the full
method, and much faster than Lu’s algorithm, while being equally
accurate. For our precise implementation, the efficient method
is around five times faster than the full method and 50 times
faster than Lu’s algorithm. Even if we are aware that these results
are implementation-dependent, we consider the difference to be

significant enough to conclude that the efficient method is faster,
and thus recommend it as the standard choice. We claim that
this gain in efficiency comes from the fact that our method
is specifically adapted to handle the output of neuromorphic
cameras.

As every PnP technique, our method requires matching
3D points with their 2D projections on the focal plane. The
matching accuracy has consequently a strong impact on the
overall performance of the system and the event-based PnP
algorithm will benefit from any advances in event-based tracking
or marker detection. For this reason, future research must put
effort in the improvement of this layer. Future extensions of this
research could also include the improvement of the mechanical
model. Adding dashpots, for example, could allow for more
aggressive constants, resulting in faster response times while
avoiding oscillations. However, more complex models would
likely increase computation loads, reducing its ability to satisfy
real-time constraints: a compromise should be foundwith respect
to this aspect.

Even taking into account reserves previously mentioned and
according to the properties of the technique presented in this
work, we have here the most advanced fully event-based PnP
algorithm dedicated to silicon retinas. Since the estimated pose
is updated with every event, the method takes full advantage
of the high temporal resolution of the neuromorphic sensor.
Moreover, the operations carried out with every event are
reduced, guaranteeing real-time performance. Such property
is highly demanded in embedded robotics tasks, such as
visual servoing or autonomous navigation. This was the main
motivation of this work, and provides the first stage to an entirely
event-based formulation of visual servoing based on silicon
retinas.
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